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Abstract
Patients in the intensive care unit (ICU) who require mechanical ventilation due to acute
respiratory failure also frequently require the administration of sedative agents. The need for
sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and
intrusive environment of the ICU, and also due to pain or other variants of noxious stimuli. While
physicians select the agent(s) used for sedation and cardiovascular function, the actual
administration of these agents is the responsibility of the nursing staff. If clinical decision support
systems and closed-loop control systems could be developed for critical care monitoring and
lifesaving interventions as well as the administration of sedation and cardiopulmonary
management, the ICU nurse could be released from the intense monitoring of sedation, allowing
her/him to focus on other critical tasks. One particularly attractive strategy is to utilize the
knowledge and experience of skilled clinicians, capturing explicitly the rules expert clinicians use
to decide on how to titrate drug doses depending on the level of sedation. In this paper, we extend
the deterministic rule-based expert system for cardiopulmonary management and ICU sedation
framework presented in [1] to a stochastic setting by using probability theory to quantify
uncertainty and hence deal with more realistic clinical situations.
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I. Introduction
Modern control technology is having a revolutionary impact in modern medicine through
medical robotics (stereotactical brain surgery, implant fitting, and coronary procedures),
electrophysiological systems (pacemakers and automatic implantable defibrillators), life
support (ventilators and artificial hearts), and medical imaging (image-guided surgery and
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therapy). An additional area of medicine that can benefit enormously from systems and
control oriented ideas is clinical pharmacology, in which mathematical modeling plays a
prominent role [2]–[8]. This is particularly true when dealing with critically ill patients in
the intensive care unit (ICU) or in the operating room. These patients often require
administration of drugs to regulate key physiological variables, such as level of
consciousness, heart rate, blood pressure, ventilatory drive, etc., within desired targets. The
rate of administration of these drugs is critical, requiring constant monitoring and frequent
adjustments. Open-loop control by clinical personnel can be tedious, imprecise, time-
consuming, and sometimes of poor quality. Hence, the need for closed-loop control (active
control) in medical drug delivery systems is significant, with the potential for improving the
quality of medical care as well as curtailing the increasing cost of health care.

One of the main drawbacks in developing active control-based drug delivery systems is the
lack of accurate mathematical models for characterizing the dynamic behavior of drugs on
physiological variables. System nonlinearities, model parameter variations from patient to
patient, as well as parameter variations within the same patient under different conditions
make it very challenging to develop models and effective control law architectures for active
drug delivery systems. Standard data-driven system identification techniques may not be
applicable to complex biological system modeling involving in situ diagnostics. This
challenge is even more pronounced in ICU sedation modeling, where sensors may not give
reliable measures of sedation levels. As an example, there have been a number of
investigations of processed electroencephalogram (EEG) monitoring (all using the bispectral
index (BIS) monitor) of ICU patients and the results have been inconsistent [7], [9], [10].

Patients in the ICU who require mechanical ventilation due to acute respiratory failure also
frequently require the administration of sedative agents. The need for sedation arises from
patient anxiety due to the loss of personal control and the unfamiliar and intrusive
environment of the ICU. In addition, pain or other variants of noxious stimuli frequently
require administration of anxiolytic and analgesic drugs for patient comfort. In particular,
the interface between the patient and the ventilator is typically an endotracheal tube passing
through the oropharynx and into the trachea. Due to the powerful gag reflex, this tube is
very noxious. Without sedation patients can become dangerously agitated, risking
dislodgement of life support devices in the worst case and, in any case, resulting in stress
that is ethically unacceptable and also physiologically unacceptable due to deleterious
increases in heart rate, blood pressure, and work of breathing.

Sedation of mechanically ventilated patients in the ICU is an important and challenging
problem with ethical, clinical, and financial implications. At the ethical level, we have a
self-evident moral imperative to provide adequate anxiolysis and analgesia for patients in
the ICU. From the clinical perspective, it is important that this be done without either
overdosage or under-dosage as either may have undesirable clinical effects. At the financial
level, sedation of patients in the ICU requires large investments of health care provider time,
with a commensurate financial cost, while inefficient titration of sedation and analgesia may
prolong ICU length of stay.

While physicians select the agent(s) used for sedation, the actual administration of these
agents is the responsibility of the nursing staff. The ICU nurse has one of the most task-
laden jobs in medicine and titration of the sedative drug dose to achieve the optimal levels of
sedation can be a difficult and time consuming task. If clinical decision support systems and
closed-loop control systems could be developed for critical care monitoring and the
administration of sedation, the ICU nurse could be released from the intense monitoring of
sedation, allowing her/him to focus on other critical tasks.

Gholami et al. Page 2

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2013 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In clinical practice the dose of sedative agent is varied, or titrated, to achieve the desired
level of sedation. The level of sedation is currently based on clinical scoring systems. One
example is the Motor Activity Assessment Score (MAAS) [11] in which patients are given
an integer score of 0–6 as follows: 0) unresponsive; 1) responsive only to noxious stimuli; 2)
responsive to touch or name; 3) calm and cooperative; 4) restless and cooperative; 5)
agitated; and 6) dangerously agitated.

To implement closed-loop control in an acute environment, control of cardiovascular
function also needs to be addressed along with sedation since hemodynamic management
and control of consciousness are interrelated. For example, a major side effect of cardiac
surgery is that patients can become hypertensive [12], requiring treatment to prevent cardiac
dysfunction, pulmonary edema, myocardial ischemia, stroke, and bleeding from fragile
sutures. Although drugs are available for treating postoperative hypertension, titration of
these drugs to regulate blood pressure is often difficult. Underdosing leaves the patient
hypertensive, whereas overdosing can reduce the blood pressure to levels associated with
shock.

Although blood pressure control is important, cardiovascular function involves several other
important variables, all of which are interrelated [12]. The ICU clinician must ensure not
only that blood pressure is within appropriate limits but also that cardiac output (i.e., the
amount of blood pumped by the heart per minute) is acceptable and that the heart rate is
within reasonable limits. Closed-loop control of blood pressure has been investigated in
clinical studies [13]. However, the fact that this framework has not been widely adopted by
clinicians is not surprising when one considers the complex interrelationships among
hemodynamic variables [6].

Since cardiovascular and central nervous system functions are critical in the acute care
environment, technologies have evolved for their measurements. The challenge for
extending feedback control technology to the problem of sedation of critically ill patients,
however, is finding the appropriate performance variable for control. Hence, the first step in
the development of closed-loop control of sedation is the discovery of an objective,
continuously-measurable parameter that correlates with clinician assessment of the level of
sedation. Once such a parameter is discovered and validated, it then becomes necessary to
use the measure of sedation for the titration of drug dose. One particularly attractive strategy
is to utilize the knowledge and experience of skilled clinicians, capturing explicitly the rules
expert clinicians use to decide on how to titrate drug doses depending on the level of
sedation [1]. In this paper, we extend the rule-based expert system approach for
cardiopulmonary management and ICU sedation presented in [1] to a stochastic setting by
using probability theory to quantify system uncertainty and hence deal with more realistic
clinical situations.

II. Closed-Loop Sedation Control Architecture
In this section, we present a closed-loop feedback expert system architecture for ICU
sedation control. The closed-loop system is composed of the controller, the plant (patient),
and the plant output measurement block (i.e., sedation assessment block). Within our
sedation control framework, the plant (patient) is a dynamical system with unknown
dynamics, where the input is the sedative drug dose and the output is the patient behavior.
Patient behavior refers to patient's level of sedation and analgesia, manifested through facial
expression, gross motor movement, pain, agitation, blood pressure, and heart rate. The goal
of the sedation assessment feedback block is to monitor the patient's behavior, and
objectively assess the sedation level based on one of the clinical scoring systems (e.g.,
MAAS). The input to the controller is the desired level of sedation, and the objective
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assessment of sedation provided by the sedation assessment block. The closed-loop system
is shown in Fig. 1. The current clinical practice in the ICU involves human expert
assessment of patient's level of sedation (corresponding to the sedation assessment block),
and titration of the correct dose of sedatives (corresponding to the controller).

Closed-loop control of ICU sedation is virtually nonexistent in the literature. However,
control algorithms have been developed, simulated, and implemented for the related
problem of closed-loop control of general anesthesia. The first of these have focused on the
control of inhalation anesthesia and several adaptive control algorithms have been proposed;
see [14]–[21] and the references therein. These algorithms have been shown to provide
superior control of general inhalation anesthesia in simulations and animal studies.
However, they are not directly relevant to the specific problem of ICU sedation since the
controlled variable is the end-tidal anesthetic concentration. It is not possible with current
technology to rapidly measure the plasma concentration of the intravenously administered
drugs commonly used for ICU sedation. Thus, drug concentration is not a viable control
variable. Furthermore, drug concentration, even if it could be measured rapidly, is not the
best control variable. We are far more interested in drug effect than concentration.

One approach to closed-loop control of sedation is to design a system that processes the
information currently used by the medical staff and mimics the human process of decision
making for ICU sedation. Such a system can be equipped with various sensors, including the
bispectral index (a derivative of the EEG signal) monitor [22], [23], actigraph
(accelerometer for measuring hand and leg movement) [24], [25], and digital imaging (for
measuring facial expression and gross motor movement) [7], [26], [27]. In a recent study,
machine learning methods have been used to assess the level of pain in patients using facial
expressions and analyze the correlation between computer and human expert pain intensity
assessments [28], [29]. With measurements provided by different viable sensors, an expert
system can be designed which mimics expert human actions and follows a similar decision
making process.

Finally, it is important to note that temporal variability in the pharmacological response of
individual patients and limitations in the reliable and reproducible effect of the medications
used pose a significant challenge for the problem of ICU sedation control. In point of fact,
this is exactly why “fixed” sedation dosing schemes do not work, and ongoing assessment of
the depth of sedation and, then, titration to desired effect is necessary. We postulate that
clinical outcomes will be improved if a systematic probabilistic expert system framework
for sedation management is developed.

III. Instrumentation for Clinical Pharmacology
The sensors used in the ICU to monitor patient status include those that measure
hemodynamic status, respiratory status, renal function, and central nervous function.
Hemodynamic status is most typically assessed by continuous monitoring of heart rate and
electrocardiograph (ECG). The ECG measures the electrical potential difference between
skin electrodes placed at various sites on the torso and limbs, and can be analyzed to provide
continuous heart rate measurement as well as identify signs of cardiac dysfunction.
Hemodynamic function is also assessed using blood pressure measurements. While this may
be done using noninvasive methods, it is most typically done by placing a small plastic
catheter directly into an artery (most often the radial artery as it passes through the underside
of the wrist) and then using a pressure transducer to convert the pulse pressure wave into an
electrical signal. In a similar fashion, catheters are also often placed into large central veins
(such as the internal jugular vein) so that their tips are situated close to the entry of the main
veins (superior vena cava or inferior vena cava) returning blood to the heart. Pressure waves
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in these veins are then transduced into electrical signals to provide the central venous
pressure. This gives an indirect measure of the volume of blood in the heart which is a major
determinant of cardiac output, the volume of blood pumped by the heart per minute.

In some situations in which there is more profound cardiac dysfunction, a pulmonary artery
catheter is placed. This is a catheter that runs through the heart into the pulmonary artery
(i.e., the artery going from the heart to the lungs) and can measure pressures in the
pulmonary artery (another indirect measure of volume in the heart) as well as directly
measure cardiac output. Finally, it is important to monitor the adequacy of blood flow to the
various tissues of the body. One common technique is to measure the amount of oxygen in
venous blood. If the delivery of oxygen to tissue decreases, then there will be a greater
relative extraction of oxygen from the delivered blood by the tissue, and hence, the venous
blood returning to the heart will have less oxygen in it. This is most typically measured as
the percentage of hemoglobin molecules (the primary carrier of oxygen in the blood) that are
bound to oxygen (referred to as the venous saturation).

The purpose of respiration is to eliminate carbon dioxide from and deliver oxygen to the
blood. Hence, the most important monitors of respiratory function are measures of carbon
dioxide and oxygen in the blood. With the most commonly used sensor technologies these
are not directly measurable; however, it is possible to continuously measure hemoglobin
oxygen saturation, the percentage of hemoglobin in arterial blood that is bound to oxygen,
using absorbance spectroscopy and light emitting diode technology. In addition, many ICUs
use continuous analysis of gas exhaled from the lungs to measure end-tidal carbon dioxide
concentration, an indirect and approximate measure of blood carbon dioxide concentrations.
Furthermore, modern mechanical ventilators are equipped to measure the pressure used to
expand the lungs when the patient is undergoing mechanical ventilation, as well as
respiratory rate.

Assessment of renal function is not as sophisticated as either hemodynamic or respiratory
monitoring. Currently renal function is most typically assessed by the continuous
measurement of urine output. Sensors for assessment of central nervous system function are
currently in their infancy, at least as far as routine clinical use is concerned.

IV. Probabilistic Expert System for Cardiopulmonary Management and ICU
Sedation Control

In this section, we introduce a probabilistic expert system for cardiopulmonary management
and ICU sedation control. A knowledge-based system, and, in particular, an expert system,
is a computer program that is capable of making deductions based on the information
provided by the user and the information stored in its knowledge base. In other words, a
knowledge-based system is a system which applies a “rules of thumb” approach to a
symbolic representation of knowledge [30]. The main characteristic that distinguishes a
knowledge-based system from a conventional computer program is its structure [31]. Expert
systems are a subclass of knowledge-based systems, where their objective is to emulate the
human expert behavior [31], [32].

Expert systems in general deal with two different types of problems: deterministic versus
stochastic. As a result, expert systems belong to one of the two general classes of: 1)
deterministic expert systems and 2) stochastic expert systems. Deterministic expert systems
are also referred to as rule-based expert systems due to the fact that in such systems the
deduction process is based on a series of rules [32]. A more challenging set of problems is
that involving uncertainty in knowledge and in the problem variables. Stochastic expert
systems specifically deal with such problems and different frameworks exist to address
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uncertainty including certainty factors [33], fuzzy logic [34], theory of evidence [35], and,
more recently, probability theory [32]. In the probabilistic approach, a joint probability
distribution function over the set of variables is defined and the inference is based on
probability rules. Such expert systems are referred to as probabilistic expert systems.

In [1], a rule-based expert system is introduced for cardiopulmonary management and ICU
sedation. One of the limitations of the rule-based expert system proposed in [1] is its
inability to deal with uncertainty. More specifically, it assumes perfect accuracy in the
measurement of present and previous MAAS scores, blood pressure, and heart rate. While
current technology allows for high accuracy measurements of blood pressure and heart rate,
the MAAS score, which quantifies the level of sedation and agitation of the patient, is
subjective and can result in inconsistencies and variability in sedation administration.
Moreover, in a rule-based expert system there is no uncertainty associated with the rules. A
more general approach would allow for rules with multiple conclusions, where a different
level of uncertainty is associated with each conclusion. In this section, we use probability
theory to quantify uncertainty to extend the rule-based expert system given in [1] to deal
with more realistic situations.

In the Bayesian interpretation of probability, as opposed to the classical interpretation, the
probability of an event is an indication of the uncertainty associated with the event rather
than its frequency [36]. In the probabilistic approach to expert systems, the system variables
are regarded as random variables and, in contrast to rule-based expert systems, probabilistic
expert systems do not possess “if-then” rules but rather the relationship between the
variables is defined using a joint probability distribution [32]. If the joint probability
distribution of a probabilistic model is known, probabilities associated with different
situations can be computed using marginalization and probability conditioning [37].

A drawback of the probabilistic approach to expert systems is computational complexity.
The computational complexity increases with the increase in the number of random
variables and the number of possible values they can take. This increase is exponential in the
number of random variables. Bayesian networks [38] (also known as belief networks) is a
graphical framework in machine learning which exploits the conditional independence
between variables to reduce the computational complexity of the probabilistic model.

Before stating the main results of this section, we need the following definitions.

Definition 4.1 [39], [40]: A directed graph  is a pair , where  is the
set of vertices and  is the set of edges. Every edge

, corresponds to an ordered pair of vertices , where vi
and vj are the initial and terminal vertices of the edge el. In this case, el is incident into vj
and incident out of vi; vi is the parent of vj and vj is the child of vi. Moreover,

 is the set of all parents of . A directed path from vi1 to vik is a

set of distinct vertices {vi1, vi2,..., vik} such that , j = 1,..., k – 1. A directed
path is closed if vi1 = vik. A cycle is a nontrivial closed path where all the vertices (except
for the first and last) are distinct. A directed acyclic graph is a directed graph containing no
cycles.

For the next definition, p(·) and p(·|·) denote the probability density function and the
conditional probability density function operators, respectively.

Definition 4.2 [38]: Let , where Xi, i = 1,..., n, is a random variable and
takes on values from a set . A Bayesian network  is an ordered pair
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, where  is a directed acyclic graph,  is the set of edges, and Θ is
the set characterizing the probabilistic relationship between the vertices (random variables)
and is defined by

(1)

where  is the parent index set of Xi, M = card(IIXi, and card (·) is the
cardinality operator.

Note that a Bayesian network  defines a unique joint probability distribution over
 given by

(2)

where , and where, for simplicity of exposition, we denote the conditional
probability density function p(xi | Xi1 = xi1,..., XiM = xiM) by p(xi | xi1,..., xim). Moreover, a
Bayesian network represents the causal relationships between different random variables.
More specifically, if Xj ∈ IIXi, i, j ∈ {1,..., n}, then Xj directly influences (causes) Xi. This
interpretation of an edge between two vertices is crucial in the construction of the Bayesian
network. Each random variable is either observed (i.e., its value is known), or hidden (i.e.,
its value is unknown). In the graphical representation of a Bayesian network, the vertices
corresponding to the observed random variables are shaded. Given a Bayesian network and
the set of observed random variables, the inference involves finding the posterior probability
distribution of any set of random variables given the observed random variables by
marginalizing the joint probability distribution. An advantage of Bayesian networks is that
they reduce the computational complexity of the inference stage. For a more comprehensive
discussion on Bayesian networks, see [36]–[38].

In this section, we use a Bayesian network framework to design a probabilistic expert
system for cardiopulmonary management and ICU sedation control. We first start by
constructing a Bayesian network for ICU sedation control. Next, we extend the Bayesian
network to control patient hemodynamics. Let  represent the Bayesian network
and let the patient's current MAAS score, previous MAAS score, blood pressure, heart rate,
and required drug dose for sedation be given by the random variables M, M’, B, H, and D,
respectively, where range(M) = range(M’) = {0, 1,..., 6}, range(D) = {1, 2,..., 12},

, where  denotes the set of positive scalars, and, for a given
function , . Note that there are 12 distinct actions (primary action)
given in the first part of the conclusion of each rule in Table I in [1], and hence, we have
assigned a unique number to each distinct action. The graph  for this Bayesian network is
given in Fig. 2. The current and previous MAAS scores, blood pressure, and heart rate,
which constitute the inputs to the expert system and directly influence the required drug
dose, are observed and their corresponding vertices are shaded in Fig. 2.

A potential problem associated with the Bayesian network given in Fig. 2 is its inability to
capture the uncertainty associated with the measurement of the MAAS scores. In particular,
in order to perform a meaningful inference, the exact values of the current and previous
MAAS scores should be known (observed). However, as discussed earlier, the assessment
process is highly subjective, and the assessed scores can involve a high degree of
uncertainty. A closer examination of the current and previous MAAS scores reveals that
these random variables are essentially hidden variables, that is, they are “driven” by other
factors. The MAAS score reflects the patient's agitation and sedation level, which can be
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observed through facial expressions, gross motor movement, guarding (i.e., a response in
which the patient withdraws from a potentially noxious stimulus), heart rate and blood
pressure stability, noncardiac sympathetic stability, and nonverbal pain scale. These
observed factors can be regarded as random variables taking on values from appropriate
sets. For example, machine learning techniques can be used to classify photographs based on
the patient's facial expressions into pain and non-pain classes, which in turn can be used to
assess pain intensity on a scale from 0 to 100 [28], [29]. Hence, a more complete model for
the probabilistic expert system should include these observed random variables as well.

Let the random variables U1,..., U6 represent the current objective assessment of the facial
expression, gross motor movement, guarding, heart rate and blood pressure stability,

noncardiac sympathetic stability, and nonverbal pain scale, respectively, and let 
represent the previous objective assessment of these variables. Moreover, let

, where 0, 1, and 2 denote, respectively, a relaxed face,
grimacing and moaning face, and grimacing and crying face;

, where 0, 1, and 2 denote, respectively, lying quietly,

cautious movement, and restless withdrawal; , where 0, 1,
and 2 denote, respectively, lying quietly, splinting and tense, and rigid and stiff;

, where 0, 1, and 2 denote, respectively, stable, moderate

change, and marked change; , where 0, 1, and 2 denote,
respectively, warm and dry skin, flushed and sweaty, and pale and sweaty; and

, where 0 and 10 denote, respectively, no pain and
extreme pain.

The graph of the Bayesian network which includes these new random variables is given in
Fig. 3. Note that the current and previous MAAS scores are no longer observed, and hence,
are not shaded. It is worth noting here that the graph represented in Fig. 3 corresponds to a
Bayesian network of a probabilistic expert system and it is not aimed at modeling the
interactions between the variables involved in ICU sedation. The Bayesian network
capturing the actual interaction of these variables has a different dependency structure, and
hence, its corresponding graph would be different from the graph given in Fig. 3.

The Bayesian network corresponding to the graph given in Fig. 3 can be used to determine
the proper drug dose for ICU sedation. Specifically, the joint probability distribution

, where ,

, , and d ∈ {1, 2,..., 12}, can be computed
using the relationship given in (2); namely

(3)

The probability distribution of the drug dose suggested by the Bayesian network is given by
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(4)

where we use marginalization to eliminate m and m’, and m, m’, and d from the probability
density functions in the numerator and denominator of (4), respectively. Note that p(d | m,
m’, b, h), which captures the drug dosing pattern of the medical staff, can be determined
through statistical techniques (e.g., maximum likelihood estimates [37]) and clinical data

collection. In addition, the probability distributions p(m | u1,..., u6, m’) and 
capture the relationship between the facial expression, gross motor movement, guarding,
heart rate and blood pressure stability, noncardiac sympathetic stability, and nonverbal pain
scale and the MAAS score, which also requires clinical data collection. The prior probability

distributions over , B, and H denoted by , and p(h),
respectively, as well as the conditional probability distributions

, and  can also be determined by
statistical techniques.

Given the probability distribution of the drug dose suggested by the Bayesian network

, different strategies for choosing the drug dose can be used.
One such strategy involves selecting the drug dose corresponding to the mode of the
distribution given by

(5)

where Dsuggested denotes the drug dose suggested by the Bayesian network.

Finally, note that the Bayesian network can also be used to compute the probability
distribution of the drug dose (and hence, the suggested drug dose) when only partial
observations are available. In particular, the posterior probability distribution on the drug
dose can be computed when the observed variables are a subset of the observed variables in
Fig. 3. Partial observation can result from sensor failure, where a particular state of the
patient is unavailable at the time of a decision. For example, if only the blood pressure, heart

rate, facial expression, and gross motor movement data is available, 
gives the probability distribution for the drug dose based on these partial observations.

The same probabilistic methodology can be used to account for a secondary action (see
Table I in [1]) in the Bayesian network. In this case, appropriate random variables have to be
defined and the graph given in Fig. 3 should be modified accordingly. Alternatively, a
hybrid probabilistic-deterministic expert system can be defined, where the primary actions
given by the first part of the conclusions in Table I in [1] are described by a Bayesian
network and the secondary action is given by Table II in [1]. Specifically, define the
switching random variable S, where range(S) = {0, 1}. The random variable S acts as a
switch, where S = 0 denotes that the hemodynamic control expert system (HDCES) (see
Tables I and II of [1]) is off-line and S = 1 denotes that the HDCES is activated. The
activation could be probability-based where the HDCES is activated if

, where 0 < T < 1, P(· | ·) is the conditional probability
operator, and T is a threshold value. Note that based on Table I in [1], the activation of the
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HDCES depends on the current and previous MAAS scores, blood pressure, heart rate, and
the required drug dose for ICU sedation. The graph of the hybrid Bayesian network is shown
in Fig. 4.

V. Probabilistic Alarm Algorithm for Critical Care Monitoring
A potentially key application of the probabilistic expert system developed in Section IV is
its applicability to clinical decision support, critical care monitoring, and lifesaving
interventions. A clinical decision support system is a computer program that can directly
provide the medical staff with assessments and recommendations in the clinical decision
making process [41]. A clinical decision support system can be coupled to a closed-loop
control system to provide a hierarchical hybrid control architecture characterized by
continuous-time control algorithms at the lower-level units and logical decision-making
units at the higher-level of the hierarchy. In particular, a hybrid controller would involve the
clinician evaluating the patient through a decision support system and an autonomous
closed-loop controller adjusting the desired regimen to maintain sedation at a desired level.
This controller architecture allows for the expert system to directly aid in clinical decision
making as well as critical care monitoring and lifesaving interventions.

In this section, we use the framework presented in Section IV to design an alarm algorithm
for agitation detection in ICU patients. An alarm system refers to an automatic warning
system that constantly monitors a specific state of the patient and notifies the medical staff
in case of an abnormality [42]. An agitation detection alarm system can reduce the medical
staff's workload as well as safeguard against life-threatening situations in the ICU.

To design an alarm algorithm for agitation detection, let the patients's facial expression,
gross motor movement, guarding, heart rate and blood pressure stability, noncardiac
sympathetic stability, nonverbal pain scale, and patient agitation be given by the random
variables U1,..., U6 and A, respectively, where range(Ui = {0, 1, 2}, i = 1,..., 5, range(U6) =
{0,..., 10}, and range(A) = {0, 1}. Here, A = 0 and A = 1 denote, respectively, absence of
agitation corresponding to an MAAS score of 0–3 and presence of restlessness and agitation
corresponding to an MAAS score of 4–6. The graph of the Bayesian network for the alarm
algorithm is given by Fig. 5. Note that the random variables U1,..., U6 are considered as
observed variables, and hence, are shaded.

The joint probability distribution for this network is given by

(6)

where ui ∈ {0, 1, 2}, i = 1,... 5, u6 ∈ {0,..., 10}, and a ∈ {0, 1}. In addition, the posterior
probability of the patient's agitated state is given by

(7)

The patient's agitation state is based on the observation of facial expression, gross motor
movement, guarding, heart rate and blood pressure stability, noncardiac sympathetic
stability, and nonverbal pain scale and is given by

(8)

where we select the agitation state with the highest probability.
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To elucidate the efficacy of our proposed approach we apply our framework to a
retrospective study involving recorded sedation and agitation data for 366 patients admitted
to the ICU in Northeast Georgia Medical Center, Gainesville, GA, over the period of May 6,
2009 to April 27, 2010. The patient's age ranged from 18 to 90 years. The length of stay in
the ICU ranged from 1 to 93 days. In addition, the available data set included 15 052
measurements of facial expressions, gross motor movement, guarding, heart rate and blood
pressure stability, noncardiac sympathetic stability, nonverbal pain scale, and agitation state.
We used the hold-out method [36] for validation of the alarm algorithm, where 12 000
measurements of the random variables U1,..., U6 and A were used to train the Bayesian
network. The algorithm was tested on the remaining 3052 measurements of U1,..., U6.

We used the MATLAB version R2008a and the Bayesian Network MATLAB Toolbox [43]
to compute the posterior probability distributions of the patient's agitation state. In the
training stage, we used the maximum likelihood estimates approach to estimate the
probability distributions in (6) and used a uniform Dirichlet prior to avoid zero conditional
probabilities for cases not present in the training data set [37]. In addition, in the testing
stage, we used the junction-tree inference algorithm [36]. Table I gives the predicted
agitation state Apredicted given by (8) as compared to the human-assessed patient agitation.
Based on the results, when the algorithm predicted the presence of patient agitation, in
18.9% of the test cases the patient was not agitated (false positive rate of 18.9% with a 95%
confidence interval of 14.4% to 24.4%). In addition, when no agitation was reported by the
algorithm in 4.5% of the test cases the patient was experiencing agitation (false negative rate
of 4.5% with a 95% confidence interval of 3.8% to 5.4%). The confidence interval is
calculated based on the framework presented in [44]. In 45 cases out of a total of 3 052 cases
the algorithm was undecided; that is, the posterior probability of the patient's agitation state
was uniform.

VI. Conclusion
In this paper, we presented an approach for designing clinical decision support and closed-
loop control systems for cardiopulmonary management and sedation control in an ICU using
expert systems. It is important to note that expert systems are already in widespread use in
other branches of medicine, more prominently in disease diagnosis, where the system inputs
are the patient's details and symptoms, and the system outputs are probable diagnoses,
recommended treatments or drugs which may be prescribed. Such systems are typically
open-loop and may be regarded as rule-based search engines to help the clinician in his/her
mapping of a given set of symptoms to a possible cause (disease).

Here, we are proposing to close the loop in a very specific sedation and cardiovascular
function scenario using a set of heuristics in combination with Bayesian networks. A major
challenge is the system identification aspect of the problem, that is, identifying a reasonable
system model in case the plant is the patient. In contrast to more conventional identification
techniques (e.g., sine sweeps), here the result must be more subjective but still very useful.
Nevertheless, putting problems in drug administration in a closed-loop control framework
has the strong potential for making the therapies more robust and thus much less amenable
to human error.

The framework proposed here is just the first step in such a program. Future work will
involve the development of objective assessments for ICU sedation using gross motor
movement, facial expression, and responsiveness to stimuli. In particular, we will explore
the relationship between gross motor movement, facial expression, and responsiveness to
stimuli, and the MAAS score in the form of probability distributions which are best
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determined by clinical data collection. In addition, the drug dosage suggested by the expert
system will be compared to the drug dose prescribed by various experienced clinicians.
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Fig. 1.
Closed-loop sedation control architecture.
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Fig. 2.
Graph of a Bayesian network capturing the relationships between the current MAAS score
(M), previous MAAS score (M’), blood pressure (B), heart rate (H), and required drug dose
(D).
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Fig. 3.
More general graph of a Bayesian network capturing the relationship between the MAAS
score and other observable factors; namely, current and previous objective assessments of

facial expression , gross motor movement , guarding , heart rate and

blood pressure stability , non-cardiac sympathetic stability , and non-verbal pain

scale .
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Fig. 4.
Gsraph of a hybrid probabilistic-deterministic Bayesian network where the random variable
S controls the activation of the hemodynamic control expert system.
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Fig. 5.
Graph of a Bayesian network of an alarm algorithm for critical care monitoring.
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TABLE I

Comparison of the Human-Assessed Patient Agitation With the Predicted Agitation State Given by the Alarm
Algorithm

Patient Not Agitated Patient Agitated

Alarm On 48 206

Alarm Off 2628 125
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