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Abstract
Large databases (> 106 sequences) used in metaproteomic and proteogenomic studies present
challenges in matching peptide sequences to tandem MS data using database-search programs.
Most notably, strict filtering to avoid false positive matches leads to more false negatives, thus
constraining the number of peptide matches. To address this challenge, we developed a two-step
method wherein matches derived from a primary search against a large database were used to
create a smaller subset database. The second search was performed against a target-decoy version
of this subset database merged with a host database. High confidence peptide sequence matches
(PSMs) were then used to infer protein identities. Applying our two-step method for both
metaproteomic and proteogenomic analysis resulted in twice the number of high confidence
peptide sequence matches in each case, as compared to the conventional one-step method. The
two-step method captured almost all of the same peptides matched by the one-step method, with a
majority of the additional matches being false negatives from the one-step method. Furthermore,
the two-step method improved results regardless of the database search program used. Our results
show that our two-step method maximizes the peptide matching sensitivity for applications
requiring large databases, especially valuable for proteogenomics and metaproteomics studies.

Keywords
Two-step workflow; metaproteomics; proteogenomics; sequence database search; mass
spectrometry; peptide sequence match

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
*CORRESPONDING AUTHORS: Timothy J. Griffin, 321 Church St SE, 6-155 Jackson Hall, Minneapolis, MN 55455, Tel:
612-624-5249, Fax: 612-624-0432, tgriffin@umn.edu. Pratik Jagtap, 523 Walter Library, 117 Pleasant Street SE, Minneapolis, MN
55455. Tel: (612) 625-6573 Fax: (612) 624-8861, pratik@msi.umn.edu.

CONFLICT OF INTEREST STATEMENT
All authors declare that there is no financial / commercial conflict of interest.

Supporting Information
Additional tables, text and figures are described in the text are included in the supporting information. The data associated with this
manuscript can be downloaded from ProteomeCommons.org Tranche by using associated hash code and the passphrase mentioned
below.
OnPkqAkLKfcf1WGDk1tjAcCX9tQ916NHNl3IlHhq8rBFCRH5J+xrtpyDN6Rc2ahmxhN93QhnamBP7JbG69J1L/F/
HfUAAAAAAAADAQ==
Passphrase to access data: twostep

NIH Public Access
Author Manuscript
Proteomics. Author manuscript; available in PMC 2014 April 01.

Published in final edited form as:
Proteomics. 2013 April ; 13(8): 1352–1357. doi:10.1002/pmic.201200352.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Advances in DNA and RNA sequencing, mass spectrometry and bioinformatics have
expanded the scope of proteomics studies. One example is metaproteomics, an emerging
field that identifies and characterizes the complement of proteins expressed by a microbial
community in an environmental sample [1–2] or a host organism [3]. Another example,
proteogenomics, identifies protein sequences that are not yet annotated in the predicted
proteome of the organism under study. Proteogenomics provides information for gene
annotation and genomic structure -thus enhancing our understanding of genomes [4–5].

Both of these disciplines are based upon large-scale identification of proteins in complex
mixtures using tandem mass spectrometry (MS/MS) and sequence database searching,
wherein each MS/MS spectrum is potentially matched to a peptide sequence and protein
identities are inferred from these matches. The sequence databases used for database
searching in these studies are commonly much larger than those used in more traditional
proteomics studies. Typically, metagenomes contain hundreds of organisms with a total of
more than 5 X 105 sequences. The situation for proteogenomics is more extreme due to use
of 6-frame translated genomes or 3-frame translated transcriptomes that generally result in
large datasets (more than 2 X 106 sequences). By comparison, the typical human databases
used in traditional proteomics studies contain around 7 X 104 sequences or fewer.
Determining PSMs by searching against large databases presents challenges because of the
increased search space and an increased potential for false positives. This in turn
necessitates stringent thresholds to ensure high confidence results [4–6]. Unfortunately, the
increased stringency required also increases the number of false negative PSMs, that is true
PSMs that fall short of the scoring thresholds employed, resulting in a decreased number of
high confidence microbial (for metaproteomic studies) or alternative splice isoform (pASIs)
peptides (for proteogenomic studies).

To overcome this challenge, we developed a two-step database searching method, which we
have used to characterize the metaproteome of human salivary supernatant [3]. Although our
previous work demonstrated the promise of this method for a metaproteomics study, a
number of important questions about this method remained unanswered, including: 1) What
is the mechanism by which it increases PSMs from large databases? 2) Is this method also
effective for other applications, such as proteogenomics? 3) Is the apparent improvement
dependent on the database search program? Here we sought to answer these questions, as
well as further validate the method, thereby better enabling its use by others.

For the described studies (See supporting information S1 for more detailed information), we
analyzed proteins from oral mucosa tissue exudates, collected from three individuals using
PerioPaper strips and processed for MS-based proteomics using “on-strip” trypsin digestion
as previously described [7]. Twenty-one peptide fractions (seven SCX fractions per sample;
Figure 1A) were analyzed using online capillary liquid chromatography coupled with an
LTQ-Orbitrap XL mass spectrometer (Thermo Scientific, San Jose, CA). Raw MS/MS data
was processed through MaxQuant ‘Quant’ module to generate MSM files with highly
accurate precursor masses, which increase confidence in PSMs when using large databases
[4, 10]. The MSM files, after converting to mgf format, were searched using ProteinPilot ™
v 4.0 (AB SCIEX, Foster City, CA) [8] as described in Jagtap et al 2012 [9].

For the metaproteomics analysis, the traditional “one-step” database search method was
used on a target-decoy database (Mp-1 in Figure 1A; 1,589,388 target-decoy sequences) of
the human oral microbial database (HOMD dated December 2011) [11] concatenated with
the human proteome database (UniProt isoform canonical database). We generated a target-
decoy version of the database by appending a reversed version of sequences (i.e. the decoy
sequences) to the forward sequences (i.e. the target sequences). For the proteogenomics
analysis, the traditional one-step method was carried out on a target-decoy database (Pg-1 in
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Figure 1A; 5,558,588 target-decoy sequences) of the three-frame translated expressed
sequence tag (EST) database (dated April 2011 as described in Menon et al 2011 [12]) with
the human proteome (UniProt isoform canonical database dated December 2011). Distinct
sequences associated with PSMs at 5% local FDR were recorded (Figure2A). Local FDR, a
measure available through ProteinPilot, estimates the error rate around a specific PSM and
ensures all peptides at or above this threshold are at least this likely to be correct –
something not ensured by global FDRs. We have used the local FDR threshold since it
reports PSMs with more stringent quality control thresholds [13]. Distinct sequences of
human origin, microbial origin (for metaproteomic analysis) and translated EST origin (for
proteogenomic analysis) were noted. The traditional one-step search resulted in 4096 human
PSMs and 203 microbial PSMs for the metaproteomic analysis (Mp-1 in Figure2A). For the
proteogenomics analysis, true pASIs sequences were verified by searching translated EST
sequences using BLASTP (v BLASTP 2.2.2.27+) against a database containing 20,468,417
non-redundant GenBank human sequences (See supporting information S1 for details). This
resulted in 4464 human peptide sequences and 27 pASIs sequences matched (Pg-1 in
Figure2A). We used these results from the one-step method as a baseline to compare against
the PSMs from the two-step method.

In order to estimate the number of identifiable human proteins in this dataset without effects
from the larger metaproteomic or proteogenomic databases, we searched the dataset against
a human UniProt database (H in Figure1A; 148,110 target-decoy sequences). This resulted
in matching of 4858 distinct peptide sequences at 5% local FDR (H in Figure 2A). Note that
in Figure 2A, the number of human sequences in H is higher than Mp-1 or Pg-1 searches,
thus demonstrating the overall decrease in matches due to searching against larger databases,
ostensibly due to increases in false negative PSMs. It is also noteworthy that the overlap for
human peptides between the results from the human-only database search (H) and the Mp-1
(Supporting Information S2) and Pg-1 (Supporting Information S3) results were above 98
%. This demonstrates that although the larger database decreased the overall number of
PSMs, the proteins identified between methods were largely the same.

To improve PSM sensitivity we followed a two-step database search method (Figure1B).
This method consists of a primary search against only the target version of a large sequence
database (Mp-1 for metaproteomics search and Pg-1 for proteogenomics search), followed
by the construction of a smaller subset sequence database containing all proteins inferred
from PSMs in the primary search. A target-decoy database is then constructed from this
refined database and used for a secondary database search in which stringent thresholds are
applied to reveal high confidence PSMs. For the metaproteomics analysis, the MS/MS data
was first searched against the target version of the HOMD database concatenated with the
human proteome database (794,694 sequences); for proteogenomics analysis, the MS/MS
data was first searched against the “target” version of three-frame translated EST database
concatenated with the human proteome database (2,779,294 sequences). Accession numbers
of all peptides matched in the first-step search with microbial (849 microbial proteins for
metaproteomics) or EST translated peptides (923 EST-translated proteins for
proteogenomics) were used to generate two separate, subset FASTA-formatted sequence
databases (See Figure1B and Supporting Information S1 for details). Thus, the two
databases were reduced to less than 0.06% and 0.02% relative to the original size for the
HOMD and translated EST databases, respectively. The accession numbers corresponding to
these selected proteins were merged with the Human UniProt database to construct two
separate target-decoy databases for the secondary database search (Mp-2 and Pg-2 in
Figure1A).

For both analyses, results from the second database search showed that the PSMs to human
peptides (Mp-2 and Pg-2 in Figure 2A and Supporting Information S4 and S5) were restored
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to numbers comparable to results for the human sequence database alone (H in Figure 2A).
For the metaproteomics analysis, the two-step method more than doubled the number of
high confidence (95% Conf) microbial PSMs, matching 444 peptides compared to 203 via
the onestep method (118% increase in Mp-2 over Mp-1 in Figure 2A). Additionally,
Pep2Pro [14] analysis of microbial peptides from the two-step method shows that more non-
ambiguous microbial species based on unique peptides (66 species as compared to 18
species) were matched as compared to the one-step method (Supporting Information S6 and
S7).

We also evaluated whether the two-step method’s improved performance was dependent on
database search program. When using Sequest, OMSSA, X!tandem and Andromeda, the
two-step method consistently outperformed the one-step method (Supporting information S8
and data in Tranche). Although the magnitude of increased PSMs was program dependent,
on an average the two-step method resulted in more PSMs for metaproteomics analysis for
the five programs tested. The reason for variable improvements could be because of variable
scoring methods used by each search algorithm. Thus the positive improvements afforded by
the two-step method are not limited to a single database search program only.

For ProteinPilot metaproteomics analysis, the two-step method showed a 97% overlap with
those PSMs from the one-step method (Figure 2B). Out of the 7 peptides matched by the
one-step method (Mp-1) and not the two-step method (Mp-2), two were not matched in the
first step and hence not incorporated into the database for the second step. Although the
reason for missing these peptides is not clear, it may stem from the fact that scoring
functions for PSMs are in part dependent on sequence database size, resulting in small
variations of results when analyzing the same MS/MS data against different databases (See
Supporting Information S9 and S13).

For the proteogenomic analysis, the two-step method more than doubled the number of
pASIs peptides (confirmed by BLASTP searches described above; Supporting Information
S10), matching 63 of these peptides compared to 27 using the one-step method (133%
increase in Pg-2 as compared to Pg-1 in Figure 2A). Again, we found a substantial overlap
(81%) of pASIs peptides matched by the two methods (Figure 2B – Proteogenomics). Out of
the 5 peptides matched only by the one-step method, two were not found in the first step and
hence not incorporated into the database for the second step of the two-step method. The
reason for this discrepancy between the methods is again most likely due to the dependence
on database size for scoring PSMs (See Supporting Information S9 and S13).

To further validate the veracity of the two-step method, for the metaproteomic analysis we
took advantage of the fact that we spiked-in E. coli Beta-galactosidase peptides in to the
starting human exudate sample in two of the three samples. As expected, no beta
galactosidase was identified in the sample containing no spiked in Beta-galactosidase. For
the spiked-in samples, we identified Beta-galactosidase using both the one-step method and
the two-step, with the two-step method matching 5 more distinct peptides than the one-step
(Supporting Information S11). This demonstrated that the improvement in microbial PSMs
using the two-step method was due to authentic matches and not a result of random false
positives..

As additional validation, spectral annotations were performed for a few representative
spectra from both analyses matched exclusively by the two-step method (Table 1).
ProteinPilot PSM annotation and manual annotation have been provided in Supporting
Information S13. Furthermore, for microbial PSMs or pASIs that were exclusively matched
by the two-step method (Mp-2 or Pg-2), we looked at the characteristics of the PSM for
these same MS/MS spectra from the one-step method (Mp-1 or Pg-1). Interestingly, spectral
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assignment characteristics such as number of matching peaks (Sc), delta precursor mass and
assigned peptide sequences were identical for ~90% of the spectra regardless of the method
used. However, the Conf score which is based on Sc and other features such as
modifications, mass accuracy and other factors was not high enough in the one-step method
for these to be deemed acceptable at the 5% local FDR threshold. This analysis demonstrates
that increased false negatives are one of the main reasons for the lower performance of the
one-step method compared to the two-step method.

Large databases searches have presented a challenges for metaproteomic and proteogenomic
studies in terms of search times and number of PSMs [4–6]. These studies have made use of
synthetic translated metagenomes [3, 15] or matched metagenomes [10] for metaproteomic
studies and 6-frame genome translations or 3-frame transcriptome translations for
proteogenomic studies [4]. Various strategies have been suggested to address sensitivity and
accuracy of PSMs in large database searches. This includes use of various gene annotation
and gene assembly strategies for matched metaproteomes [10]; database reduction methods
such as the iterative searching method on synthetic genomes [15]; use of specific and
smaller databases from human proteome [16] and bacterial proteome [17]; and use of
HiRIEF fractionation methods and in silico proteogenomic databases [18].

Our two-step method provides a straightforward alternative to these other methods that
effectively addresses the challenges of MS proteomics-based studies employing large
sequence databases. We demonstrate that the two-step method increases the number of high
confidence PSMs significantly, both for metaproteomic and proteogenomic studies. We also
demonstrate that the mechanism for this improvement stems largely from a decrease in false
negatives using the two-step method. Importantly, we observed improvements using the
two-step method regardless of the sequence database-searching program used. We believe
our method should improve the sensitivity of microbial peptide (for metaproteomic
analyses) and novel pASIs PSMs (for proteogenomic analyses). Although in its current state
the two-step method is manual, we are working on automating the method for more general
use across a wide variety of applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FDR False discovery rate

PSM Peptide Sequence Match
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HiRIEF High Resolution Peptide Isoelectric Focusing
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Figure 1. Overview of dataset and workflow
A. Dataset, databases and keys used for metaproteomic and proteogenomic analysis.
B. Workflow for the two-step database search workflow.

Jagtap et al. Page 7

Proteomics. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Comparison of the one-step, two-step and human database searches
A. Sequences matched at 5% local FDR in metaproteomic one-step search (Mp-1) and the
two-step search (Mp-2), human database search (H), proteogenomic one-step search (Pg-1)
and the two-step search (Pg-2). Numbers of matched human peptides, microbial peptides
and potential alternative splice isoform site (pASIs) have been denoted next to bar diagrams
associated with each search.
B. Venn diagram of human and microbial peptides (for metaproteomic search) or potential
alternative splice isoform peptides (for proteogenomic search) matched in the one-step
(Mp-1 or Pg-1) and the two-step (Mp-2 or Pg-2) method.
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