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Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors
varies during the course of radiotherapy, methods that can provide repeated assessment of tumor
pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations
when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify
responders, and thereby facilitate the design of better treatment plans for nonresponding tumors.
We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with
single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with
pO2 of approximately 5–9 mmHg. The pO2 of C6 tumors increased significantly with irradiation
of 4.8–9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the
oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth
compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of
greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor
growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors
responded differently to radiotherapy. We propose that the repeated measurement of the oxygen
levels in the tumors during radiotherapy can be used to identify responders and to design tumor
oxygen guided treatment plans to improve the outcome.

INTRODUCTION
The imbalance between oxygen supply and consumption often leads to hypoxia in solid
tumors, which is believed to compromise the efficacy of radiotherapy and enhance
aggressive tumor behavior and metastases (1–5). Consequently, a significant increase in
therapeutic outcome may be achieved if tumor hypoxia is minimized by improving the
levels of oxygen in solid tumors. Preclinical and clinical investigations using pO2 histograph
and assays for hypoxic fractions have shown a substantial change in tumor oxygen after
single dose (6, 7) or fractionated radiotherapy (8–12). While some useful information has
been obtained in human gliomas by using oxygen electrodes or a fiber-optic probe (13, 14),
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repeated measurements to assess the time course of the changes in glioma oxygen are not
feasible by these methods, because they involve a significant degree of invasiveness, and
cannot be used for repeated assessments of tumor pO2 (15).

Several preclinical studies have shown temporal changes in the levels of oxygen of solid
tumors during radiotherapy (10, 16–19). We propose that the appropriate schedule of
fractions guided by tumor pO2 could enhance therapeutic outcome. Assessment of tumor
hypoxia by positron emission tomography (PET) has already shown a great promise in
clinical applications (20–22). We have focused on the development of EPR oximetry, which
can also provide repeated assessments of average tumor pO2 with minimal perturbation to
the microenvironment (23, 24). EPR oximetry has been used extensively for pO2
measurements in animal models (10, 18, 25) and is now being developed for clinical
applications (26, 27). Multisite EPR oximetry using magnetic field gradients has further
expanded its in vivo application by allowing simultaneous pO2 measurements at 2–4 sites in
a tissue of interest (10, 18, 25, 28). In this study, we have investigated the effect of single
hypofractionated radiation doses of less than 10 Gy on the ectopic 9L and C6 glioma pO2 by
multisite EPR oximetry. The delay in the tumor growth was determined with and without the
subsequent fractionation being guided by glioma pO2. Our results indicate that the pO2 of
C6 tumors increased significantly with irradiation of 4.8–9.3 Gy. However, no change in the
pO2 of the 9L tumors was observed. A significant decrease in the growth of C6 tumors was
observed when the subsequent irradiation was scheduled at times of increase in pO2.
Therefore, the extent of increase in the pO2 of the C6 tumors during radiotherapy was
successfully used to identify responders and nonresponders, which had a significant
difference in the tumor growth delay.

MATERIALS AND METHODS
Animals and Tumor Models

All animal procedures were in strict accordance with the NIH Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional Animal Care and Use
Committee of Dartmouth Medical School (Geisel School of Medicine). The 9L gliomas
have a sarcomatous appearance histologically and have been extensively used as a
subcutaneous tumor model (29, 30). The C6 gliomas are classified as an astrocytoma with
gene expression similar to that of human brain tumors (29, 30). The 9L and C6 tumors are
syngeneic to the Fisher and Sprague-Dawley rats, respectively. These tumors were grown in
male SCID mice (18–20 g) purchased from Charles River Laboratory (Wilmington, MA)
and housed in the animal resource facility at Geisel School of Medicine.

Culture and Inoculation of 9L and C6 Glioma Cells
The 9L and C6 glioma cells were purchased from ATCC (Manassas, VA) and propagated in
Dulbecco's Modified Eagle's medium with 4.5 g/L glucose, 1 mM sodium pyruvate, 10%
FBS and 1% penicillin-streptomycin. When confluent, the cells were trypsinized and
suspended in medium with no serum or additives. The procedure for tumor inoculation has
been described previously (10, 18, 25). Briefly, subcutaneous tumors of 6–8 mm in length
were obtained approximately 12–14 days after the injection of 100 μl cell suspension
containing 4–5 × 105 cells in the left posterior flank of SCID mice.

Implantation of the Oximetry Probe
Lithium phathalocyanine (LiPc) crystals were synthesized in our laboratory and the
physicochemical properties of LiPc crystals have been described previously (31). The LiPc
crystals have a single sharp EPR line, the width of which is highly sensitive to pO2. It has
been shown that the EPR spectra reflect the average partial pressure of oxygen on the
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surface of each LiPc aggregate and allows the measurements of tumor pO2 using only a few
crystals with a weight of approximately 30–50 μg. The volume of each LiPc aggregate is
0.09–0.15 mm3. The procedure for LiPc injection was described previously (10, 18, 25).
Briefly, mice were anesthetized with 1.5% isoflurane with 30% O2, and two aggregates of
the LiPc crystals were implanted at a depth of 2 mm and a distance of 4 mm into each tumor
using 25-gauge needles. A pretreatment (baseline) pO2 of the tumors was measured 24 h
after LiPc implantation by multisite EPR oximetry.

Multisite EPR Oximetry
Assessment of tissue pO2 at 2–4 sites both simultaneously and repeatedly by EPR oximetry
(referred to as multisite EPR oximetry) has been used in animal models (10, 18, 25, 28). In
these experiments, we have assessed pO2 at two sites in each tumor using two implants of
LiPc aggregates. The EPR oximetry was performed on an L-band (1,200 MHz) EPR
spectrometer using a microwave bridge and an external loop resonator specially designed for
in vivo experiments (32). A set of coils capable of generating a magnetic field gradient in
the Z-direction with a magnitude up to 3.0 G/cm was used to separate the EPR spectra of the
two implants in each tumor (18, 25, 33). The pO2 measured from the two LiPc implants of
each tumor were pooled to determine the average pO2 of each tumor.

The spectrometer parameters were: incident microwave power, 2 mW; magnetic field center,
425 gauss; scan range, 2 gauss; modulation frequency, 24 kHz; modulation amplitude was
one-third of the EPR line width with scan time of 10 s. The EPR line widths were converted
to pO2 using a calibration determined for each batch of LiPc crystals (18, 25, 31).

Experiment Protocol
The mice were assigned randomly into 5 groups for each glioma model: (A and B) control
(sham-irradiated on day 1, N9L = 7 and NC6 = 7); (C and D) single dose of 4.8 Gy on day 1
(N9L = 5 and NC6 = 7); (E and F) single dose of 5.7 Gy on day 1 (N9L = 5 and NC6 = 9); (G
and H) single dose of 7.0 Gy on day 1 (N9L = 7 and NC6 = 7); and (I and J) single dose of
9.3 Gy on day 1 (N9L = 5 and NC6 = 8). The effect of subsequent irradiation was
investigated when the C6 gliomas were oxygenated: (K) 4.8 Gy on day 1 and day 2, NC6 =
24. The results were also compared with standard fractionation and respective control: (L)
2.0 Gy × 5 (NC6 = 7) and (M) control (0 Gy, NC6 = 11). These groups are shown in Table 1.

For tumor pO2 measurements, the mice were anesthetized (1.5% isoflurane, 30% O2) and
positioned between the poles of the EPR magnet. A baseline pO2 was measured for 30 min
(day 1) and then the animals were moved to the irradiator bed of a Varian Linear
Accelerator (Clinac 2100C, 6 Mev, 6 × 6 cm applicator). The 6 × 6 cm lead applicator had a
thickness of 15 mm with a gap (semicircle of 18 mm length and 9 mm radius) in the center
to focus the radiation beam on the tumor. An additional lead shield (70 mm length, 60 mm
width and 1.5 mm thickness) was used to expose the tumors and further minimize the
irradiation of the adjoining normal tissue. The animals were kept anesthetized (1.5%
isoflurane, 30% O2) during irradiation. The hypofractionated doses were determined by a
calculation based on the linear quadratic formula for cell survival to calculate the “standard
equivalent dose (SED)” for planning hypofractionated stereotactic radiotherapy (34, 35).
The fractions of 4.8 Gy × 10, 5.7 Gy × 8, 7 Gy × 6 and 9.3 Gy × 4 approximate the
biological effect of a 70 Gy (35 fractions of 2 Gy each) dose plan for 9L and C6 tumors
(36). The measurements of tumor pO2 were repeated from day 2 to day 5 along with tumor
volume measurements by a standard procedure (volume = π/6 × length × width2) from day 1
to day 6. The tumor growth was also followed for up to 14 days to assess tumor growth
delay in groups K, L and M.
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Physiological Control and Histological Analysis
During EPR measurements, the body temperature of the animals was monitored using a
rectal probe and was maintained at 37.0 ± 0.5° using a thermostatically controlled heated
pad and a flow of warm air. The animals were kept warm by an electric heating pad during
transportation to and from the irradiator. On day 6, the animals were euthanized, and tumors
were removed, fixed and sectioned. Microscopic examination (H&E staining) of the tissue
around the implanted LiPc deposits was performed to confirm its location in the tumor.

Statistical Analysis
A paired t test was used to determine the statistical significance of changes in pO2 and tumor
volume within the group, and an unpaired t test was used to determine the statistical
significance between groups. The paired comparison reduces the animal-to-animal
heterogeneity and eliminates differences of the baseline pO2. The tumor growth delay was
modeled by using an exponential mixed model (37, 38) on the log scale, and estimated by
the linear mixed effects (LME) function in the statistical package S-Plus 6.1 (Insightful Inc.,
Seattle, WA). Assuming an exponential growth, the time to reach 4× the tumor volume of
T4TV was computed as T4TV = ln4/a, where “a” is the rate of tumor volume growth
obtained from LME. The standard error for T4TV was estimated using the delta method as
described by Rice (39). The tests were two-sided, and a change with a P < 0.05 was
considered statistically significant. This approach has been used previously to estimate
tumor growth (40–42). All data are expressed as mean ± SEM and N is the total number of
animals in each group.

RESULTS
Effect of Single-Dose Irradiation on Ectopic Glioma pO2 and Growth

The average pO2 of 9L and C6 tumors after single-dose irradiations with 4.8, 5.7, 7.0 and
9.3 Gy are shown in Figs. 1 and 2, respectively. The 9L tumors were hypoxic with a baseline
pO2 of 8.2–8.9 mmHg on day 1 (Fig. 1). The pO2 of the 9L tumors declined with growth
over days. Some of the individual 9L tumors showed an increase in tumor pO2. However, no
significant change in the average 9L tumor pO2 in each group was observed with irradiation
of 4.8–9.3 Gy.

The C6 tumors also were hypoxic with a baseline pO2 of 5.4–7.1 mmHg on day 1 (Fig. 2). A
significant increase in the pO2 of C6 tumors was observed from day 2 to day 5 of irradiation
with single doses of 4.8–9.3 Gy. However, the time to a significant increase in tumor pO2
varied with different doses.

The baseline tumor volumes (day 1) of 9L and C6 tumors were similar between groups (Fig.
3). Irradiation with 4.8–9.3 Gy did not affect the growth of 9L tumors compared to the
control group (Fig. 3b). However, the growth of the C6 gliomas were significantly reduced
on day 3 to day 6 after single-dose irradiations with 4.8–9.3 Gy (Fig. 3a). No correlation
between the baseline tumor pO2 and tumor growth were observed in these experiments.

Effect of 4.8 Gy × 2 and 2 Gy × 5 on C6 Tumor pO2 and Growth
The lowest dose that led to a significant increase in C6 tumor pO2 on day 2 was 4.8 Gy.
Therefore, a subsequent irradiation with 4.8 Gy (group K) was used to investigate the effect
on C6 tumor pO2 and growth (Fig. 4). A significant increase in the pO2 of C6 tumor was
observed from day 2 to day 4 when irradiated with 4.8 Gy on days 1 and 2. In contrast, no
significant increase in the pO2 occurred with irradiation of 2.0 Gy × 5 (Fig. 4, group L, gray
diamond symbol).
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No significant differences between the baseline tumor volume of the control and treatment
groups were observed (Fig. 5). However, the tumor volume of the 4.8 Gy × 2 (group K) and
2.0 Gy × 5 (group L) significantly decreased from day 5 to day 14 compared to the control
(group M). A significant difference in the tumor growth between groups K and L was
observed only on day 5 and tumor growth was similar at later time points. The time to reach
4× tumor volume (T4TV) was 10.2 days for the control group, 13.1 and 14.9 days for groups
K and L, respectively. The T4TV of group K (4.8 × 2) and L (2.0 Gy × 5) was significantly
higher than for group M. However, no significant difference in the T4TV between K and L
groups was evident.

To test the prognostic potential of glioma pO2, the animals of group K were separated into
subgroups based on the temporal changes in their pO2: K1, C6 gliomas with increase in pO2
on day 2 <50% of baseline (nonresponder), and K2, C6 gliomas with increase in pO2 on day
2 ≥50% of baseline (responder) after 4.8 Gy. The numbers of tumors in the responder and
nonresponder groups were 11 and 13, respectively. A significant difference in the tumor pO2
from day 2 to day 5 and growth from day 3 to day 10 was evident between responder and
nonresponder groups (Figs. 6 and 7). The T4TV of the responders (11.9 days, K2) was
significantly greater than the nonresponders (8.3 days, K1) (Fig. 7, inset). These results
indicate that 4.8 Gy irradiation of the oxygenated tumors (responders) on day 2 resulted in a
significant growth inhibition compared to hypoxic tumors (nonresponders). Such analyses
could not be carried out in group L (2 Gy × 5) due to no change in pO2 during the
irradiations.

Histological Analysis
Histological examination showed fibrotic cells around the LiPc aggregates in the 9L and C6
tumors after 1, 3 and 5 days of implantation (no irradiation group), respectively (Fig. 8).
However, some blood cells and inflammatory cells were observed in the tumor sections.
These observations represent a typical tissue environment in solid tumors and are unlikely to
perturb the tissue pO2 reported by LiPc implants in the tumors. In the normal tissue, we have
seen negligible histological changes around LiPc implants (43–45).

DISCUSSION
The data reported here is the continuation of our systematic study to characterize the
changes in tumor pO2 after irradiation by EPR oximetry. We have previously reported the
effect of a synthetic allosteric modifier of hemoglobin (efaproxiral), a vasodilator, benzyl
nicotinate (BN), and carbogen inhalation on the RIF-1 tumor pO2 with the goal to enhance
tumor oxygenation and improve treatment efficacy by scheduling irradiations at times of
increase in tumor pO2 (10, 18, 25, 46). The results obtained here with ectopic 9L and C6
glioma indicate that these tumors are hypoxic with a pO2 of <10 mmHg, consistent with our
earlier observations (47, 48). Cerniglia et al. also has reported ectopic 9L glioma pO2 of less
than 8 mmHg in rats using a phosphorescence quenching method (49). Furthermore, a
median pO2 of 2 mmHg in the ectopic 9L glioma in the rats has also been observed by
Teicher et al. (50, 51). In contrast, orthotopic 9L gliomas in the rats are well oxygenated
(36). These results indicate a site specific effect on glioma pO2. Indeed, Wallen et al.
suggested a difference in the vasculature between orthotopic and ectopic 9L gliomas as a
likely reason for the absence of hypoxia in orthotopic 9L gliomas (52).

The irradiation with single hypofractionated doses of less than 10 Gy did not affect the pO2
of 9L tumors, while a significant increase in the C6 tumor pO2 was observed. A significant
increase in the oxygenation of LS174T human colon adenocarcinoma on irradiation with a
total dose of more than 10 Gy has been observed by Znati et al. (53). An increase in SCC
VII murine tumor pO2 at 6–24 h after irradiation with 10, 15 or 20 Gy was observed by Fuji
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et al. (54). We have also reported a significant increase in the pO2 of RIF-1 tumors
irradiated with 10 Gy (10). Several potential mechanisms have been suggested for the
reoxygenation of tumors after irradiation such as reduced oxygen consumption by radiation-
damaged cells (55), cell loss leading to tumor shrinkage (56), migration of hypoxic cells to
oxygenated areas (57) and improved microcirculation (58).

We observed a significant decrease in the growth of C6 tumors after irradiation, which we
did not observe with 9L tumors. This suggested that 9L tumor cells may be relatively
radioresistant compared to C6 tumor cells. Indeed, others have shown that the surviving
fractions after 2 Gy were indeed significantly higher (71%) for 9L versus 53% for C6 cells
respectively (59). As stated above, we observed significant increase in the C6 tumor pO2
and T4TV after irradiation with 4.8 Gy × 2 compared to the control. The T4TV for C6
tumors observed with the 4.8 Gy × 2 was similar to that of the 2 Gy × 5 group. Furthermore,
the C6 tumors with an increase in pO2 of more than 50% from the baseline had a significant
increase in growth delay compared to those with pO2 less than 50% from the baseline in the
4.8 Gy × 2 (K group). The observed increases in the pO2 of the C6 tumors on day 2 to day 4
are consistent with previous reports (12, 60–62). Fukawa et al. has shown an increase in
tumor pO2 as late as day 3 in NFSa fibrosarcomas treated with 25 Gy (63). However, only a
few investigators have described the temporal changes in tumor pO2 during fractionated
radiotherapy and how this could be used as a prognostic marker during radiotherapy. Our
results indicate that the decrease in the C6 tumor growth with treatments of 4.8 Gy × 2 was
dependent on the oxygenation status of the tumor after the first irradiation. These results
suggest that the temporal changes in tumor pO2 in such cases could indeed potentially be
used to identify responders during radiotherapy. We anticipate that this approach could
facilitate the design of better therapeutic approaches for nonresponding tumors.

In conclusion, our results demonstrate a glioma specific response to radiotherapy and a
significant decrease in the C6 tumor growth when the fractionated radiations of 4.8 Gy × 2
were scheduled at times of increased pO2. These results highlight the importance of tumor
pO2 assessment during fractionated radiotherapy and provide evidence that the temporal
changes in tumor pO2 can potentially be used to enhance as well as predict therapeutic
response. Furthermore, these results also illustrate the ability of EPR oximetry, to make
repetitive and noninvasive measurements of pO2 from the same tumors during the course of
therapy. EPR oximetry may prove very useful in individualizing the treatment of patients by
following the response of tumor pO2 during treatment. We have built clinical EPR
spectrometers that will permit us to eventually extend this research into clinical trials (26,
27, 64). EPR oximetry is currently being used to follow the pO2 of superficial tumors such
as melanomas and sarcomas in patients undergoing chemoradiation (27). Implantable
resonators are currently being pursued for repeated assessment of pO2 in the tumors located
at depths of more than 10 mm from the surface (26, 27, 64).
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FIG. 1.
The ectopic 9L glioma pO2 over days in the groups treated with single doses, panel a:
control, 0 Gy, N = 7; panel b: 4.8 Gy, N = 5; panel c: 5.7 Gy, N = 5; panel d: 7.0 Gy, N = 7;
panel e: 9.3 Gy, N = 5. (◇) Represents the tumor pO2 recorded from each EPR probe and
(◆) represents the mean tumor pO2 within 20 min in the same day. Mean ± SEM, #P < 0.05
vs. baseline tumor pO2 (day 1).
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FIG. 2.
The C6 glioma pO2 over days in the groups treated, panel a: control, 0 Gy, N = 7; panel b:
4.8 Gy, N = 7; panel c: 5.7 Gy, N = 9; panel d: 7.0 Gy, N = 7; panel e: 9.3 Gy, N = 8. (○)
Represents the tumor pO2 recorded from each EPR probe and (●) represent the mean tumor
pO2 within 20 min in the same day. Mean ± SEM, #P < 0.05 vs. baseline tumor pO2 (day 1).
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FIG. 3.
The growth of C6 glioma (panel a) and 9L glioma (panel b) over days in the groups treated
with (□): control, 0 Gy; (■): 4.8 Gy; (◆): 5.7 Gy; (▲): 7.0 Gy; (●): 9.3 Gy. Mean ±
SEM, @P < 0.05, +P < 0.01 vs. control group at the same time point.
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FIG. 4.
Temporal changes in the average C6 glioma pO2 before and after irradiation. (white symbol)
0 Gy (control, N = 11), (black symbol) 4.8 Gy × 2 (day 1, day 2, N = 24) and (gray symbol)
2 Gy × 5 (day 1 to day 5, N = 7). Mean ± SEM, #P < 0.05, &P < 0.01, compared with the
baseline pO2 of the same group; @P < 0.05, +P < 0.01, compared with the pO2 of control
group on the same day.
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FIG. 5.
The changes in the C6 glioma growth in (white symbol) 0 Gy (M, N = 11), (black symbol)
4.8 Gy ×; 2 (K, N = 24) and (gray symbol) 2 Gy × 5 (L, N = 7) groups. Inset: Days to reach
4× the original tumor volume (T4TV) of groups M, K and L. The line in bold represents the
mean data obtained from individual values on each day. Mean ± SEM, @P < 0.05, +P < 0.01,
compared with the control group; †P < 0.05, compared with group L.
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FIG. 6.
The C6 glioma pO2 over days: (●) responders (K2, pO2 on day 2 ≥50% of baseline, N =
11); (○) nonresponders (K1, pO2 on day 2 <50 % of baseline, N = 13). Mean ± SEM, #P <
0.05, &P < 0.01, compared with the baseline pO2 in the same group; @P < 0.05, +P < 0.01,
compared with the glioma pO2 of nonresponders on the same day.
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FIG. 7.
The C6 glioma growth over days: (■) responders (K2, pO2 on day 2 ≥50% of baseline, N
11); (□) nonresponders (K1, pO2 on day 2 <50% of baseline, N = 13). Inset: Number of
days to reach 4× of baseline tumor volume (T4TV) of responders and nonresponders. The
line in bold represents the mean data obtained from individual values at each time point.
Mean ± SEM, @P < 0.05, +P < 0.01, compared with the nonresponders.
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FIG. 8.
H&E stained sections of the C6 and 9L tumors obtained from the control mice on different
days after LiPc implantation. The LiPc crystals (black color) are indicated by long black
arrows and blood cells are indicated by short white arrows. The thickness of each section is
5 μm. Magnification: 20×.
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TABLE 1

The Number of 9L and C6 Groups with Radiation Dose Used in the Study

Groups Tumor types Doses (Gy) N

A 9L 0 7

B C6 0 7

C 9L 4.8 5

D C6 4.8 7

E 9L 5.7 5

F C6 5.7 9

G 9L 7.0 7

H C6 7.0 7

I 9L 9.3 5

J C6 9.3 8

K C6 4.8 × 2 24

L C6 2.0 × 5 7

M C6 0 11
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