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Abstract
Human tumors often display startling intratumor heterogeneity in various features including
histology, gene expression, genotype, and metastatic and proliferative potential. This phenotypic
and genetic heterogeneity plays an important role in neoplasia, cancer progression, and therapeutic
resistance. In this issue of the journal (beginning on page XXX), Merlo et al. report their use of
molecular data from 239 patients with Barrett’s esophagus to evaluate the propensity of major
diversity indices for predicting progression to esophageal adenocarcinoma. This work helps
elucidate the implications of molecular heterogeneity for the evolution of neoplasia.

Neoplasia originates from normal cells that accumulate genetic and epigenetic alterations.
Although the types and numbers of alterations necessary for transformation differ between
tumor types, most types share a common feature: A noteworthy variability among the cancer
cells within a single neoplastic lesion (1–3). These cells can be distinguished from each
other by characteristics such as size, morphology, and antigen expression, as well as by
behaviors like cell turnover, cell-cell interaction, invasive and metastatic ability, and
sensitivity to pharmacological interventions (4, 5). This intratumor heterogeneity impedes
the investigation and treatment of cancer since individual tumor-tissue samples may not be
representative of the whole tumor, and predictions about its evolution frequently are
inaccurate.

The origins of intratumor heterogeneity have been the subject of much discussion (6, 7).
Both the cancer stem cell hypothesis and the clonal evolution model have been proposed as
descriptions for the establishment and maintenance of intratumor heterogeneity (7). The
cancer stem cell hypothesis suggests that a subset of cells with stem-cell properties drive
tumor initiation and progression. These “cancer stem cells” are the only cells within the
tumor that possess indefinite self-renewal abilities (5, 8–11). Their differentiation, which
leads to the production of all cell types in the tumor, generates intratumor heterogeneity. In
contrast, the clonal evolution model states that a premalignant or malignant cell population
accumulates various hereditary changes over time that may confer advantages or
disadvantages to the cell, which is hence subjected to natural selection. Carcinogenesis is
initiated by the accumulation of several mutations in a single cell and is driven by the
emergence of further genetic and epigenetic alterations that confer more aggressive,
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invasive, and drug-resistant phenotypes. In the context of this model, the emergence of new
hereditary traits in premalignant and tumor cells gives rise to heterogeneity.

Although these two hypotheses have been presented as mutually exclusive explanations of
tumor heterogeneity, they are easily reconciled and are both an integral part of cancer
evolution and the generation of diversity (Fig. 1). Only cells that have self-renewal
capabilities are able to persist over time and accumulate the genetic and epigenetic changes
necessary for cancer initiation and progression. Such cancer stem cells give rise to distinct
types of transit-amplifying cells and more differentiated cancer cells. Transit-amplifying
cells may also accumulate genetic changes, but unless a mutation conferring self-renewal
capabilities emerges, these changes are unable to persist in the cell population and will be
“washed out” of the system. Nevertheless, they can be responsible for a fraction of the
variation detected in a snapshot analysis of a tumor (Fig. 1).

An alternative model for the ability of only a subset of cells to propagate the tumor cell
population and give rise to intratumor heterogeneity is tumor cell plasticity. According to
this model, all or most tumor cells have varying degrees of stem cell–like characteristics,
which may depend on microenvironmental conditions and/or cell-intrinsic stochasticity (12).
This idea is supported by recent evidence indicating that signaling within the perivascular
niche of glioma cells acted as a driving force for tumor cells to acquire stem cell
characteristics (13). In this study, nitric oxide was demonstrated to activate Notch signaling
in a subset of the glioma cells. This signaling resulted in the acquisition of the side
population phenotype and led to increased neurosphere and tumor formation. These
alterations occurred within as few as two hours after nitric oxide stimulation and had long-
term effects on the stem-like character of cells. Such plasticity of tumor stem cells may also
apply to liquid tumors since leukemia-initiating cells in acute myeloid leukemia patients
harboring mutations in nucleophosmin can reside in the CD34+ as well as CD34− fraction
(14). Furthermore, the model of a rigid differentiation hierarchy is not supported by
experimental evidence even in normal tissues. Certain extracellular signals, for instance, can
induce oligodendrocyte precursor cells to dedifferentiate into multipotential neural stem
cells (15). Similarly, a single extracellular factor was sufficient to induce differentiated cells
of the central nervous system to regress into a stem cell–like stage in a study of mature
astrocytes exposed to transforming growth factor α (16).

In contrast to its origins, the implications and clinical importance of intratumor diversity
have been widely accepted. Since tumor cell populations are highly heterogeneous and
continuously evolve towards more aggressive phenotypes, the identification of effective
treatment modalities poses a major challenge; similarly difficult is the stratification of a
patient population with regard to risk of progression from a premalignant lesion such as
Barrett’s esophagus to cancer such as esophageal adenocarcinoma. Tumors consisting of
multiple distinct clones display different sensitivities to therapeutic interventions as
compared with monoclonal tumors, and the pre-existence of resistance mutations may
render certain treatment options ineffective for a subset of patients. For instance, patients
with chronic myeloid leukemia sometimes harbor mutations that confer resistance to one or
more tyrosine kinase inhibitors. The specific therapeutic strategy of choice for such patients
depends on the identity and composition of the resistant cell populations. Knowledge of the
composition of tumors or premalignant lesions at diagnosis therefore may determine both
the prognosis and therapeutic response of cancer patients. Intratumor diversity also
complicates the molecular classification of tumors into clinically relevant subtypes
predicting prognosis since diagnostic biopsies sample only small regions of the premalignant
lesion or tumor. These small regions may not be representative of the whole lesion, and the
treatment selection derived from a single-biopsy–based diagnosis might not elicit responses
in all areas of the tumor.
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Because of its clinical importance, intratumor diversity has been at the center of attention of
investigators from diverse fields. Several computational models have been devised to study
aspects of intratumor diversity, from the impact of differentiation hierarchies (17, 18) and
tissue architecture (19–22) on heterogeneity to the consequences of somatic evolution (23–
25), mutator phenotypes, the evolution of resistance (26–28), and interactions of cancer cells
with the microenvironment (29). The application of computational and statistical models to
data from human cancer samples, however, has only recently been initiated. In 2006, Maley
and colleagues demonstrated for the first time a direct relationship between clonal diversity
in premalignant lesions and progression to cancer (23). They studied the extent of genetic
heterogeneity in patient samples of Barrett’s esophagus using ecological measures of
diversity. Diversity was measured by three different indices: The number of clones in a
neoplasm; the Shannon diversity index, which represents the information content of a
message in computer science (30); and genetic divergence as measured by the number of
loci showing differences divided by the number of informative loci. These measures
incorporated information about loss of heterozygosity, microsatellite shifts, and sequence
mutations across the genome. High degrees of clonal diversity were found to correlate with
increased risk of progression to malignancy, thereby suggesting that diversity measures can
be used to identify high-risk patients.

To investigate the relative importance of the clonal evolution model versus the stem cell
model and to quantify diversity in human tumor samples, we recently performed combined
analyses of markers associated with cellular differentiation and genotypic alterations in
human breast carcinomas (31). Similar to earlier studies (23), several different measures of
diversity were utilized to analyze the samples. These studies uncovered a high degree of
genetic heterogeneity both within and between distinct tumor cell populations that were
defined based on markers of cellular phenotypes including stem cell–like characteristics. In
several tumors, stem cell–like and more differentiated cancer cell populations were
genetically distinct; this observation questioned the validity of a simple differentiation
hierarchy–based cancer stem cell model. The degree of diversity correlated with clinically
relevant breast-tumor subtypes and in some tumors was markedly different between the in
situ and invasive cell populations. We also found that diversity measures were associated
with clinical variables. Therefore, the hypothesis that the degree of intratumor heterogeneity
in in situ and invasive breast tumors predicts the risk of progression and therapeutic
resistance would be worth investigating in larger cohorts, as also suggested by Tlsty et al.
based on their studies of DCIS (3).

In this issue of the journal, Maley and colleagues present a new analysis of clonal diversity
in Barrett’s esophagus (32). The authors utilized molecular data from patient samples to
systematically test all major diversity measurement methods for their accuracy in predicting
progression to esophageal adenocarcinoma. The molecular data included microsatellite
shifts, loss of heterozygosity, tetraploidy and aneuploidy, and methylation and sequence
mutations. Since diversity indices are based on the number and relative abundance of
distinct cellular clones within a sample, the definition of clones may influence the
magnitude and predictive power of individual indices. The authors systematically
investigated this issue by considering several distinct definitions of clones, ranging from
cellular groups distinguished by all available molecular data to those that differed by
alterations in neutral loci only. The choice of diversity measurement method may also
influence the ability of intratumor heterogeneity to predict tumor progression. To address
this issue, the authors considered a generalized expression for diversity indices incorporating
the total number and frequency of distinct clones in the sample. By adjusting the order (i.e.,
a parameter q) of the diversity index by scaling the parameter q, the relative importance of
frequent clones in the sample is altered. This generalized expression allows an organic way
of investigating a large range of diversity indices, including the frequently used Simpson
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and Shannon indices (30). The authors discovered that all measures of diversity were
predictive of future progression, regardless of which definition of a clone was used. This
result is important from both the basic science and clinical perspective. Moreover, since
progression to cancer in different sites is driven by evolutionary mechanisms that share the
same basic principles, these findings may also be applicable to cancers of other organs.

Clinically, the assessment of clonal diversity of human tumors may represent a unified
method for identifying patients at a high risk of progression to cancer, to more advanced
stages of cancer, and of relapse due to the existence of drug-resistant cells in the tumor cell
population. Solidifying the utility of diversity measures for diagnosis, prognosis, and
treatment choices will require the elucidation of the extent of diversity in a large number of
tumor samples as well as in additional tumor types and premalignant lesions. The magnitude
of intratumor heterogeneity must then be correlated with clinical variables such a survival,
proliferative indices, treatment sensitivity, and the risk of acquired resistance. Furthermore,
studies of single cell-based heterogeneity in different situations during the evolution of a
neoplasm, such as before and after treatment and in premalignancy, primary cancer, and
metastasis, have not been performed to date and are needed in order to obtain an accurate
picture of the dynamics of diversity.

A comprehensive analysis of intratumor heterogeneity depends on more than just the
availability of appropriate analysis tools such as those described by Merlo et al. (32). Cost-
efficient ways to profile single cells from neoplasms at multiple stages of their evolution are
also necessary. Although not yet available, these methodologies, in combination with
appropriate analysis tools, would significantly improve the clinical management of patients
with premalignant lesions or cancer.
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Fig 1.
Emergence and maintenance of tumor diversity. Cancer cell diversity arises both from the
differentiation of cancer stem cells (parallel horizontal arrows) and the accumulation of
mutations in cancer stem cells (vertical arrows) and transit-amplifying cells (diverging
arrows). Unless a mutation conferring self-renewal capabilities arises in a transit-amplifying
cell, genetic changes emerging in those cells are unable to persist in the population and will
disappear.
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