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We demonstrated a significant inverse correlation between vancomycin and beta-lactam susceptibilities in vancomycin-interme-
diate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) isolates. Using time-kill assays, vancomycin plus oxacillin
or ceftaroline was synergistic against 3 of 5 VISA and 1 of 5 hVISA isolates or 5 of 5 VISA and 4 of 5 hVISA isolates, respectively.
Beta-lactam exposure reduced overall vancomycin-Bodipy (dipyrromethene boron difluoride [4,4-difluoro-4-bora-3a,4a-diaza-
s-indacene] fluorescent dye) binding but may have improved vancomycin-cell wall interactions to improve vancomycin activity.
Further research is warranted to elucidate the mechanism behind vancomycin and beta-lactam synergy.

The high prevalence of methicillin-resistant Staphylococcus au-
reus (MRSA) has prompted an increase in the utilization of

glycopeptides, such as vancomycin, leading to the emergence of
vancomycin-intermediate S. aureus (VISA) and heterogeneous
VISA (hVISA) (1). Isolates with reduced susceptibility to vanco-
mycin are being reported more frequently (1, 2). The mechanisms
responsible for this phenotype involve multiple, stepwise and in-
ducible changes affecting cell wall metabolism and resulting in
increased cell wall thickness, reduced virulence properties, de-
creased susceptibility to cationic antimicrobial peptides, and re-
duced growth rate (3, 4). Interestingly, an increased susceptibility
to traditional antistaphylococcal beta-lactams despite the pres-
ence of the mecA gene has been described among MRSA with
reduced susceptibility to lipopeptides and glycopeptides (5–7).
The mechanism of this phenomenon, referred to as the “seesaw
effect,” remains unclear. Previous studies have suggested that van-
comycin may be synergistic with beta-lactams against MRSA, but
results are inconsistent (8–13). Data are currently limited regard-
ing potential synergy between vancomycin and ceftaroline (12). In
this study, we performed susceptibility testing and time-kill stud-
ies using beta-lactams, daptomycin, and vancomycin against
mecA-positive hVISA and VISA isolates to look for possible syn-
ergy between these antibiotics against these clinically difficult
pathogens.

Isolates of MRSA, including 61 VISA and 93 hVISA strains,
previously characterized for staphylococcal cassette chromosome
mec element (SCCmec) type and accessory gene regulator (agr)
group and function, were selected from the Anti-Infective Re-
search Laboratory collection (ARL, Detroit, MI). Five VISA and 5
hVISA strains were selected for time-kill synergy studies.

Vancomycin, daptomycin, cefoxitin, and oxacillin powders
were obtained from commercial sources (Sigma Chemical Com-
pany, St. Louis, MO, and Cubist Pharmaceuticals, Lexington,
MA). Ceftaroline was provided by its manufacturer (Forest Lab-
oratories Inc., New York, NY).

In vitro experiments were performed in Mueller-Hinton broth
(MHB; Difco, Detroit, MI) and MHB supplemented appropri-
ately with calcium or sodium chloride for daptomycin and oxacil-

lin susceptibility testing. Time-kill experiments were performed in
MHB containing 50% sterile, heat-inactivated human serum at an
inoculum of �106 CFU/ml. Colony counts were determined us-
ing tryptic soy agar (TSA; Difco, Detroit, MI) plates. Brain heart
infusion agar (BHIA, Difco, Detroit, MI) supplemented with 1
�g/ml of vancomycin was used to subculture VISA strains in order
to maintain this phenotype (14).

MICs were determined in duplicate by broth microdilution per
CLSI guidelines (15). Minimum bactericidal concentrations
(MBCs) were determined as previously described (16). Oxacillin
MICs were repeated on VISA subpopulations of 78 hVISA strains,
which were selected by plating 108-CFU/ml suspensions onto
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TABLE 1 MIC distribution of various antibiotics against collections of
hVISA and VISA isolates of MRSA

Phenotype
Level of
inhibition

MIC (�g/ml) of a:

VAN DAP OXA FOX CPT

hVISA
(n � 93)

MIC50 1 0.25 128 128 0.5
MIC90 2 0.5 512 256 1
Range 0.5–2 0.125–1 8–512 8–512 0.125–2

VISA
(n � 60)

MIC50 4 1 64 64 0.5
MIC90 8 2 256 256 1
Range 4–8 0.125–2 0.5–512 8–512 0.125–1

a VAN, vancomycin; DAP, daptomycin; OXA, oxacillin; FOX, cefoxitin; CPT,
ceftaroline.
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FIG 1 Activities of vancomycin, oxacillin, ceftaroline, and combinations against VISA and hVISA strains.
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BHIA plates containing 4 �g/ml vancomycin and incubating for
48 h at 35°C.

Time-kill studies were performed in duplicate to evaluate the
potential for synergy and bactericidal activity of vancomycin plus
oxacillin or ceftaroline at sub-MICs (one-half MIC) as described
previously (16). Synergy and bactericidal activity were defined
according to AAC guidelines (24).

The well-characterized daptomycin-nonsusceptible VISA strain
D712 was selected for vancomycin-Bodipy (dipyrromethene boron
difluoride [4,4-difluoro-4-bora-3a,4a-diaza-s-indacene] fluores-
cent dye) binding studies (6). Cells were grown to an optical den-
sity at 600 nm (OD600) of 0.6, grown for an additional 1 h with or
without 1 �g/ml ceftaroline or 5 �g/ml nafcillin, and then incu-
bated with 2 �g/ml vancomycin-Bodipy for 15 min. Cells were
then washed, stained, and imaged before fluorescence quantifica-
tion as described previously (17).

Pearson’s rank correlation coefficient test was used to assess
the association between antimicrobial MICs. A P value of �0.05
was considered significant. Statistical analyses were performed us-
ing SPSS statistical software (release 20.0, SPSS, Inc., Chicago,
Illinois).

MIC distributions are summarized in Table 1. VISA strains
tended to have higher daptomycin MICs than hVISA strains,
which is consistent with the results of prior studies (18, 19). This
phenomenon of reduced daptomycin susceptibility in VISA iso-
lates has been attributed to changes in cell wall thickness and
membrane surface charge that lead to repulsion of the cationic
daptomycin-calcium complex (20). In contrast, a significant in-
verse correlation was noted between the MIC values of vancomy-

cin and oxacillin (P � 0.003), cefoxitin (P � 0.001), and ceftaro-
line (P � 0.05), supporting the “seesaw” hypothesis documented
in the literature (7). Of interest, 10 of the 61 VISA strains (16.4%)
were susceptible to oxacillin (MIC � 2 �g/ml), despite the pres-
ence of mecA. Two- to 8-fold decreases in oxacillin MICs were
observed in 36% of the VISA subpopulations selected from the
hVISA strains, while 41% had 2- to 16-fold increases in oxacillin
MICs. This finding was unexpected but exemplifies the inherent
heterogeneity in the development of VISA strains. No correlation
was observed between agr type, mec type, Panton-Valentine leu-
kocidin (PVL) carriage, and vancomycin or daptomycin MIC
values.

The combination of vancomycin plus ceftaroline was more
active than the combination of vancomycin plus oxacillin, dem-
onstrating synergy against 5 of 5 VISA and 4 of 5 hVISA strains
tested. Vancomycin plus ceftaroline was bactericidal against 3 of 5
VISA strains and 2 of 5 hVISA strains at 0.5� MICs (Fig. 1). The
combination of vancomycin plus oxacillin demonstrated synergy
against 3 of 5 VISA isolates and 1 of 5 hVISA strains.

Vancomycin-Bodipy binding was reduced by �50% in cef-
taroline- or nafcillin-treated cells compared to that in untreated
cells (Fig. 2). It is well established that vancomycin resistance in
VISA arises from changes in cell wall metabolism that lead to
vancomycin “sequestering” at nonactive cell wall targets, which
allows for continued cell wall synthesis (1, 21). We have previously
demonstrated that ceftaroline exposure causes a significant reduc-
tion in cell wall thickness (8.94 nm) in the strain D712 (12). A
similar relationship has been noted between cell wall thickness
and nafcillin exposure (22). Collectively, these data have led us to

FIG 2 VISA strain D712 was treated with 2 �g/ml vancomycin-Bodipy for 15 min after treatment with nafcillin (5 �g/ml) or ceftaroline (1 �g/ml) for 1 h.
Relative vancomycin binding to VISA D712 (mean � standard deviation) in the presence and absence of nafcillin 5 �g/ml (NAF5) or ceftaroline 1 �g/ml (CPT1)
is shown.
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hypothesize that this cell wall thinning may prevent vancomycin
sequestration, improving vancomycin penetration into the septa
of dividing cells where it can interact with critical membrane-
bound precursors of the nascent cell wall, leading to improved
bactericidal action (23).

Beta-lactam–vancomycin combinations have been previously
studied in vitro and have yielded conflicting results (8–13). Our
results and prior data suggest that beta-lactam–vancomycin com-
binations are not universally synergistic against MRSA, but the
synergistic effect appears to be more pronounced against less-
vancomycin-susceptible MRSA. Our results also suggest that cef-
taroline may be more consistently synergistic than traditional an-
tistaphylococcal beta-lactams with vancomycin and may yield
bactericidal activity. Beta-lactams appear to chemically and mor-
phologically alter the surface of VISA, allowing for reduced quan-
tity but potentially increased target-specific vancomycin binding.
Further research is warranted to elucidate the mechanisms of syn-
ergy between these agents and clarify the potential role of vanco-
mycin– beta-lactam combinations in clinical settings.
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