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Abstract
Whole genome analyses have facilitated the discovery of clinically relevant genetic alterations in a
variety of diseases, most notably cancer. A prominent example of this was the discovery of
mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) in a sizeable proportion of gliomas and
some other neoplasms. Herein the normal functions of these enzymes, how the mutations alter
their catalytic properties, the effects of their D-2-hydroxyglutarate metabolite, technical
considerations in diagnostic neuropathology, implications about prognosis and therapeutic
considerations, and practical applications and controversies regarding IDH1/2 mutation testing are
discussed.
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Introduction
Mutations in isocitrate dehydrogenases types 1 and 2 (IDH1/2) were first reported in large
subsets of gliomas in 2008-2009 [11, 131, 187]. Prior to this discovery there was no reason
to think that either gene would be mutated in any tumor, much less gliomas. A 2006 study
found an R132C IDH1 mutation in a single colonic adenocarcinoma, but it was
understandably not deemed significant at the time [154]. The opinion of the scientific
community has clearly changed on the matter, considering that about 500 papers have now
been published concerning IDH1/2 mutations and cancer.

The purpose of this review is to distill what we now know about IDH1/2 mutations into a
thorough yet concise summary that can help readers keep abreast of this rapidly-advancing
field. Toward that end, we will discuss the functions of wild-type IDH1 and IDH2, the
consequences of mutations on each enzyme's biochemistry, the downstream effects of these
mutations on cancer biology, and practical applications of IDH1/2 mutation testing,
specifically in brain cancer.

Wild-type IDH enzyme biochemistry
Three enzymes oxidize isocitrate to alpha-ketoglutarate (α-KG) in human cells: 1. isocitrate
dehydrogenase 1 (IDH1); 2. isocitrate dehydrogenase 2 (IDH2); and 3. isocitrate
dehydrogenase 3 (IDH3). Despite the similarities of their names, these enzymes differ
markedly from each other. IDH1 and IDH2 are single-gene enzymes respectively located on
2q33 and 15q26, each existing as homodimers. IDH3 is a heterotetramer composed of two
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alpha subunits, one beta subunit, and one gamma subunit. These IDH3A, IDH3B, and
IDH3G genes are located on chromosomes 15q25, 20p13, and Xq28. IDH1 and IDH2 utilize
nicotinamide adenine dinucleotide phosphate (NADP+) as a cofactor, generating NADPH
during catalysis. IDH3 uses NAD+ and produces NADH. IDH2 and 3 are located in
mitochondria while IDH1 is in the cytosol and peroxisomes (Figure 1).

Of the three, only IDH3 appears to participate in the Krebs cycle [190]. The exact role of
mitochondrial IDH2 is somewhat unclear, though it may act as a source of NADPH for the
mitochondria [72]. IDH1 is the primary source of NADPH reducing equivalents in the
cytosol and peroxisomes [14, 84]. Both IDH1 and IDH2 are important in the mitigation of
cellular oxidative damage induced by intrinsic metabolism and extrinsic factors like
radiation [71, 72, 81-83, 100-103]. It is therefore significant that IDH1 is one of the key
genes upregulated in breast cancer stem cells, which have lower levels of reactive oxygen
species (ROS) than their progeny and tend to be more radioresistant [38]. IDH1 is also the
largest producer of NADPH in the human brain (but not the mouse brain) [9, 14].

IDH3 appears to be a unidirectional enzyme, only capable of oxidizing isocitrate to α-KG.
But during hypoxia or mitochondrial dysfunction, IDH1 and IDH2 can reduce α-KG to
isocitrate, thereby helping the cell replenish other citric acid cycle intermediates and the
fatty acid precursor acetyl-CoA [49, 117, 123, 183].

Mutant IDH enzyme biochemistry
Clinical clues about the function of mutant IDH1/2

IDH1/2 mutations occur in an assortment of seemingly unrelated neoplasms, including
gliomas, acute myeloid leukemia (AML), acute lymphocytic leukemia, myelofibrosis,
intrahepatic cholangiocarcinoma, melanoma, and chondroid tumors, as well as rare colonic
and prostate carcinomas, and even the occasional paraganglioma [6, 17, 50, 78, 108, 153,
164]. Both Ollier disease and Maffucci syndrome—wherein patients develop multiple
benign cartilaginous tumors—are caused by somatic mosaic mutations on IDH1 [7].

In gliomas, several interesting facts about IDH1/2 are readily apparent. The mutations tend
to occur in younger adults, in the 20-60-year range, and are far more common in grades II
and III astrocytomas and oligodendrogliomas compared to glioblastomas (GBMs) [15, 131,
187]. IDH1/2-mutant gliomas can occur in the pediatric population, but are more likely in
adolescents [73, 136]. In fact, about 60-80% of those lower-grade gliomas and GBMs that
arose from lower-grade gliomas (so-called “secondary” GBMs) have a mutation, while de
novo (i.e. “primary”) GBMs only rarely do [167, 178, 187](Figure 2c). Over 90% of the
mutations involve IDH1, and about 90% of those IDH1 mutations are CGT>CAT transitions
in codon 132, replacing the arginine residue with histidine (R132H IDH1)(Figure 2). Other
point mutations also occur at codon 132, resulting in substitutions like R132C or R132S.
Analogous mutations occur at R172 in IDH2, but do not show the same preference for
histidine as in mutant IDH1 (Figure 2b). Other codons can also rarely be affected, including
R49, G97, and R100 on IDH1 and R140 on IDH2 [58, 139, 175]. When an IDH1/2 mutation
is present it is virtually always heterozygous, with the tumor retaining the corresponding
wild-type allele. Extremely rare cases of concurrent IDH1 and IDH2 mutations have been
reported [60], as well as dual R132H and R132C IDH1 mutation in the same tumor [165]. In
about 5% of IDH1/2-mutant gliomas, the mutation is eventually followed by deletion of the
wild-type allele [Hai Yan, M.D., Ph.D., personal communication, 12/12/2012] [67, 69]. Rare
cases of mutant allele deletion within an area of a glioma have also been reported [139].
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Neoenzymatic activity of mutant IDH1/2
The findings that IDH1/2 mutations are heterozygous, nearly always target arginine codons
involved in the binding of isocitrate, and are missense mutations implied some sort of
dominant inhibition or gain-of-function. An early hypothesis was that it acts as a dominant
negative inhibitor of wild-type IDH1/2, causing oncogenesis through lower levels of α-KG,
leading to inhibition of α-KG-dependent degradation of hypoxia-inducible factor-1α
(Hif-1α) [192]. But other studies have shown no difference in either α-KG or Hif1-α
between mutant and wild-type gliomas [35, 77, 118, 141, 182]. Furthermore, dominant
inhibition of wild-type IDH1 plus consumption of NADPH by the mutant should result in
lower cellular NADPH reducing equivalents. Yet in vitro overexpression of IDH1/2 mutants
have no effect on NADPH levels [70], and both oxidized and reduced glutathione are lower
in mutant-transfected oligodendroglial cells [141]. It is important to remember that a cell is
bound to have ways of compensating for deficits of such critical compounds like α-KG and
NADPH, like converting more glutamate into α-KG [99, 141]. Therefore, the effects of
IDH1/2 mutations cannot be simply explained by inhibition of their wild-type counterparts,
but more likely represent a true gain-of-function.

In 2009 that gain-of-function was discovered by Dang et al., who published a landmark
study showing that the R132H point mutation confers neoenzymatic activity on IDH1 [35].
The R132 residue normally helps bind isocitrate substrate, but when it is mutated the
enzyme prefers to bind and reduce α-KG to D-2-hydroxyglutarate (hereafter referred to as
2-HG), consuming NADPH in the process (Figure 3). This neoenzyme is so adept at
producing 2-HG that mutant gliomas have 10 to 100-fold higher levels of 2-HG than their
wild-type counterparts, with tissue concentrations ranging from 10 to 30 millimolar. Similar
2-HG-producing effects have been shown in the other IDH1 and IDH2 mutations, both in
gliomas and other cancers [7, 17, 57, 151, 175, 177]. Of note, wild-type IDH1/2 are also
capable of producing some 2-HG in the reverse reductive reaction under hypoxic conditions,
just not nearly as much as the mutants [184].

This neoenzymatic activity begs the question as to how key point mutations of R132 and
R172 can so radically alter IDH1/2 functionality. As it turns out, wild-type IDH1 activity
can be divided into three distinct phases: a.) initial open isocitrate-binding state; b.) closed
pre-transition state; c.) catalysis. A mutation at R132 seems to block the shift to a closed
pre-transition state [188]. This impedes isocitrate binding, thereby preventing it from
inhibiting the reduction of α-KG to 2-HG—a reaction that, to reiterate, weakly occurs even
in wild-type IDH1 [135]. An analogous phenomenon likely holds for R172 and IDH2, as
well as for some of the rarer mutations on other arginine-encoding codons like R100 in
IDH1 and R140 in IDH2.

Since wild-type IDH1 and IDH2 act as homodimers, and mutations virtually always start out
heterozygous (even if the tumor eventually loses its wild-type allele), it raises the question
as to how (or if) mutant enzymes interact with their wild-type counterparts. Co-precipitation
experiments showed that mutant IDH1 heterodimerizes with wild-type IDH1, but mutant
IDH2 does not bind very well to wild-type IDH2, again refuting the hypothesis that these
mutated enzymes must bind and inhibit their wild-type counterparts [70]. When substrates
are supplied in excess during cell-free in vitro experimentation, the R132H:R132H IDH1
homodimer is more efficient at producing 2-HG than a heterodimer [104, 135]. But in a
more realistic intracellular environment where substrates are limited, mutant IDH1 produces
more 2-HG when it heterodimerizes with wild-type IDH1 [176]. This is consistent with the
finding that IDH1-mutant gliomas that lose their wild-type allele produce far less 2-HG than
they did before the deletion [69]. The wild-type half of an IDH1 heterodimer grabs isocitrate
and converts it into α-KG, which is immediately made available to the mutant half for
conversion to 2-HG in a process known as substrate channelling [135]. This allows for
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efficient 2-HG production across a wider range of local isocitrate concentrations—a feature
that could be more important for cytosolic mutant IDH1 than for mutant IDH2, which
already resides in the substrate-rich mitochondrion and does not require heterodimerization
[176](Figure 3).

Thus it is not surprising that, while virtually all tumor-associated IDH1/2 mutants produce
2-HG, they are not all perfectly identical in either activity or frequency among tumors. For
example, R172K IDH2 produces more 2-HG than R140Q IDH2, and after adjusting for
subcellular localization, R132H IDH1 is stronger than R172K IDH2 [176]. But among IDH1
mutants, R132H IDH1 appears to be the weakest 2-HG producer whereas there is no
significant difference among R172 IDH2 variants [70]. In contrast to the aforementioned
strong IDH1 preponderance in gliomas (specifically R132H IDH1), a full one-third of
intrahepatic cholangiocarcinomas have IDH2 mutations; even when IDH1 is the mutated
enzyme in these tumors, it is more likely to be R132C than R132H [17, 87], just like
cartilaginous tumors [6, 7]. Curiously enough, Li-Fraumeni (germline TP53 mutant) gliomas
also favor R132C mutations [179]. AMLs are more likely to harbor a mutation in IDH2 than
IDH1, specifically at R140 rather than R172 [1, 115, 177]. And in gliomas, when R132C
IDH1 is present, it tends to be found in astrocytomas, whereas IDH2 mutations are more
frequent in grade III oligodendrogliomas [60] (Figure 4). All this suggests that, from a
microevolutionary standpoint, the amount of optimal 2-HG varies depending on tumor site.
And within a given site, differing concentrations of 2-HG might nonrandomly affect what
kind of tumor is formed.

Parenthetically, to date no cancer-associated IDH3 mutations have been found [92],
suggesting that it is difficult to confer comparable neoenzymatic activity in this
heterotrimeric complex via a single point mutation.

Effects of D-2-hydroxyglutarate
2-hydroxyglutaric aciduria

Proving that R132H IDH1 produces D-2-HG [35] was a significant advancement in
oncology, not only for solving the question of what the mutation does at a biochemical level,
but for spurring a whole new avenue of research aimed at discovering the impact of 2-HG in
cancer. Prior to 2009 2-HG studies focused mostly on a very rare inborn metabolic disease
called 2-hydroxyglutaric aciduria. The disease was first described in 1980 and was
immediately recognized as existing in two forms: L-2-HG and D-2-HG, with each isomer
producing its own phenotype [27, 43]. L-2-HG aciduria manifests in early childhood and is
slowly progressive, featuring leukodystrophy, psychomotor retardation, cerebellar ataxia,
and seizures [156]. In contrast, D-2-HG aciduria can present either as a severe
encephalopathy with cardiomyopathy and dysmorphisms affecting the face and other
structures, or as a milder variant featuring developmental delay and hypotonia [158].
Remarkably, some siblings of D-2-HG patients also have high serum and urine D-2-HG
levels without any symptoms at all. Causative germline inactivating mutations in L-2-
hydroxyglutarate dehydrogenase and D-2-hydroxyglutarate dehydrogenase had been known
for some time [156, 158], but the genetic defect in a subset of patients with D-2-HG aciduria
remained a mystery. In a nice example of symbiotic mutualism between the metabolic and
cancer literatures, the discovery of mutant IDH1/2 in tumors prompted a search for similar
germline mutations in that idiopathic subset of D-2-HG aciduria. Sure enough, in 15 of 17
patients with no dehydrogenase mutations, R140Q or R140G IDH2 mutations were detected
[91]. Those patients had higher urinary concentrations of D-2-HG compared to those with
dehydrogenase mutations, although there does not appear to be a correlation between D-2-
HG levels and disease severity [158]. No 2-HG dehydrogenase mutations have yet been
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identified in gliomas [20, 92]. Interestingly, 4 patients have been described with both D-2-
HG aciduria and chondromatosis; 2 of them had somatic IDH1 mutations [171].

Because of these organic acidurias, studies on the effects of 2-HG predate the discovery of
IDH1/2 mutations. In slices of rat cortex, 2-HG generates free radicals, causes oxidative
stress, inhibits cytochrome c oxidase and ATP synthase, and lowers the rate of aerobic
glycolysis [97, 98]. But a great deal of evidence now implicates the epigenome as a critical
target of 2-HG in cancer, though this aspect of IDH1/2 research is particularly fast-moving
and requires some background knowledge to appreciate its significance.

IDH1/2 and epigenetics
Histone activity can be modified via attachment of different moieties—such as acetyl or
methyl groups—to specific amino acid residues on the histone. These modifications dictate
how histones interact with chromatin, thereby affecting things like genomic imprinting,
DNA repair, and gene expression [166]. Histone methylation occurs on lysine or arginine
residues. The Jumonji C (JmjC) domain family of histone demethylases removes methyl
groups from lysine residues. (“Jumonji” is Japanese for cruciform, derived from the
abnormal cross-shaped formation of the neural plate and neural groove in mice with the
prototypic JMJ gene mutation [163].) Each of these histone demethylases contains a Jumonji
C DNA-binding domain, requiring Fe2+ and α-KG cofactors. Three subfamilies include
JHDM1, JHDM2, and JMJD2, each of which contains enzymes that demethylate different
histone lysine residues. JHDM1 targets H3K36, JHDM1D is for H3K27, and JHDM2
enzymes demethylate H3K9. JMJD2 is comprised of four enzymes—JMJD2A, 2B, 2C and
2D—all of which demethylate H3K9 or H3K36 [163].

These JmjC domain-containing demethylases and their histone targets had previously been
known to regulate processes like cell proliferation and androgen sensitivity, but multiple
groups have now shown that the 2-HG product of mutant IDH1/2 inhibits JHDM1A,
JMJD2A, and JMJD2C, specifically by competing with α-KG cofactor [30, 88, 112, 186]
(Figure 3). As a result of inhibiting these demethylases, methylation of H3K9, H3K27, and
H3K36 are higher when IDH1/2 mutations are present. However, 2-HG does not equally
inhibit all JmjC domain-containing demethylases, much less all α-KG-dependent enzymes.
This is where 2-HG in cancer becomes very complicated and confusing. For example, one
group showed that 2-HG does not inhibit JMJD2D histone demethylase [88]. Another group
suggested that 2-HG inhibits prolyl hydroxylase-2, leading to elevated Hif-1α [186], but 2-
HG inhibition of prolyl hydroxylase-2 is at least an order of magnitude weaker than for other
targets [30]. Surprisingly, 2-HG may actually promote the activity of EGLN1-3 prolyl
hydroxylases (derived from “EGg-Laying defective Nine” C. elegans), leading to
degradation of Hif-1α and facilitation of transformation in astrocytes and hematopoietic
cells [88, 109] (Figure 3). Furthermore, the two enantiomers of 2-HG differ in their potency,
with L-2-HG generally being a better inhibitor of α-KG-dependent enzymes than D-2-HG
[30, 88, 186]. This could account for why L-2-HG aciduria and D-2-HG aciduria have
different phenotypes. It could also account for why neoplastic mutations make D-2-HG and
not L-2-HG—perhaps a mutation that produced L-2-HG would be too potent for effective
oncogenesis in most situations. Though if this is indeed the case, it begs the question as to
why tumors have been seen only in L-2-HG aciduria patients, and not D-2-HG aciduria (see
“Oncogenesis” section below).

The fact that histone methylation is such an important target of 2-HG dovetails nicely with
new research showing the importance of histones in cancer, especially gliomas. Histone
H3.3 is encoded by H3F3A and is associated with open, active chromatin at telomeres (and
probably elsewhere, too) [3, 111]. H3.3 activity is controlled by modifications at key amino
acid residues: methylation of K9 and K27 inhibit transcription, whereas K36 methylation
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generally promotes transcription. For H3.3 to target and open up telomeric chromatin, a
complex including alpha thalassemia/mental retardation syndrome X-linked protein (ATRX)
and death-associated protein 6 (DAXX) needs to form with H3.3. This is important for the
phenomenon of Alternative Lengthening of Telomeres (ALT), a process by which cancer
cells avoid telomere shortening and senescence via homologous recombination of telomeric
DNA [42]. ALT is necessary in the minority of tumors that, for whatever reason, either
cannot or do not upregulate telomerases. There is now a clear connection between histones,
ALT, and gliomagenesis, since a.) ALT is associated with H3.3/ATRX/DAXX mutations in
gliomas [111], b.) nearly half of pediatric GBMs have inactivating mutations in the H3.3/
ATRX/DAXX complex [149], and c.) the majority of diffuse intrinsic pontine gliomas
(DIPGs) have K27M mutations on H3.3 [80, 185]. ALT and H3.3/ATRX/DAXX also have
several strong links to 2-HG. First, methylation of K9, K27, and K36 in H3.3 is increased by
2-HG via inhibition of the aforementioned JmjC demethylases [30, 41, 186]. Second,
histone mutations appear to be mutually exclusive with IDH1/2 mutations [159]. Third, ALT
is more common in IDH1/2-mutant astrocytomas than in wild-type astrocytomas [79, 116,
125, 143]. Fourth, methylation of H3K9—the same histone lysine whose methylation is
increased by 2-HG—leads to reduced hTR and hTERT telomerases in cancer cell lines [10].
Finally, ATRX mutations are far more common in IDH1/2-mutant versus wild-type adult
gliomas [79, 107]. While more precise details are still emerging, it thus appears that H3.3
modulation is a critical part of ALT and oncogenesis in a significant proportion of gliomas.
In pediatric tumors it happens directly via H3F3A mutations, in adults it occurs indirectly
via 2-HG, and additional ATRX/DAXX mutations contribute to the process in both groups
(Figure 3).

In addition to blocking histone demethylases, 2-HG inhibits DNA demethylases, including
the α-KG-dependent AlkB homologue 2 DNA demethylase and TET1/2 methylcytosine
hydroxylases [30, 48, 186] (Figure 3). Inhibition of DNA demethylation would be expected
to promote global hypermethylation, which is exactly what is seen in neoplasms with
IDH1/2 mutations [48, 94, 127, 168]. Consistent with this, TET2 inactivating mutations or
TET2 promoter methylation are mutually exclusive with IDH1/2 mutations, suggesting that
both accomplish the same thing [29, 48, 86, 134]. But not all global hypermethylation is
equal; profiles will differ depending on which driver gene is altered [5, 134]. It is also
interesting (and surprising) to note that levels of the presumed precursor of nucleotide
demethylation, 5-hydroxymethylcytosine (5hmC), are not lower in IDH1-mutant
astrocytomas compared to wild-type [69, 124].

Oncogenesis
Despite these effects of 2-HG on DNA and histone methylation, there is a growing
consensus that, while obviously important, IDH1/2 mutations are insufficient to drive
neoplasia. A transgenic mouse model engineered to express mutant IDH1 in hematopoietic
cells showed increased progenitor cells in the bone marrow, but no leukemias [148]. That
same group also developed a nestin-R132H IDH1 mouse model, expressing the mutant in
neural stem cells [147]. Most mice died in utero, and the ones that made it to birth soon died
from severe intracranial bleeding. This bleeding was caused by 2-HG inhibiting the α-KG-
dependent prolyl hydroxylation of type IV collagen, leading to disorganized basement
membrane structures around blood vessels. But not only were no tumors found, no histone
methylation was detected. While disappointing to those searching for a robust IDH1/2-
mutant transgenic tumor model, patient data had already hinted that such a model might be
difficult to generate. For although L-2-HG aciduria patients sometimes develop brain tumors
[2, 189], no tumors have yet been described in over 85 patients with D-2-HG aciduria [91].
(Remember that clinically relevant IDH1/2 mutations only produce the D-isomer of 2-HG.)
Because 2-HG can slow down cellular differentiation [112], mutant IDH1/2 might not
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directly trigger oncogenesis, but rather extend the opportunity for other tumor-promoting
mutations to occur in undifferentiated cells (Figure 3). For example, IDH1/2 mutations are
strongly associated with TP53 mutations in astrocytomas and 1p/19q codeletion with CIC
and/or FUBP1 mutations in oligodendrogliomas [13, 52, 85, 93, 145, 191], although IDH1/2
mutations appear to precede both TP53 mutation and 1p/19q codeletion [178].

Application of IDH1/2 to cancer
Diagnostics

An attractive feature of IDH1/2 mutations is that, even though our understanding of their full
significance is obviously incomplete, there is already considerable utility in screening for
their presence in the setting of a brain lesion. These mutations are present in 60-80% of
WHO grades II and III astrocytomas and oligodendrogliomas (as well as grade IV secondary
GBMs) (Figure 2c), and are never seen in mimickers of glioma like vasculitis, encephalitis,
demyelinating disease, or reactive gliosis [21, 64]. Likewise, noninfiltrative gliomas
including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor, and
ganglioglioma, do not contain IDH1/2 mutations [21, 62, 64, 89]. In fact, tumors that were
diagnosed as gangliogliomas based on histopathological appearance, but harbored these
mutations, ended up behaving like diffusely infiltrative gliomas [65]. Thus, the presence of a
mutation, even in an otherwise equivocal biopsy, can be considered solid evidence of an
infiltrating glioma, i.e. WHO grade >I. Mutation screening can also help differentiate
between anaplastic oligodendrogliomas or glioblastomas with an oligodendroglial
component (GBM-O, a.k.a. mixed oligoastrocytoma grade IV) and the more aggressive (and
IDH1/2 wild-type) small cell GBM [74]. Frontal and temporal lobes are the most common
locations, whereas infratentorial tumors only rarely have mutations [45, 159]. In fact, the
subventricular zone in the supratentorium may be the preferred site for IDH1/2 mutant
gliomas [52]. They can even be found in type I (no discrete enhancing mass lesion) and II
(mass lesion present) gliomatosis cerebri [37, 150].

When pooling all IDH1/2-mutant infiltrative gliomas together, over 90% will have the
R132H IDH1 variant (Figure 2a). This observation makes a R132H mutation-specific
antibody effective as a rapid immunohistochemical screen on formalin-fixed, paraffin-
embedded tissues [22, 24, 25]. Two such antibodies exist, DIA-H09 and Imab-1; in a head-
to-head comparison, the DIA-H09 antibody was slightly more specific, with less background
staining, than the Imab-1 antibody [138]. For the immunostain to be interpreted as positive,
one should see dark brown cytoplasmic staining that extends out to the tumor processes [62].
Weak staining of neurons or labeling of red blood cells does not count. Sometimes nuclear
staining is also seen, but it is not yet clear whether this represents actual abnormal nuclear
localization or just antigen diffusion [138]. Another controversy is intratumoral
homogeneity of R132H IDH1 expression; some have found 100% homogeneity in all cases
[22], whereas others reported that about 15% of mutant gliomas have a subset of tumor cells
that are negative [138]. Even so, when interpreted correctly, the degree of concordance
between R132H IDH1 immunohistochemistry and sequencing is very high, as the
immunostain will match sequencing results 98% of the time [138]. And in biopsies with
only a few infiltrating glioma cells amidst mostly nonneoplastic tissue, the antibody has a
better shot at detecting mutated cells than does any PCR/sequencing technique [33, 62, 144].
Thus, this antibody has already become a staple of brain tumor workup.

Although the R132H IDH1 immunostain is an excellent first-line screen in brain biopsies, it
obviously will not detect less common IDH1 mutations or IDH2 mutations. This is a
nontrivial issue, since the frequency of those other mutations is uneven between glioma
subtypes. In both primary and secondary GBMs, well over 95% of IDH1/2 mutations will be
of the R132H IDH1 variety, but there is variation at the WHO grade II-III level (Figure 4).
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For example, about 10% of IDH1-mutant grade II and III astrocytomas will have a non-
R132H IDH1 mutation, most commonly R132C (Figure 4a & d). Prior work suggested that
IDH2 mutations are more likely to occur in oligodendroglial tumors [60], but combining
results from several studies suggests that this is true only at the grade III level (Figure 4e &
f), and that WHO grade II oligodendrogliomas have just as strong a predilection for R132H
IDH1 as do GBMs (Figure 4b). What all this means regarding gliomagenesis is unclear, but
considering we now know that not all IDH1/2 mutations are identical in their 2-HG
production capacity and subcellular localization, such differences cannot be dismissed out of
hand. At the very least, it underscores why it is often necessary to do followup sequencing
of R132H IDH1 immunonegative cases, especially when dealing with a suspected grade II
or III glioma (Figure 2c).

Thus, it is very helpful to supplement R132H IDH1 immunohistochemistry with molecular
methods that catch other variants. Multiple assays can do this, with sensitivity well beyond
the 20% mutant allele limit of traditional PCR and Sanger sequencing [47, 63, 110, 120,
130, 170]. But regardless of the method used, critical sources of inter-laboratory variability
are optimization of DNA extraction and PCR product purification [170]. Of course, the
absence of an IDH1/2 mutation does not exclude the possibility of a glioma, especially if the
tissue only contains a few scattered infiltrating neoplastic cells. Follow-up testing of
immunonegative cases is probably worthwhile in grades II-III gliomas and secondary
GBMs, in patients between 20-60 years, in those whose tumors presented with seizures, and
in any GBM with minimal necrosis [95, 126, 157].

In particular, the special association between IDH1/2 gliomas and seizures deserves special
mention. Some have used a 2-HG octyl ester to increase cell permeability [31, 109, 186], but
others have shown effects by exogenous 2-HG even without esterification [141]. And recent
work showed that exogenous unmodified 2-HG can enter cells via a sodium-dependent
dicarboxylate transporter [19]. Since mutant cells secrete 2-HG into culture medium in vitro
or into the extracellular space in vivo [35, 46, 70, 91, 106, 151], its effects may extend to
admixed nonneoplastic cells in the tumor. For example, seizures are not only a feature of the
2-HG acidurias, but are also more likely in IDH1/2-mutant gliomas than their wild-type
counterparts [68, 157]. It is therefore possible that seizures in such patients are not merely
sequelae of tumor infiltration or mass effect, but instead represent a direct local activity of 2-
HG on nonneoplastic brain cells.

Finally, instead of directly testing for the mutation in biopsied tissue, it is possible to detect
elevated 2-HG in IDH1/2-mutant brain tumors using proton magnetic resonance
spectroscopy [8, 28, 44, 99], though it is not yet clear whether this approach is sensitive and
specific enough for routine use. The compound can also be detected in paraffin tissue blocks
containing mutant tumor [12]. In IDH1/2-mutant leukemias, quantification of 2-HG in
serum or even urine is feasible and correlates with disease recurrence [12, 46, 57, 151].
However, a similar approach does not work very well in gliomas, presumably because
insufficient 2-HG ends up in the systemic circulation [23]. Likewise, direct detection of
mutant IDH1/2 in the systemic circulation of glioma patients is a relatively insensitive
biomarker [16].

Prognosis
Even when a histologic diagnosis of infiltrative glioma is certain, and there is no question
about its WHO grade, there is still a very good reason to test for IDH1/2 mutations—tumors
with the mutation tend to be far less aggressive than their WHO grade-matched wild-type
counterparts [39, 126, 131, 146, 180, 181, 187]. This is clearly true at the grade III-IV level,
where grade III tumors lacking the mutations are just as lethal as wild-type grade IV tumors
[59, 187]. In fact, one series of wild-type anaplastic astrocytomas showed progression to
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classic ring-enhancing GBMs within just a few months of initial resection, raising the
possibility that many such tumors were in fact GBMs at presentation, albeit without necrosis
or microvascular proliferation on the initial specimen [33, 129]. And one reason why
advanced patient age is an unfavorable prognostic marker is because IDH1/2 mutant tumors
are less likely to occur in older people [55, 59, 187]. IDH1/2 mutations are not only
characteristic of many proneural GBMs, specifically those with global hypermethylation
[127, 159, 167], but they comprise the subset of proneural GBMs that actually have a better
prognosis [127].

IDH1/2 mutational status is also a very good triaging tool for subsequent 1p/19q testing in
suspected oligodendrogliomas, insofar as true whole-arm codeletion hardly ever happens in
the absence of a mutation [93, 191]. Thus, a wild-type glioma probably does not need to be
tested for codeletion, because even an apparent codeletion (e.g. by FISH) cannot be trusted
[34].

As is the case with other aspects of IDH1/2, however, there are controversies about its
prognostic power in certain contexts. For example, it is not at all clear whether IDH1/2
status effectively stratifies grade II gliomas, especially astrocytomas; some have suggested a
better prognosis [105, 119, 128, 140] while others found no difference [4, 52, 53, 66, 76, 77,
85, 162]. Since grade I gliomas do not have IDH1/2 mutations, some tumors that appear to
be grade II histologically but are IDH1/2 wild-type might actually represent “overgraded”
grade I gliomas. If so, inclusion of such cases would mask the prognostic effects of IDH1/2
mutations in true diffusely infiltrative grade II gliomas. For example, one study that showed
no survival difference in grade II gliomas also reported a 33% higher rate of gross total
excision in wild-type tumors, raising the possibility that at least some of their grade II
tumors might have been grade I in a biological sense – i.e., essentially noninfiltrative—a
point the authors themselves suggested [4]. A different group found that their grade II
astrocytomas actually had worse progression-free survival than matched wild-type tumors,
but better postrecurrence survival [165]. This incongruity might be explained by accidental
inclusion of some wild-type grade I tumors that did not recur, but among tumors that did
recur (which were more likely to be real infiltrative gliomas), IDH1/2-mutation was
favorable.

Another point of debate is whether IDH1/2 mutations are better prognostic markers than
other molecular markers. Several multivariate analyses have shown IDH1/2 to be more
powerful than 1p/19q codeletion and even O6-Methylguanine-DNA methyltransferase
(MGMT) promoter methylation [51, 75, 146, 155, 181], though some have suggested
MGMT might still be stronger [26, 67, 85, 121]. Given the prominence of MGMT in the
workup of GBMs, its relationship with IDH1/2 mutations deserves particular attention.

IDH1/2 and MGMT
MGMT is a DNA repair protein that removes alkyl groups from the O6 position of guanine
in DNA, making cells resistant to the alkylating agent temozolomide [161]. When its
promoter is methylated, MGMT expression decreases and temozolomide sensitivity
increases. As a result of a seminal study by Hegi et al. [61], MGMT promoter methylation
testing is standard for the workup of GBMs. But that same study also showed that
methylated GBMs responded better to a radiation-only regimen, even though MGMT is not
known to have a role in repairing the kind of DNA damage induced by radiation. However,
considering that IDH1/2 mutations promote global hypermethylation, including methylation
of the MGMT promoter [32, 51, 122, 127, 146, 167], it is possible that some of the MGMT-
methylated GBMs in the Hegi study also had IDH1/2 mutations, and that it is the latter
defect which promotes radiosensitivity. In support of this, some have shown that IDH1/2
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mutations correlate with radiosensitivity [106, 128, 169], though even this has been disputed
[40, 140].

In clinical studies it is difficult to weigh the relative importance of IDH1/2 versus MGMT,
because although around half of IDH1/2 wild-type gliomas will still have MGMT promoter
methylation [59, 146], the reverse situation—IDH1/2-mutant tumors without methylation—
is uncommon. Exactly how uncommon seems to depend on the cohort and on how
methylation is being tested. For example, one group using methylation-specific PCR
reported 15-20% of grade III astrocytomas, and 2% of GBMs, as having IDH1/2 mutation
but not MGMT promoter methylation [59]. This is consistent with another study of grade II-
IV gliomas using a similar method [146]. In contrast, a different group tested methylation
via pyrosequencing of 16 CpG sites in the MGMT promoter. They found that, in their cohort
of over 400 grade II-IV gliomas, virtually all IDH1/2-mutant tumors also had methylation
regardless of WHO grade [122]. Others have reported similar degrees of concordance [160,
167, 169].

This does not mean, however, that MGMT is now irrelevant. A recent study of GBMs in the
elderly (in which IDH1/2 mutations are uncommon) showed that MGMT promoter
methylation was associated with better response to temozolomide-containing regimens, but
not to radiotherapy alone [114]. It is also unclear whether IDH1/2 mutations affect
temozolomide response independent of MGMT [160]. MGMT promoter methylation is
probably a favorable marker independent of IDH1/2, but only in regimens containing
temozolomide. IDH1/2 mutations, on the other hand, may be relevant to a broader spectrum
of adjuvant therapies. Thus, having both molecular alterations is likely more favorable than
either in isolation. MGMT testing is still therefore useful in the workup of GBMs that are
wild-type for IDH1/2, but in the opinion of this author, if an IDH1/2 mutation is detected at
any grade of glioma, it can safely be assumed that MGMT promoter methylation is also
present; proving it would therefore be unnecessary.

IDH1/2 variants and outcome
Earlier, differences in 2-HG production among IDH1/2 variants were discussed; this begs
the question as to whether different variants have different outcomes. This is difficult to
study in gliomas, where there is a marked preponderance for R132H IDH1 (Figure 2), but in
AML there is less enrichment for a specific mutation. In those cancers, mutations on IDH1
seem to associate with a worse prognosis than IDH2 [1, 29, 115, 133]. Even variants within
the same gene might have differing prognostic significance, as R140 mutations on IDH2
might be somewhat more favorable than R172 [56, 115, 132]. Similarly, R132C IDH1 might
be more favorable than R132H [90]. Extremely large cohorts adjusting for other variables
like WHO grade, 1p/19q status, and treatment would be needed to reliably determine if
similar associations exist in gliomas, although one study has already suggested that there are
no survival differences between R132H and non-R132H IDH1 variants [54].

Yet another layer of complexity regarding IDH1/2 mutations and prognosis is the
phenomenon of monoallelic gene expression (MAE), wherein only one allele of a gene is
expressed even though both alleles are present. This of course happens during imprinting
and X-inactivation, but it can also occur in otherwise non-imprinted genes. One study found
that about 15% of IDH1-mutant gliomas had monoallelic gene expression of IDH1, that it
was usually directed toward the normal allele (i.e. the mutant allele was not expressed), and,
as expected, survival was worse in such cases [173]. This could help explain the
aforementioned R132H IDH1 immunohistochemical heterogeneity and false-negativity seen
in some gliomas [138], and raises the possibility that sequencing might not always be
adequate to identify tumors that are functionally IDH1/2 mutant.
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A final word on IDH1/2 and prognosis is from a report that an rs11554137:C>T single-
nucleotide polymorphism (SNP) is present on codon 105 of the IDH1 gene in about 10% of
grades II-IV gliomas [174]. This SNP occurs independently of both IDH1/2 mutations and
WHO grade, and although it does not substitute the glycine residue on codon 105, it
nevertheless is associated with worse response to adjuvant therapy in both gliomas and
AML [172, 174]. As of yet, there is no satisfying explanation for this remarkable finding.

Future directions
As we have seen, the sheer volume of data that has been generated by multiple laboratories
on IDH1/2 mutations over the last few years is simply incredible. The field has now matured
to the stage where rapid, descriptive-type papers on mutation frequencies and outcomes have
been done, and mechanistic/experimental papers are becoming more frequent. Predictions as
to the next major advances in this subfield are inherently uncertain, but some areas of
interest include how IDH1/2 mutations promote gliomagenesis, what experimental models
can be developed, why the mutations affect prognosis, and how to target IDH1/2 mutations
in novel therapies.

Although we do not yet know exactly why IDH1/2 mutations are found in gliomas, there are
a few clues in the literature. For example, if a glioma does not have an IDH1/2 mutation at
its clinical outset, it never acquires one [96]. Likewise, 2-HG levels do not change as a
lower-grade glioma progresses to GBM [77]. Mutations predate and are tightly associated
with TP53 mutations in astrocytomas and 1p/19q codeletion in oligodendrogliomas [52, 85,
93, 119, 191]. Even some IDH1/2-mutant mixed oligoastrocytomas can have a TP53
mutation in the astrocytic region and 1p/19q codeletion in the oligodendroglial area [96].
Perhaps the mutation and its 2-HG metabolite are therefore not sufficiently oncogenic on
their own, but instead act as selection agents favoring specific additional genetic alterations.
And if a glioma manages to arise without a mutation, there is no selection pressure to do so.
We also know that certain germline SNPs on 8q24.21 and 11q23 increase the risk of
IDH1/2-mutant gliomas [68, 142]. What those SNPs are doing to promote IDH1/2 mutations
is unknown, but will certainly be intensely investigated in coming years. Perhaps the SNPs
and/or IDH1/2 mutations are indirectly causing gliomagenesis via congenital disruption of
the normal stem cell microenvironment, in turn increasing the odds of neoplasia akin to what
was hypothesized for carcinogenesis by James DeGregori [36]. Certainly, the effects of 2-
HG on DNA and histone methylation will prove significant in gliomagenesis.

But 2-HG, however beneficial it might be to oncogenesis, clearly can have toxic side effects
under certain conditions. Perhaps the favorable prognostic effects of IDH1/2 mutations are
not fully realized unless the cells are abruptly stressed, thereby unmasking metabolic defects
for which the tumor had gradually evolved compensatory mechanisms. Recalling the
controversy mentioned earlier— whether IDH1/2 mutations are prognostically important at
the grade II level—it is important to remember that most grade II gliomas are not irradiated
upfront if it can be avoided, whereas radiotherapy is standard at the III-IV level. And while
some have suggested that IDH1/2 mutations reduce cellular invasiveness and/or
proliferation [18, 106], others have found no such correlations [53, 57, 136, 137, 193].
IDH1/2 prognostic significance may therefore be due more to heightened adjuvant therapy
sensitivity as opposed to intrinsic defects in growth or invasiveness. After all, radiotherapy-
containing regimens affect not just tumor cells, but also create a hostile microenvironment
with necrosis, low pH, low oxygen, low glucose, and increased local concentrations of
metabolic wastes. This might help account for the more equivocal prognostic importance of
IDH1/2 in AMLs, as such an unpleasant microenvironment cannot be created in the
circulation without killing the patient. Furthermore, glial cells could be particularly sensitive
to 2-HG side effects, hence their strong predilection for one of the weakest 2-HG producers,
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R132H IDH1. In comparison, AMLs, by virtue of their being in the bloodstream, might have
an easier time getting rid of excess 2-HG and thus not be subjected to the same selection
pressure for a weak mutation. And recall that these mutations only produce D-2-HG and not
L-2-HG, even though the latter is a more potent inhibitor of α-KG-dependent enzymes [30,
88, 186]. Taken together, it seems that the “therapeutic window” for 2-HG to promote
oncogenesis is fairly narrow, and what is a beneficial mutation for the untreated tumor can
quickly be rendered detrimental during adjuvant therapy.

Regarding its use as a biomarker, while the presence of an IDH1/2 mutation strongly
indicates at least a grade II infiltrative glioma, its absence in an obviously low-grade setting
does not automatically equate to a noninfiltrative grade I tumor, especially in children. Other
mutations, including those in H3F3A and BRAF V600E, could be drivers of less common
infiltrativesubsets. Nevertheless, the next WHO classification will likely address IDH1/2
and emphasize its importance in the pathologic workup of gliomas. One group even
suggested that a molecular panel including IDH1/2, MGMT, 1p/19q, and TP53 does a better
job of prognostic stratification in grade II gliomas than histologic subtyping [105]. And once
radiologic measurement of elevated 2-HG is optimized and standardized for routine use, it
will have a tremendous impact on the workup and management of brain tumor patients, both
in generating a more accurate preoperative differential as well as in discriminating genuine
recurrences from therapy-induced changes.

But gliomas apparently have strategies for evolving out of the IDH1/2 mutations, including
monoallelic gene expression of only the wild-type allele [173], deletion of the mutant allele
[96, 139], or even deletion of the wild-type allele so as to reduce 2-HG production [67, 69].
This suggests that, for any clinical trials aimed at targeted therapeutics or more accurate
prognoses, degrees of mutant expression and functionality are probably more important than
just the presence of a mutation [109]. For example, glutaminase inhibition is more effective
in IDH1-mutant gliomas [152], but only works if the mutation is active. The same would
hold for any strategy involving nanotechnology or other small molecules that specifically
bind mutant enzyme, such as the R132H IDH1 inhibitor AGX-891 [109].

Generating a robust transgenic mouse model of IDH1/2-mutant tumors will be important for
the field to really advance. As discussed earlier, Tak Mak's laboratory has nicely
demonstrated some of the difficulties in making this happen [147, 148], so for now the
emphasis will be on xenografts like the one developed by Luchman et al. [113]. Pairing a
conditional knock-in IDH1 mutation with some other biologically appropriate oncogene or
tumor suppressor might eventually work.

Clearly, there is still a great deal to be done on IDH1/2 in gliomas and other cancers. Our
diagnostic and prognostic power has already been strengthened, but realization of the
Human Genome Project's ultimate goal—development of personalized, bona fide cures for
currently incurable diseases—will require even more hard work and tenacity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Normal functions and subcellular locations of IDH1, IDH2, and IDH3
All three enzymes oxidize isocitrate (ISO) to alpha-ketoglutarate (α-KG). IDH1 and IDH2
are homodimers, whereas IDH3 is a heterotetramer. IDH1 and IDH2 utilize nicotinamide
adenine dinucleotide phosphate (NADP+) as a cofactor, generating NADPH. IDH3 uses
NAD+ and produces NADH. IDH2 and 3 are located in mitochondria while IDH1 is in the
cytosol and peroxisomes. In certain circumstances IDH1 and IDH2 can reduce α-KG to
isocitrate, whereas IDH3 is unidirectional. (The structure in the upper left of the cell depicts
a nucleus.)
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Fig. 2. IDH1/2 mutations by variant, glioma category, and type of screening
(a) In a pooled analysis of over 3400 gliomas from 37 studies in which mutation subtypes
were reported, R132H was the most common IDH1 variant, comprising 92% of all IDH1
mutations (P < 0.0001). The rarest was R132P, occurring in a single case [54]. (b) In
contrast, there was less preference for a specific type of IDH2 mutation, though the R172K
variant was present in 60% of IDH2-mutant tumors (P < 0.0001, N = 89). (c) Inter-study
mutation frequencies significantly differ in grades II-III astrocytomas and grade III
oligodendrogliomas, depending on whether the studies tested for both IDH1 and IDH2
mutations (red bars, N = 4324 gliomas from 26 studies), screened for just IDH1 mutations
(purple bars, N = 2075 gliomas from 12 studies), or only used the R132H IDH1 antibody
(blue bars, N = 794 gliomas from 6 studies). Not enough oligodendroglial tumors have been
interrogated with R132H IDH1 antibody to be reliably compared with the other columns. Of
note, mean mutation frequencies in IDH1-only studies sometimes barely exceeded the
frequencies reported in IDH1/2 papers (purple versus red bars in AII and sGBM subgroups).
This apparent incongruity can be explained by inter-cohort variations, especially given how
rare IDH2 mutations are in astrocytic tumors (see Figure 4). A list of the studies from which
these data are derived is in Supplemental Table 1. All data bars in a-c represent mean ±
SEM; statistical analyses were done via Student's t-test or ANOVA with Kruskal-Wallis
post hoc test, as appropriate. *P < 0.05; **P < 0.01; ***P < 0.001. AII = grade II diffuse
astrocytoma; AIII = grade III anaplastic astrocytoma; pGBM = primary GBM; sGBM =
secondary GBM; OII = grade II oligodendroglioma; OIII = grade III anaplastic
oligodendroglioma; OAII = grade II oligoastrocytoma; OAIII = grade III anaplastic
oligoastrocytoma.
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Fig. 3. Postulated effects of mutant IDH1/2 on gliomagenesis
Unlike mutant IDH2, mutant IDH1 is more efficient when it heterodimerizes with a wild-
type partner. Both mutations convert α-KG to 2-HG. This 2-HG compound inhibits some
enzymes that use α-KG as a cofactor, including JmjC domain-containing histone
demethylases and TET DNA demethylases. The result of this inhibition is a net upregulation
of histone and DNA methylation, the former occurring at key amino acid residues that are
mutated in some non-IDH1/2-driven gliomas (involving the H3F3A gene encoding histone
3.3). Other proteins involved in chaperoning histone H3.3 include ATRX and DAXX, both
of which can be mutated in IDH1/2-wt and IDH1/2-mutant gliomas (though ATRX is far
more likely to be mutated than DAXX)[149]. EGLN1-3 prolyl hydroxylases may actually be
activated by 2-HG, thereby increasing degradation of Hif-1α. The exact results of all these
alterations are not yet clear, but they definitely cause global modifications of gene
expression and may promote Alternative Lengthening of Telomeres (ALT). EGLN
activation in particular appears to slow down the differentiation of glial precursors, perhaps
providing a greater opportunity for additional mutations to arise. Mutant TP53 and/or ATRX
tend to produce astrocytomas, whereas 1p/19q codeletion withCIC and/or FUBP1 mutations
produce oligodendrogliomas. Asterisks (*) denote mutated proteins.
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Fig. 4. Frequencies of non-R132H IDH1 mutations differ among subtypes of grade II-III gliomas
Combining data from multiple studies that included details on mutation subtypes by
histologic diagnosis (see Figure 2), about 89% of IDH1/2 mutations in grade II-III astrocytic
tumors were R132H IDH1 (a & d), with another 10% being other IDH1 mutations. Only
0.5-1% of those gliomas had an IDH2 mutation. In contrast, 7-8% of grade III
oligodendrogliomas and oligoastrocytomas were IDH2-mutant (e & f). But this increased
proportion of IDH2 mutations was only seen in grade III tumors; 94-97% of grade II
oligodendrogliomas and oligoastrocytomas were R132H IDH1, and only 1% were IDH2. A
list of the studies from which these data are derived is in Supplemental Table 1.
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