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Abstract

Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the 

underlying mechanisms, in particular for direct three-dimensional (3D) encapsulation within 

hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic 

acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by 

the generation of degradation-mediated cellular-traction, independent of cell morphology or 

matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that either permit 

(restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) 

tractions, and favoured osteogenesis (adipogenesis). In addition, switching the permissive 

hydrogel to a restrictive state via delayed secondary crosslinking reduced further hydrogel 

degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the 

absence of changes to the extended cellular morphology. Also, inhibiting tension-mediated 

signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, 

whereas upregulating tension induced osteogenesis even in the restrictive environment.

Adhesive interactions with extracellular matrix direct many aspects of cell behaviour, 

including viability1–3, morphogenesis4,5, and differentiation6,7. As such, it is important to 

understand interfacial interactions between stem cells and biomaterials towards their utility 

in therapeutic applications. For cells seeded on hydrogels, the modulus of the substrate can 

influence stem cell spreading, traction generation, and fate8–10, including in the absence of 

soluble differentiation factors11. Beyond the modulus, stem cell fate atop 2D substrates can 

also be directed via geometric constraints on cell adhesion or surface topography, both of 

which restrict cell spreading and tension generation12–15. Despite these advances, the 

influence of biophysical properties on stem cell fate when presented a 3D environment is not 

well understood. Heubsch et al.16 recently showed that within non-degradable, ionically 

crosslinked alginate hydrogels, encapsulated mesenchymal stem cell (MSC) differentiation 

is dictated by matrix stiffness irrespective of cell morphology since MSCs remained rounded 

independent of stiffness. Specifically, despite the lack of hydrogel degradation, the 

physically crosslinked alginate was adequately mobile to enable cellular re-organization of 
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bound adhesive ligands, traction generation, and differentiation, with magnitudes and fate 

dependent on hydrogel crosslink density (i.e., matrix stiffness). However, many hydrogels 

behave quite differently from physically crosslinked alginate hydrogels on a molecular level. 

For example, covalently crosslinked hydrogels exhibit bonds that are stable rather than 

dynamic. Given the significant amount of work using covalently crosslinked hydrogels for 

stem cell encapsulation17–22, it is important to understand how differences in hydrogel 

structure and behavior modulate encapsulated stem cell fate. The work presented here 

reveals that fate is regulated by cell-generated tension that is enabled through cell-mediated 

degradation of the covalently crosslinked matrix, and emphasizes that the mechanisms by 

which stem cells respond to biophysical cues are highly dependent on the type of hydrogel 

used.

To assess the influence of crosslink density in covalently crosslinked hydrogels on 

encapsulated human MSC (hMSC) fate (cultured in a bipotential adipogenic/osteogenic 

media formulation), we replicated the experiment performed in physically crosslinked 

alginate gels with photopolymerized RGD-modified methacrylated hyaluronic acid (MeHA) 

hydrogels (Fig. 1a), where hydrogel moduli were tuned by MeHA macromer 

concentration23,24. In contrast to the crosslink density dependent response within alginate 

gels, hMSCs in MeHA gels of all moduli (~4 – 91 kPa) underwent almost exclusively 

adipogenesis relative to osteogenesis, as visualized by dual histological staining (Fig. 1b) 

and quantification (Fig. 1c) for alkaline phosphatase (ALP, osteogenesis) and neutral lipids 

(adipogenesis). Staining for nuclei confirmed that the lipid droplets corresponded to single 

cells rather than clusters (Supplementary Fig. S1). When hMSCs were blocked for CD44 

interactions with HA via incubation with primary antibodies prior to encapsulation into 

MeHA hydrogels, or when untreated hMSCs were encapsulated within methacrylated 

alginate (MeAlg) or methacrylated dextran (MeDex) hydrogels that lack any HA moieties, 

the same trend in differentiation was observed across a similar range of mechanics (~4 – 95 

kPa; Supplementary Fig. S2), including at an elastic modulus corresponding to osteogenesis 

in the physically crosslinked alginate system (~20 kPa; Fig. 1f). These findings suggest that 

the hydrogel structural cues resulting from covalent crosslinking, rather than direct 

interactions with the HA chemistry itself, mediate hMSC behavior and fate.

hMSCs transfected with a GFP-vinculin reporter and stained for actin showed limited focal 

adhesion formation and diffuse, unpolymerized actin that decreased in expression 

throughout the 7 d culture (Supplementary Fig. S3). In contrast, hMSCs seeded atop MeHA 

gels of similar elastic modulus (~25 kPa) and presenting the same RGD concentration 

exhibited punctate focal adhesions (Supplementary Fig. S4) and underwent primarily 

osteogenic differentiation9. 3D traction force microscopy (3D TFM)25 was used to monitor 

embedded bead displacements and revealed minimal deformation of the surrounding gels by 

encapsulated hMSCs in all formulations (Supplementary Fig. S5). Cell spreading was 

quantified as a dimensionless metric termed “circularity” (ranging from 0 to 1, with values 

near 0 representing highly spread cells and near 1 representing rounded cells) 

(Supplementary Fig. S6); high hMSC circularity (i.e., little spreading) was observed across 

the range of mechanics (Supplementary Fig. S5). hMSC encapsulation within 23.5 kPa (a 

modulus that led to osteogenesis in physically crosslinked alginate gels) MeHA gels was 

then repeated with hMSCs infected with lentivirus containing constitutively active Rho 
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kinase (ROCKΔ3). The ROCKΔ3 hMSCs underwent a fate switch from adipogenesis to 

osteogenesis (Fig. 1e) despite remaining rounded, suggesting that the formation of load-

bearing adhesions toward an osteogenic phenotype can only be rescued by manual activation 

of tension in a non-degradable, covalently crosslinked hydrogel system. In contrast, when 

MeHA gels containing non-transfected hMSCs were incubated in osteogenic media alone, 

little differentiation was observed (Fig. 1d). Taken together, these findings indicate, 

consistent with previous reports14,15, that ROCK-induced cytoskeletal tension is 

downstream of adhesive and soluble microenvironmental cues and is required for osteogenic 

versus adipogenic hMSC differentiation. Further, these results clearly illustrate differences 

in hMSC adhesion and differentiation based on the type (i.e., ionically crosslinked alginate 

versus covalently crosslinked MeHA) and dimensionality (i.e., 2D versus 3D) of the 

hydrogel used.

The above work indicates that crosslink density has little influence on stem cell fate in non-

degradable covalently crosslinked systems, even when the network presents adhesive 

ligands; however, cell-mediated degradation can also be incorporated into these systems 

through the introduction of proteolytically cleavable crosslinks26–29. To accomplish this, 

HA was functionalized with both methacrylate and maleimide groups (MeMaHA; Fig. 2a; 

14% & 10.5% modification, respectively) and subjected to a multi-step crosslinking protocol 

for cellular encapsulation (Fig. 2b). In the primary crosslinking step, a “−UV” hydrogel was 

formed using Michael-type reactions between MeMaHA maleimides and thiols on 

monofunctional cell adhesive oligopeptides and bifunctional MMP-degradable peptides 

(100% theoretical maleimide consumption). In a secondary step, −UV hydrogels were 

incubated with I2959 photoinitiator and exposed to light to initiate free radical 

photopolymerization of methacrylates (“D0 UV”), introducing kinetic chains that impede 

proteolytic degradation. 1H NMR analysis of −UV and D0 UV hydrogels (solubilized by 

incubation with hyaluronidases) demonstrated that primary and secondary crosslinking 

consumed all maleimides and methacrylates, respectively (Fig. 2c). When incubated with 20 

nM exogenous MMP-2 for 14 d (Fig. 2d), −UV hydrogels exhibited rapid HA release 

consistent with proteolytic degradation, while D0 UV gels exhibited little HA release. The 

same trends were observed upon incubation of −UV and D0 UV gels with 10 nM MT1-

MMP (pro and catalytic form) (Supplementary Fig. S7), illustrating that the oligopeptide 

sequence used in this study is susceptible to degradation by multiple proteases, and that 

secondary polymerization universally restricts proteolytic degradation. To investigate the 

influence of cell-mediated degradation on hMSC behavior, the MeMaHA macromer 

concentrations used were tuned to provide similar initial elastic moduli for formulations 

either “permissive” (−UV) or “inhibitory” (D0 UV) to cell-mediated degradation (2.5 wt% 

MeMaHa for −UV hydrogels: E = 4.30 ± 0.11 kPa, 1.5 wt% MeMaHA for D0 UV 

hydrogels: E = 4.49 ± 0.18 kPa).

To assess the importance of local degradability on cell behaviour, hMSCs were uniformly 

encapsulated by re-suspension in the polymer solution immediately prior to addition of the 

crosslinker peptide (Supplementary Fig. S8). At day 7 of growth media incubation, hMSCs 

spread within −UV hydrogels and deformed the surrounding matrix to a greater extent than 

rounded hMSCs within D0 UV gels (Fig. 3a). Bead displacements (~7-fold greater in −UV 

versus D0 UV) and cellular circularity (~3.5-fold greater in D0 UV versus −UV) were found 
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to be significantly different between the gels (Fig. 3b–c). Rheological testing confirmed that 

bead encapsulation did not alter MeMaHA gelation or the final elastic modulus 

(Supplementary Fig. S9). Staining for actin demonstrated a robust network of stress fibers 

within cells in −UV gels, with vinculin concentrated at the tips of extended processes (Fig. 

3d). In contrast, only diffuse, depolymerized actin and no organized vinculin were observed 

within cells in D0 UV gels (Fig. 3e), suggesting that secondary crosslinking restricted hMSC 

matrix adhesion and cytoskeletal organization as observed in MeHA gels. To confirm that 

this switch was mediated by a change in degradation cues and not an adverse effect of light 

exposure on the hMSCs, cell viability and total DNA content were evaluated in the −UV and 

D0 UV conditions, as well as in gels exposed to light in the absence of photoinitiator (UV + 

light), after 7 days growth media incubation (Supplementary Fig. S10). Similarly high 

viability was observed in all conditions; additionally, total DNA content, as well as hMSC 

circularity, were similar between the −UV and −UV + light groups, indicating that light 

exposure did not adversely affect the encapsulated hMSCs. MALDI analysis confirmed that 

light exposure did not damage the RGD-containing cell adhesive oligopeptide 

(Supplementary Fig. S11). Further, the concentration of RGD peptide was quantitatively 

determined to be equivalent between −UV and D0 UV gels (Supplementary Fig. S12). 

Encapsulation of hMSCs into MeMaHA gels without RGD peptide resulted in rounded cells 

exhibiting lower viability and minimal tractions (Supplementary Fig. S13), indicating that 

the hMSC spreading and traction responses were mediated through integrin-RGD binding. 

Although this specific ligand may not be necessary for the observed results, adhesion 

appears to be needed for hydrogel degradation and traction generation. Finally, gene 

expression and biochemical staining for ALP and lipids indicated that encapsulated hMSCs 

remained undifferentiated after the growth media incubation period (Supplementary Fig. 

S14).

Upon switching the media to a bipotential adipo/osteo media for 14 days following the 7 day 

growth media incubation (i.e., for day 7 – 21 of culture), the same population trends in cell 

spreading and traction generation were observed (Fig. 3f–h). With respect to differentiation, 

hMSCs within −UV and D0 UV gels underwent primarily osteogenesis and adipogenesis, 

respectively, based on dual staining for ALP and lipids (Fig. 3i(ii), 3j(ii)). Lineage 

commitment was quantified by counting cells stained for each marker and dividing by total 

nuclei; osteogenesis was significantly greater in −UV (72.4% ± 10.0%) versus D0 UV 

(14.9% ± 8.1%) gels, while adipogenesis was significantly greater in D0 UV (41.1% ± 

1.5%) versus −UV (5.5% ± 0.3%) gels. The population differentiation trends were 

confirmed at day 21 via immunocytochemistry for osteocalcin (OC, osteogenesis) and fatty 

acid binding protein (FABP, adipogenesis) (Fig. 3i(iii), 3j(iii)) and via gene expression 

(Supplementary Fig. S14). Please note that there is upregulation for both adipogenic and 

osteogenic genes in all systems after culture in bipotential media; yet, this only translates to 

protein staining with the appropriate environmental signals. These same differentiation 

trends were observed when hMSCs were encapsulated at the seeding density corresponding 

to 3D TFM studies (60,000 cells mL−1) (Supplementary Fig. S15), confirming that cellular 

traction generation via matrix adhesion, rather than cell density and associated cell-cell 

interactions, directed cell fate. Additionally, the images acquired for TFM showed uniform 

embedded bead distribution immediately surrounding the cells; this suggests that hMSC-
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mediated degradation in this system was localized to the site of initial encapsulation, and 

that cell motility and migration was not a significant factor. Thus, within hydrogels of the 

same initial modulus, osteogenesis was favoured in systems where cells were able to spread 

and pull on the surrounding matrix and adipogenesis was favoured in systems where cells 

remained rounded and were unable to displace the surrounding matrix. It is also interesting 

to note that these moduli are much lower than those that supported hMSC spreading and 

osteogenesis in 2D8,9,30,31, again highlighting dimensionality as a biophysical cue that 

impacts stem cell behaviour.

To decouple the influence of spreading and hydrogel degradation, the MeMaHA system was 

again used, but the secondary crosslinking was applied at day 7 (“D7 UV”), after the hMSCs 

were allowed to spread. This delayed crosslinking resulted in a significant increase in the 

elastic modulus and a significant decrease in bead displacements compared to the same 

hydrogel formulation without UV exposure, as well as prevented further degradation of the 

network (Supplementary Fig. S16). Specifically, acellular D7 UV hydrogels exhibited 

minimal degradation when incubated with 20 nM MMP-2 compared to −UV gels (Fig. 4c), 

indicating that delayed crosslinking impedes further proteolytic degradation in a manner 

similar to D0 UV exposure. 3D TFM analysis revealed significantly reduced deformations 

within D7 UV gels 24 hours after exposure relative to control gels of the same hydrogel 

formulation without UV exposure at the same time; however, these gels have different 

moduli (Supplementary Fig. S16). Bead displacements were also reduced when compared to 

−UV gels (Fig. 4b(i–ii)) with similar moduli (2.5 wt% MeMaHa for −UV hydrogels: E = 

4.30 ± 0.11 kPa, 1.5 wt% MeMaHA for D7 UV hydrogels: E = 3.52 ± 0.14 kPa following 

crosslinking) and no differences in cell morphology (Fig. 4b(iii)). Thus, the introduction of 

non-degradable crosslinks after cell spreading prevented further deformation of the matrix. 

It was also confirmed that the exposure of hMSCs to UV light itself (i.e., in the absence of 

photoinitiator) did not affect cellular tractions (Supplementary Fig. 17). Following 

incubation of the −UV and D7 UV groups with similar moduli in mixed inductive media for 

an additional 14 days, there was no change in cell traction or morphology (Fig. 4d(i–iii)); 

however, adipogenesis was significantly increased relative to osteogenesis in the D7 UV 

hydrogels, resulting in morphologically spread cells with extensive lipid droplet formation 

(Fig. 4e). Additionally, hMSCs within the D7 UV gels exhibited minimal cytoskeletal 

organization, in contrast to robust cytoskeletal organization within −UV gels 

(Supplementary Fig. S18). Thus, these findings indicate that the ability of a cell to degrade 

and interact with the hydrogel during the differentiation stage dictates cellular interactions 

with the gel and fate decisions, regardless of whether the hMSC is spread.

To further understand the mechanism by which delayed secondary crosslinking abrogates 

hMSC tractions and re-directs fate, −UV gels were treated with the Y-27632, an inhibitor of 

ROCK, the RhoA effector that induces non-muscle myosin-mediated contractility. Y-27632 

(10 µM) was administered daily during either the 7 day growth media (day 0 – 7) or 14 day 

mixed media incubation (day 7 – 21) periods to prevent the assembly of a robust actin 

cytoskeleton (Fig. 5). When treated with 10 µM Y-27632 daily during the 7 day growth 

media incubation, hMSCs deformed the matrix to a much lesser extent (Fig. 5a), yet 

displayed similar spreading (Fig. 5b) to hMSCs without the pharmacological inhibitor 

treatment. When hMSCs in −UV gels were treated with Y-27632 only during the 
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differentiation phase (day 7–21), a decrease in gel deformation (Fig. 5f) and no change in 

cell morphology (Fig. 5g) was again observed when compared to untreated hMSCs. 

However, a fate switch from primarily osteogenesis to adipogenesis was also observed via 

biochemical staining for ALP (Fig. 5i–j) and quantification (Fig. 5h), similar to that 

observed when non-degradable crosslinks were introduced with D7 UV exposure. Also 

similar to D7 UV gels, lipid-filled hMSCs within the −UV Y-27632 treated gels exhibited 

minimal cytoskeletal organization relative to hMSCs within untreated gels (Supplementary 

Fig. S18). To rule out off target effects of the pharmacologic inhibitor, hMSCs in 2.5 wt% 

−UV gels also were treated with an inhibitor of non-muscle myosin II, blebbistatin during 

the differentiation phase (Supplementary Fig. S19). Blebbistatin (50 µM) treatment also 

significantly reduced cellular tractions and osteogenesis, and increased adipogenesis, though 

to a less pronounced extent relative to Y-27632 treatment. In addition to its effects on 

myosin, Y-27632 inhibition of ROCK has been shown also to destabilize F-actin via 

inhibition of LIM kinase and Cofilin, further amplifying its effects32,33. Additionally, a 

recent report implicated ROCK-induced cytoskeletal tension as a necessary component in 

hMSC osteogenesis14,34. In contrast, blebbistatin acts specifically to inhibit non-muscle 

myosin-II35,36; though this is a primary myosin isoform upregulated in hMSC osteogenesis, 

recent reports have implicated that multiple myosin isoforms may also be active during 

osteogenesis, including even smooth muscle myosin37. Taken together, these findings 

suggest that the introduction of non-degradable crosslinks mediates a switch in hMSC 

behavior and fate by blocking traction generation in a manner similar to direct 

pharmacological inhibition of myosin activity.

Collectively, the present work provides new insights on the role of traction generation in 

hMSC fate choice in 3D hydrogels. Within covalently crosslinked hydrogels in particular, 

traction is dependent on hMSCs being able to degrade their surroundings and assemble focal 

adhesions and cytoskeletal structures. Unlike cell behaviour atop 2D substrates, these results 

highlight the importance of degradability as a parameter separate from previously described 

effects of substrate crosslinking or cell morphology. Additionally, the work stresses the 

importance of understanding stem cell interactions with each hydrogel type (e.g., covalently 

versus ionically crosslinked), whose degradability and molecular structure may drive 

divergent outcomes and ultimately impact the successful design of hydrogels in stem cell-

based therapies.

Methods

For quantification of hMSC differentiation fate and circularity, n ≥ 45 cells per condition 

were analysed. All other experiments were performed in quadruplicate (n=4). For further 

methods please refer to the Supplementary Information.

Encapsulation of hMSCs within HA hydrogels

Previously described methods were used to synthesize MeHA30 (~92% methacrylation) 

from sodium hyaluronate (Lifecore), MeAlg (~70% modification) from sodium alginate 

(Sigma), and MeDex (~50% modification) from dextran (Sigma). MeMaHA with ~14% and 

~10.5% methacrylate and maleimide modification, respectively, was synthesized via the 
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coupling of the tetrabutylammonium salt of NaHA (HA-TBA) with 2-amino methacrylate 

hydrochloride (Sigma) and 2-amino maleimide trifluoroacetate salt (Sigma) (Supplementary 

Fig. S20). The chemical structures and 1H NMR spectra of MeHA, MeAlg, MeDex and 

MeMaHA are provided in Supplementary Fig. S21, Supplementary Fig. S22, Supplementary 

Fig. S23, and Supplementary Fig. S24, respectively. The integrin binding peptide 

GCGYRGDSPG (Genscript; italics indicates cell adhesive domain) was conjugated to 

MeHA, MeAlg, and MeDex (754 µM, matching that used in the described physically 

crosslinked alginate studies), and to MeMaHA (1 mM) via 30 min reaction in pH 8.0 PBS at 

25 °C prior to crosslinking. Passage 3 hMSCs (Lonza) were encapsulated either into 

MeMaHA (1 million hMSCs ml−1) hydrogels using Michael addition reactions between 

MeMaHA maleimides and the MMP degradable peptide GCRDVPMS↓MRGGDRCG 

(Genscript; down arrow indicates cleavage site by MMP-2), or into MeHA, MeAlg, or 

MeDex (15 million hMSCs ml−1) using photo-initiated free radical polymerization (Exfo 

Omnicure S1000 lamp with a 320–390 nm filter, exposure of 10 mW cm−2 for 5 min) in the 

presence of 0.05 wt% Irgacure 2959 (I2959; Ciba), a photoinitiator chosen for its aqueous 

solubility and good cytocompatibility38. For CD44 blocking studies, hMSCs were incubated 

with anti-CD44 (3/1000, mouse mAb CD44, Abcam) in a buffer (2 mM EDTA and 2% FBS 

in PBS) for 45 min on ice, washed twice in buffer, and resuspended in growth media prior to 

encapsulation. All gels were transferred to FBS-supplemented MEM-α (Invitrogen). 

MeMaHA hydrogels were secondarily photopolymerized at day 0 (“D0 UV”) or day 7 (“D7 

UV”) by incubating with I2959 and exposing to UV light as described above. The elastic 

modulus of the hydrogels was measured via parallel plate compression testing at 10% 

ramped strain min−1 as previously reported27. For differentiation studies, following 7 days 

of incubation in growth media, hydrogels were transferred to a 1:1 mixture of 

adipogenic:osteogenic media (R&D Systems), with media changes every 3 days. For ROCK 

inhibition studies, selected −UV gels were treated with 10 µM Y-27632 (Sigma) daily 

during either the growth media (day 1–7) or mixed media (day 7–21) incubation periods.

Assessment of hMSC matrix interactions, differentiation, viability, and proliferation

To evaluate the extent of matrix adhesions, hMSCs transfected with lentiviral vinculin 

conjugated with green fluorescent protein were encapsulated into MeHA and MeMaHA 

hydrogels. After growth and/or mixed media incubation, the gels were fixed in 4% formalin 

and stained for actin using rhodamine-phalloidin (Invitrogen). For lineage analysis following 

7 d (MeHA gels) or 14 d (MeMaHA gels) mixed media incubation, encapsulated hMSCs 

were stained for biochemical markers ALP (Fast Blue) and neutral lipid droplets (Oil Red 

O) as previously reported9,27. The differentiation trends were confirmed via 

immunocytochemistry for OC and FABP, also as previously reported27. Percentage 

differentiation toward each lineage was quantified by counting the number of positively 

stained cells and dividing by total nuclei. hMSC viability following 7 d growth media 

incubation in either −UV, D0 UV, or −UV + light (in the absence of photoinitiator) 

hydrogels was assessed using a live/dead staining kit (Molecular Probes) and reporting (# 

viable cells)/(# total cells). To evaluate proliferation, total dsDNA content was determined 

using the PicoGreen assay as previously reported39.
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3-dimensional TFM analysis

Round cover slides were functionalized with methacrylate groups as previously reported30. 

Immediately prior to crosslinking, MeHA and MeMaHA solutions with 60,000 hMSCs ml−1 

were pipetted between the slide and a sterilized PDMS mold to immobilize the gel to the 

slide. Two types of fluorescent beads (0.2 µm diameter, non-functionalized yellow-green 

(Polysciences) and Suncoast yellow (Bangs Labs)) were co-encapsulated at ~2 × 1010 beads 

ml−1 each. Encapsulated cells were imaged using an inverted microscope (Olympus IX71) 

equipped with a spinning disk confocal scan head (Yokogawa Electric) and live-cell 

incubator (Pathology Devices). A 151 × 151 × 200 µm volume was imaged around each cell 

prior to and 45 min following cell lysis with 0.5% SDS (Bio-Rad). 2D rendering of the cell 

surface using image processing software (Amira) and fluorescent bead displacement 

tracking using a feature-vector based algorithm (Matlab) were then performed as previously 

reported40. Further details can be found in the Supplementary Information.

Cell circularity analysis

A dimensionless term describing the roundness of encapsulated hMSCs was developed 

(Supplementary Fig. S6). The distance of each cell surface node to the center of a box 

inscribing the cell was calculated and normalized to the maximum distance over all nodes. 

Circularity was then calculated as the standard deviation of these normalized values 

multiplied by a scaling constant. As a result, the circularity range is from 0, representing the 

maximally non-circular cell across all studies, to 1, corresponding to a perfect sphere. 

Further quantitative details and examples can be found in Supplementary Fig. S6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
hMSC matrix interactions and fate choice within photopolymerized MeHA hydrogels. a, 

Schematic of RGD conjugation to and photopolymerization of MeHA. b,d,e, Representative 

brightfield images of hMSCs within MeHA gels following b, 7 days mixed osteogenic/

adipogenic media incubation, d, 7 days osteogenic media incubation, or e, mixed 

osteogenic/adipogenic media with encapsulated hMSCs transfected with constitutively 

active ROCK (ROCKΔ3). Oil red O (ORO) stains neutral lipids (adipogenesis) red and fast 

blue RR stains alkaline phosphatase (ALP, osteogenesis) purple. c–e, Percentage 

differentiation of hMSCs toward osteogenic or adipogenic lineages for these same groups. f, 
Representative brightfield images and percentage differentiation of hMSCs following 7 days 

mixed media incubation within MeHA hydrogels (with hMSCs incubated with primary anti-

CD44 antibodies prior to encapsulation), MeAlg hydrogels, or MeDex hydrogels of elastic 

modulus corresponding to osteogenesis in the physically crosslinked alginate system (~20 

kPa). For all mixed media groups, the percentage differentiation was significantly different 

between osteogenesis and adipogenesis (p < 0.001, t test). Error bars represent standard 

errors for the mean. Scale bars: b,d,e,f 100 µm, 5 µm (inset).
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Figure 2. 
MeMaHA sequential crosslinking schematic, characterization & proteolytic degradation 

kinetics. a, MeMaHA chemical structure (m = .755, n = .14, o = .105). b, Schematic of 

sequential crosslinking of MeMaHA using a primary addition and (nominally) secondary 

radical polymerization to create “−UV” and “D0 UV” hydrogels, respectively. c, 1H NMR 

spectra (D2O) showing uncrosslinked MeMaHA polymer, −UV and D0 UV hydrogels, 

respectively. d, Degradation kinetics of −UV and D0 UV hydrogels in the presence of 20 

nM MMP-2. For all timepoints % HA release was greater from −UV relative to D0 UV gels 

(p < 0.01, t test). Error bars represent standard errors for the mean.
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Figure 3. 
MeMaHA hydrogel structure-dependent hMSC matrix interactions & fate choice. a,f, 
Representative 3D TFM images of hMSCs, b,g, average drift-corrected bead displacements 

within 15 µm of the cell surface (*p < 0.001, t test), and c,h, average circularity of hMSCs 

within −UV or D0 UV cells (*p < 0.001, t test), following a–c, 7 days incubation in growth 

media or f–h, an additional 14 days incubation in mixed osteogenic/adipogenic media. d–e, 

Representative staining for hMSC vinculin (green), actin (red), and nuclei (blue) in d −UV 

and e D0 UV gels. i–j, hMSC differentiation following 14 d mixed media incubation. 
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i(i),j(i), percentage differentiation of hMSCs toward osteogenic or adipogenic lineages in i(i) 
−UV or j(i) D0 UV hydrogels (#p < 0.005, t test). i(ii–iii)–j(ii–iii), Representative bright 

field and fluorescent images of hMSCs; i(ii),j(ii), staining for ALP (osteogenesis) and lipid 

droplets (adipogenesis), or i(iii),j(iii), immunocytochemistry for osteocalcin (OC, 

osteogenesis) and fatty acid binding protein (FABP, adipogenesis) in i(ii–iii), −UV or j(ii–
iii), D0 UV hydrogels, respectively. Error bars represent standard errors for the mean. Scale 

bars: a,f, 10 µm; d,e, 15 µm; i(ii),j(ii), 25 µm; i(iii),j(iii), 20 µm.
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Figure 4. 
Delayed secondary crosslinking re-directs hMSC matrix interactions & fate choice without 

altering cell shape. a, Schematic of delayed UV exposure following 7 d growth media 

incubation. b(i),d(i), Representative TFM images, b(ii),d(ii), hydrogel deformations (*p < 

0.001, t test), and b(iii),d(iii) circularity of hMSCs within MeMaHA hydrogels following b, 

D7 UV exposure or d, D7 UV exposure and an additional 14 d mixed media incubation. c, 

HA release from D7 UV versus −UV hydrogels (normalized to total HA content) in the 

presence of 20 nM MMP-2. e(i), Representative brightfield image of a D7 UV hydrogel, 

with encapsulated hMSCs stained for ALP (osteogenesis) and lipid droplet (adipogenesis), 

and e(ii), relative frequency of lineage commitment within D7 UV hydrogels following 14 d 

mixed media incubation (*p < 0.001, #p < 0.005, t test). Error bars represent standard errors 

for the mean. Scale bars: b,d, 25 µm; e(i),10 µm.
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Figure 5. 
hMSC matrix interactions & lineage commitment upon pharmacologically induced changes 

in cytoskeletal tension. a, Cell-induced bead displacements (*p < 0.001, #p < 0.005 relative 

to 2.5 wt%, t test) and b, circularity analysis of hMSCs within 2.5 wt% −UV MeMaHA gels 

following 7 d growth media incubation with or without daily 10 µM Y-27632, or within 1.5 

wt% D7 UV MeMaHA gels plus one additional day growth media incubation. c–d, 

Representative TFM images of hMSCs within 2.5 wt%, −UV MeMaHA hydrogels 

following 7 d growth media incubation either c, without or d, with daily 10 µM Y-27632. e, 
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Representative TFM image of an hMSC within a 1.5 wt%, D7 UV hydrogel. f, Cell-induced 

bead displacements (*p < 0.001 relative to 2.5 wt%, t test), g, circularity analysis, and h, 

percentage differentiation fate of hMSCs toward osteogenic or adipogenic lineages within 

2.5 wt% −UV MeMaHA gels following an additional 14 d mixed media incubation. i–j, 
Representative bright field images of these same groups stained for ALP (osteogenesis); 

lipid-containing cells (red arrows) appear yellow. Error bars represent standard errors for the 

mean. Scale bars: c–e, 25 µm; i–j, 50 µm.
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