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Abstract
Over the past decade there has been a growing acknowledgement that a large proportion of
proteins within most proteomes contain disordered regions. Disordered regions are segments of
the protein chain which do not adopt a stable structure. Recognition of disordered regions in a
protein is of great importance for protein structure prediction, protein structure determination and
function annotation as these regions have a close relationship with protein expression and
functionality. As a result, a great many protein disorder prediction methods have been developed
so far. Here, we present an overview of current protein disorder prediction methods including an
analysis of their advantages and shortcomings. In order to help users to select alternative tools
under different circumstances, we also evaluate 23 disorder predictors on the benchmark data of
the most recent round of the Critical Assessment of protein Structure Prediction (CASP) and
assess their accuracy using several complementary measures.

Introduction
For many years, a crucial underpinning of structural biology has been that a protein’s
function is determined by its structure. While this important structure-to-function paradigm
remains largely intact, it has evolved and been reassessed.1 These changes were spurred in
part due to the post-genomic age and the accompanying influx of data. Large scale analysis
of sequence data revealed that many proteins are comprised completely or in part of low
complexity segments which are frequently associated with non-globular regions.2 Additional
work, notably that of Tompa, summarized and outlined the potential usefulness of flexibility
in the three dimensional structure of a protein with respect to function.3 The end result has
been that while the link between function and structure remains, a well defined stable
structure is not necessary for a protein to perform particular functions.

Proteins or segments of the protein chain which do not adopt a stable structure are known by
many names. Earlier work often referred to these proteins as intrinsically unstructured
proteins (IUPs).1,3 More recently, other terms such as intrinsically disordered proteins (IDP)
or regions have also been used.4 In this work we will use the term disordered regions.

There has been much interest in characterizing disordered regions in proteins and this is for
many reasons. From a practical standpoint, protein disordered regions can hinder protein
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analysis. Disordered regions in a protein have a biased amino acid composition5 that may
give rise to inaccurate sequence alignments to unrelated proteins.6 By recognizing
disordered regions, one can avoid aligning disordered regions with ordered regions and thus
increase the accuracy of sequence similarity analysis. Furthermore, disordered regions often
make the purification and crystallization of a protein difficult.7 The identification of a
protein as highly disordered could save valuable time as researchers would not spend time
attempting to determine a structure which does not exist. Proteins with disordered regions
also play important functional roles. The literature documents disordered proteins
participating in functions such as protein–DNA binding, phosphorylation, signalling and
regulation.5,8,9

Given the prevalence of disordered proteins and the growing acknowledgement of the
functional relevance of these proteins, considerable effort has been made by the
bioinformatics community to provide tools to predict protein disorder. To date, more than 50
disorder predictors have been implemented.10 Aiming at enhancing the development of
disorder prediction, the Critical Assessment of protein Structure Prediction (CASP),47 a
biannual, community-wide blind competition launched in 1994 (http://predictioncenter.org/),
has a section devoted to the assessment of such predictors since 2004. In this study, we
outline typical approaches employed by protein disorder prediction methods and discuss
some advantages and shortcomings of several implementations. In order to provide users
some information to choose alternative tools according to different criteria, we also
benchmark the 23 predictors that participated in the CASP9 experiments using several
complementary measures. However, for the official assessment (e.g., ranking) of these
methods, readers should refer to the disorder prediction assessment paper to be published in
the CASP9 supplemental issue of the journal Proteins and the CASP9 web site (http://
predictioncenter.org/casp9/).

Disorder prediction methods
A number of approaches have been developed to predict protein disorder regions. These
methods can be broadly classified into four different categories: (1) ab initio, or sequence
only, (2) clustering, (3) template based and (4) meta or consensus. There are also a few
implementations which cannot be easily placed in one of these four categories and these we
will call hybrid methods. Sixteen currently existing disorder prediction methods are listed in
Table 1, including their availability and method categories. We now discuss the basis for
each category and briefly discuss some implementations.

Ab initio methods
The distinguishing feature of ab initio approaches is that they depend almost exclusively on
sequence information. That is to say that to make a prediction, nothing other than the
primary sequence is needed. Disordered regions in proteins are predicted using features
extracted from the primary sequence in conjunction with statistical models. Oftentimes these
models include machine learning techniques such as support vector machines and neural
networks. There are many protein disorder predictors that make use of ab initio methods and
in CASP8 and CASP9, a large quantity of predictors adopted such an approach.

DISOPRED11 is a web service for ab initio disordered region prediction. It was trained on a
large non-redundant set of sequences with high resolution X-ray structures. A sequence
profile for each protein target was generated using a PSI-BLAST12 search against a filtered
sequence database. The procedure is based on the premise that the disordered residues may
appear in the records that are consistently missing. The data were used to train linear support
vector machines, and the input vector for each residue was constructed from the profiles of a
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symmetric window of fifteen residue positions.13 The prediction accuracy may decrease if
there are few homologues for the target protein.

PreDisorder14 is an ab initio protein disorder predictor designed by our group and based on a
recursive neural network.

First, an input profile is generated for the target protein sequence after the sequence has been
aligned against several template profiles using PSI-BLAST.12 Later, this profile along with
the predicted secondary structure and solvent accessibility are fed into a 1D recursive neural
network to make the disorder predictions.

POODLE (Prediction Of Order and Disorder by machine Learning) is an integrated system
that predicts disordered regions and consists of three predictors, POODLE-S,15 POODLE-
L16 and POODLE-W.17 Each predictor specializes in making short disordered region
predictions, long disordered region predictions or unfolded proteins. POODLE-L predicts
long disordered regions via support vector machines using ten physicochemical properties of
amino acids. It combines the results of 10 two-level SVM predictors and generates the final
prediction result. POODLE-S predicts the short disordered regions from amino acid
sequences based on physicochemical properties and a position specific scoring matrix. In
contrast, POODLE-W is a semi-supervised learning approach for classifying proteins as
either mostly disordered or mostly ordered. As a semi-supervised learning approach,
POODLE-W can use protein sequences with unknown structure to increase the accuracy.

SPINE-D18 is another ab initio method based on a neural network with two hidden layers.
Five independent predictors were trained, and a final prediction is made on their consensus.
The input nodes contain residue-level information, window-level information, and one
terminal tag. The residue-level information includes seven physical parameters, a position
specific scoring matrix vector generated from PSI-BLAST profiles, predicted secondary
structure and solvent accessibility from SPINE-X,19 and predicted torsion-angle
fluctuations. The window-level information includes amino acid composition, local
compositional complexity, and predicted secondary structure. The terminal tag marks
residues on both N- and C-termini.

IUPred20,21 makes a prediction based on the assumption that globular proteins depend on
the stabilizing energy of a large quantity of inter-residue interactions, whereas IUPs
(intrinsically unfolded proteins) fail to have the capacity to form sufficient inter-residue
interactions. The estimated energies of IUPs correspond to less favourable energies in
comparison with globular proteins. Consequently, prediction is carried out according to the
estimated capacity of polypeptides to form stabilizing contacts. IUPred has a limitation in
that it can only be used on proteins without disulfide bonds or metal-binding regions.

Several feed-forward neural network predictors called PONDRs22–24 were trained by using
the back-propagation learning algorithm. They take ten selected attributes including the
fractional composition of particular amino acids, two different hydropath scales, and so on
as inputs from windows of generally 21 amino acids. Then the neural network with a fully
connected hidden layer of ten neurons has been trained on a specific set of ordered and
disordered sequences and outputs a value for the central amino acid in the window.

GlobProt25 is a simple approach based on the propensity for a given amino acid to be in a
random coil or in a regular secondary structure. It is used to identify regions of globularity
and disorder within protein sequences.

FoldIndex©26 is a convenient web server to predict if a target protein sequence is
intrinsically unfolded based on the theory that folding of a protein is governed by a balance
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between attractive and repulsive forces. The original version of this method can just
distinguish globular proteins from the unstructured ones when the protein does not consist of
both ordered and disordered regions. Later, it solves this problem by computing the ratio of
the net charge versus the hydropath along the protein. Sliding windows are able to identify
large regions with folding propensities within a protein, instead of verifying the folding
propensity of the whole protein. However, this method cannot perform on the N- and C-
termini, and so it may not be applicable to the small proteins.

RONN27,28 is a novel ab initio approach of detecting natively disordered regions in proteins
based on a bio-basis function neural network trained on disordered proteins. The decision
about the probability of disorder is based on alignments to an ensemble of sequences
(ordered, disordered, or a mixture of both). The training of the neural network is performed
on the calculation of “distances”, as determined by sequence alignment, from a subset of an
ensemble of well-characterized prototype sequences. However, it may give rise to
inaccuracies when RONN is applied in the detection of short disordered regions, or in the
first and last residues of disordered regions.

NORSp fulfils the prediction of disordered regions based on the belief that long regions
predicted to be No Ordered Regular Secondary Structure (NORS) are more likely
unstructured.29 This method predicts long regions with NORS by combining the secondary
structure, membrane helices and coiled-coil information into the calculation of the structural
content for each sequence window. Those regions with low structural content (i.e., below the
given threshold) are predicted to be NORS regions. An issue of this method is that it cannot
handle some special cases when some highly mobile regions have a more stable predicted
secondary structure.

PreLink30 identifies unstructured regions in a protein based on biased amino acid
composition and low hydrophobic clusters. The probability for a given sequence fragment to
be part of a structured or an unstructured region and the distance for each amino acid to the
nearest hydrophobic cluster are used in the prediction process. This approach only requires
the primary sequence, instead of a multiple sequence alignment.

FoldUnfold is yet another ab initio method and it detects protein disordered regions based on
a parameter termed the mean packing density of residues.31,32 Firstly, mean packing density
(i.e., the average number of spatially nearby residues whose heavy atoms are within 8 Å,
excluding the neighbouring residues in the sequence) for each amino acid residue is
calculated from a database of 5829 three-dimensional structures. Then, the average packing
density observed for a certain type of residue in a globular state is assigned as the expected
packing density for each residue. The average of these gained numbers inside the window is
assigned to the central residue. Consequently, the profile of the expected packing density for
the target protein sequence is constructed. Regions with weak expected packing density are
more probable to be disordered regions.

The final ab initio method we will mention here is Spritz.33 It predicts disorder residues by
two probabilistic soft margin support vector machines SVM-LD and SVM-SD. Both of
these SVMs are specialized to predict either short (i.e., less than 30 residues in length) or
long disordered regions.

Clustering methods
In clustering methods, tertiary structure models are predicted for the target protein, and then
these models are superimposed by carrying out structural alignments. This is done to
calculate the approximate posterior probability of a residue being disordered for the target
protein. One clustering approach which performs well according to our previous assessment
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is DISOclust.35 It is a protein disorder prediction approach based on the analysis of three
dimensional models using ModFOLDclust13,34,35,45,46 or the latest version IntFOLD-DR.49

It operates on the belief that the positions of ordered residues within a protein target should
be conserved in three dimensional conformations of multiple structure models, whereas the
disordered residues may appear where there is local variation in multiple models. The
DISOclust server combines both the DISOclust method and an in-house version of the
DISOPRED method in order to improve predictions.

Meta methods
Meta predictors make their predictions by combining the output of other disorder predictors.
This averaging effect usually results in a slight to moderate increase in accuracy and thus it
is also a popular method among predictors.

metaPrDOS36 is a meta disorder prediction approach combining disorder prediction results
from PrDOS,37 DISOPRED,11,13 DisEMBL,38 DisProt,39 DISpro,7 IUpred,20,21 POODLE-
S15 and DISOclust.34

GSmetaDisorder is a meta method combining the results from 12 major disorder predictors
including DisEMBL,38 DISOPRED2,13 DISpro,7 GlobPlot,25 iPDA,40 IUPred,20,21

Pdisorder, POODLE-S,15 PrDOS,37 Spritz,33 DisPSSMP,41 and RONN27 and produces a
final consensus disorder prediction result.

MFDp42 is a meta approach that combines disorder predictions from three complementary
predictors: DISOPRED2,13 DISOclust,34 and IUPred.20,21 Different from other meta
methods, MFDp also takes a variety of information such as PSSM, predicted secondary
structure, solvent accessibility, residue flexibility, back-bone dihedral torsion angles, and
globular domains as input. Three subsets of selected input features are fed into three support
vector machines specialized for short disorder, long disorder and complete disorder
predictions. The maximal value among the three SVM outputs is taken as the predicted
probability of disorder.

Template based methods
Template based methods predict disordered regions for proteins using homologous template
structures. These methods attempt to find homologous proteins which have a known
structure (i.e., templates) using fold recognition methods or by searching a template
database. Once templates have been identified, they can be aligned or further manipulated
and disordered regions identified. In this review, we do not discuss the details of any
particular implementation as this method is no longer commonly used as the sole basis of a
disorder predictor. We do however mention this category because it is represented by some
hybrid methods (e.g., PrDOS37).

Hybrid methods
Besides the above methods, there are also some predictors using a hybrid approach. These
are methods which combine two or more of the previously described categories. PrDOS37

for example is an approach combining both ab initio and template based methods. Firstly, a
position-specific scoring matrix (PSSM) or profile is generated for the target amino acid
sequence after two-rounds of PSI-BLAST searches against a non-redundant sequence
database. Then, two predictions are carried out simultaneously. One is based on local amino
acid sequence information using a support vector machine and the other one is based on
template based prediction using the alignments of homologues with structures.
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Benchmark of disorder predictors on a CASP9 dataset
Evaluation metrics

Comparing the performance of disorder predictors is a difficult task. First, the predictors
often use different approaches and have methods developed with different flavours. Some,
as described, focus more on structural features while others rely more on sequence derived
data. Undoubtedly, these design choices can bias predictors towards one dataset over
another. Difficulties also arise from the fact that while the notion of a disordered protein or
region is well understood, a precise definition for whether or not a particular residue is
ordered or disordered has not been solidified across the community.

Here, we chose to base our benchmark of disorder predictors on those that participated in the
ninth instalment of the Critical Assessment of protein Structure Prediction (CASP9). CASP
is a community wide blind assessment of various protein structure prediction methods. Over
the course of several months, prediction targets are released on a daily basis and predictors
have a period of a couple of days to submit their predictions to the prediction centre where
they are stored. For each of the 23 disorder predictors which participated in CASP9, we
downloaded their disorder predictions from the prediction centre (http://predictioncenter.org/
casp9/). These predictors made predictions for 26 335 residues on 117 protein targets. When
evaluating the disorder predictions against the protein targets, residues which were missing
coordinates in the target file (i.e., a file containing three-dimensional coordinates for
residues) or with variation of spatial positions of corresponding residues in chains (X-ray) or
models (NMR) by more than 3.5 Å were considered to be disordered. We recognize that not
all protein disorder predictors participate in CASP and so the benchmark should not be
considered exhaustive.

The goal of our evaluation is to provide some information for users to select complementary
tools according to different needs instead of ranking methods. Therefore, in our evaluation,
we used a number of widely used measurements in the bioinformatics field and CASP
experiments to assess the performances of our method and other disorder predictors. One of
them is the AUC score, which represents the area under the Receiver Operating
Characteristic (ROC) curve. The standard errors of AUC scores were calculated as in ref. 48.
This score measures the performance of a classifier system and its dependence upon its
discrimination threshold. We also calculated the positive sensitivity (TP/(TP + FN)),
positive specificity (TP/(TP + FP)), negative sensitivity (TN/(TN + FP)), negative
specificity (TN/(TN + FN)), and the false positive rate (FP/(TN + FP)). Based on these
values, we also evaluated the overall accuracy (ACC) score43 measured as the average of the
positive sensitivity and negative sensitivity. Considering that different methods may use
different criteria to set a probability threshold to make order/disorder decisions, we
calculated the break-even score of each method and its corresponding decision threshold. A
break-even score is the value when the positive sensitivity is equal to positive specificity at a
particular threshold. Moreover, aiming at integrating all the above measurements, we
adopted the product of positive sensitivity and negative sensitivity and the harmonic mean,
or F-measure, of the positive sensitivity and positive specificity as additional measures. The
final assessment metric is a weighted score first introduced in CASP644 and is defined as
(TP × Wdisorder − FP × Worder + TN × Worder − FN × Wdisorder)/(number of residues) where
Wdisorder is set to 92.63 and Worder to 7.37. This measure places more emphasis on the
correct classification of disordered residues.

Results
Table 2 reports the ACC scores, AUC scores and their standard errors, weighted scores,
break-even scores and their decision thresholds, false positive rate, positive sensitivity,
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negative specificity, negative sensitivity, positive specificity, product of positive sensitivity
and negative sensitivity, and F-measure for the disorder predictors. Moreover, Table 2 also
shows the total number of residues predicted by each predictor respectively. The results of
our evaluation of the predictors according to ACC scores are consistent with the official
CASP9 evaluation results posted on the prediction centre’s website (http://
predictioncenter.org/casp9/).

Fig. 1 shows the ROC curves for the top 12 predictors in terms of the AUC score. The
predictors are ordered by AUC scores since the AUC measure is probably the most balanced
measurement.

Most of the disorder prediction methods which participated in CASP9 have already been
discussed and are classified into four main categories. Analyzing the results, no single
category or type of method decisively outperforms the others. The ab initio methods
MULTICOM_REFINE (i.e., PreDisorder), mason, SPINE-D and Distill-Punch, the meta-
method biomine_DR_pdb, GSmetaDisorderMD, and the hybrid method PrDOS (i.e.,
combining both ab initio and template-based methods) are all among the top with respect to
ACC scores on the one hand. On the other hand, PrDOS, MULTICOM (i.e., our meta
disorder prediction method), DISOPRED3C, ZHOU-SPINE-D, CBRC_POODLE,
MULTICOM_REFINE (i.e., PreDisorder), and biomine_DR_pdb performed better
according to the AUC score. Moreover, all the predictors did a good job in terms of negative
specificity and negative sensitivity. This is not hard to deduce though, since most of the
residues in a protein are ordered resulting in ratios between true negatives (TN) and true
negatives plus false positives (TN + FP) and true negatives (TN) and true negatives plus
false negatives (TN + FN) which are very close to 1.

Fig. 2 is an example showing the disorder regions for target T0597 as predicted by our ab
initio predictor PreDisoder (named MULTICOM_REFINE in CASP9). The three
dimensional structure on the top of the figure is the experimentally determined structure of
the target. The example shows that four disordered regions within and at the ends of the
protein were rather accurately predicted.

Conclusions and future work
In response to the need of quickly and easily identifying intrinsically disordered protein
regions for biomedical research, the bioinformatics community has developed an array of
complementary computational methods to rather reliably predict protein disordered regions
from a protein sequence. These tools are playing and will continue to play an important role
in protein structure analysis and prediction, protein structure determination, protein
interaction study, and protein function annotation.

Further development of protein disorder prediction methods is important and possible.
According to our benchmarking, no single category of methods performs decisively better
than others. Combining complementary disorder prediction methods and/or multiple sources
of information such as homologous structure templates, multiple sequence alignment,
secondary structure, solvent accessibility and other new features may improve the accuracy
of disorder prediction. Furthermore, current best performing ab initio disorder prediction
methods largely adopt a black-box approach based on machine learning methods such as
neural networks and support vector machines,10 which do not reveal the biophysical
relationship between a disorder region and its amino acid sequence. Integrating molecular
dynamic simulations with disorder prediction methods may help elucidate why and how an
intrinsically disordered protein sequence folds into an unstructured ensemble rather than a
more deterministic three-dimensional structure.
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Fig. 1.
ROC curves of top 12 CASP9 predictors (ordered by AUC score) on the CASP9 dataset
which consisted of 117 protein targets.
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Fig. 2.
Disorder regions predicted by our ab initio predictor PreDisorder (named
MULTICOM_REFINE in CASP9) for one CASP9 target T0597. The length of the target
protein is 429 AA. The real 3D structure of T0597 is shown on the top of this figure. The
helix is shown in red colour, sheet in yellow, and loop in green. Disorder regions of the
target protein are 1–18, 182–213, 276–285, and 424–429, and are also identified in the
figure. Below the 3D structure, correct predictions are identified by red thick rectangles, the
regions predicted as ordered but experimentally disordered are identified by virtual black
rectangles, and the regions predicted as disordered but experimentally ordered are identified
by virtual purple rectangles. TP is 59, TN is 314, FP is 49, FN is 7, positive sensitivity is
0.894, positive specificity is 0.546, negative sensitivity is 0.865, and negative specificity is
0.978.

Deng et al. Page 11

Mol Biosyst. Author manuscript; available in PMC 2013 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Deng et al. Page 12

Table 1

List of some currently popular disorder prediction methods

Disorder predictor Web server availability Method category

DISOclust http://www.reading.ac.uk/bioinf/DISOclust/ Clustering method

DISOPRED http://bioinf.cs.ucl.ac.uk/disopred Ab initio method

PrDOS http://prdos.hgc.jp/cgi-bin/top.cgi Ab initio method, Template-based method

metaPrDOS http://prdos.hgc.jp/cgi-bin/meta/top.cgi Meta method

PreDisorder http://casp.rnet.missouri.edu/predisorder.html Ab initio method

POODLE http://mbs.cbrc.jp/poodle/poodle.html Ab initio method

GSmetaDisorder http://iimcb.genesilico.pl/metadisorder/ Meta method

MFDp http://biomine-ws.ece.ualberta.ca/MFDp.html Meta method

IUPred http://iupred.enzim.hu/ Ab initio method

DisEMBL http://dis.embl.de/ Ab initio method

Spritz http://distill.ucd.ie/spritz/ Ab initio method

PONDR http://www.pondr.com Ab initio method

SEG http://mendel.imp.ac.at/METHODS/seg.server.html Ab initio method

GlobPlot http://globplot.embl.de/ Ab initio method

FoldIndex http://bioportal.weizmann.ac.il/fldbin/findex Ab initio method

RONN http://www.strubi.ox.ac.uk/RONN Ab initio method
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