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Abstract
Bacteria contain several sophisticated macromolecular machineries responsible for translocating
proteins across the cell envelope. One prominent example is the type II secretion system (T2SS),
which contains a large outer membrane channel, called the secretin. These gated channels require
specialized proteins, so-called pilotins, to reach and assemble in the outer membrane. Here we
report the crystal structure of the pilotin GspS from the T2SS of enterohemorrhagic Escherichia
coli (EHEC), an important pathogen that can cause severe disease in cases of food poisoning. In
this four-helix protein, the straight helix α2, the curved helix α3 and the bent helix α4 surround
the central N-terminal helix α1. The helices of GspS create a prominent groove, mainly formed by
side chains of helices α1, α2 and α3. In the EHEC GspS structure this groove is occupied by extra
electron density which is reminiscent of an α-helix and corresponds well with a binding site
observed in a homologous pilotin. The residues forming the groove are well conserved among
homologs, pointing to a key role of this groove in this class of T2SS pilotins. At the same time,
T2SS pilotins in different species can be entirely different in structure, and the pilotins for
secretins in non-T2SS machineries have yet again unrelated folds, despite a common function. It is
striking that a common complex function, such as targeting and assembling an outer membrane
multimeric channel, can be performed by proteins with entirely different folds.

Keywords
type II secretion; lipoprotein; crystal structure; EtpO; secretin; Hamburger disease

1. Introduction
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important pathogenic E. coli
strain that spreads via contaminated food sources. The bacteria colonize intestinal epithelial
cells and cause hemorrhagic colitis, and the illness caused is sometimes called Hamburger
Disease (Sherman et al., 2010). EHEC is especially dangerous since it may lead to a
potentially lethal disease, hemolytic uremic syndrome (Melton-Celsa et al., 2012), in

© 2013 Elsevier Inc. All rights reserved.
*Correspondence to: Wim G. J. Hol, Department of Biochemistry and Biomolecular Structure Center, University of Washington,
Seattle, Washington 98195. Phone: (206) 685-7044, Fax: (206) 685-7002, wghol@u.washington.edu.
#Present address: Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536

7. Accession numbers
The structure factors and coordinates have been deposited in the Protein Data Bank under accession number 3SOL.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Struct Biol. Author manuscript; available in PMC 2014 May 01.

Published in final edited form as:
J Struct Biol. 2013 May ; 182(2): 186–191. doi:10.1016/j.jsb.2013.02.013.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



particular in young children. EHEC infection and damage to the host depends on a large
number of virulence factors (Farfan and Torres, 2012). A major role is played by the large
pO157 plasmid which encodes the type II secretion system (T2SS), a metalloprotease StcE
(secreted protease of C1-esterase inhibitor), hemolysin, a subtilisin-like serine protease and
other virulence factors (Burland et al., 1998). The metalloprotease StcE, which is secreted
by the T2SS, is important for early steps in colonization of epithelial cells by EHEC (Grys et
al., 2005; Lathem et al., 2002; Paton and Paton, 2002; Yu et al., 2012). Another known
substrate of the T2SS from EHEC is a metal binding protein YodA that is also involved in
colonization process via an as yet unknown mechanism (Ho et al., 2008). Furthermore,
EHEC deletion mutants of the T2SS are defective in colonization in vivo, which underscores
the importance of the T2SS role in the infection process (Ho et al., 2008).

The T2SS is a sophisticated multi-protein machinery that transports folded proteins from the
periplasm across the outer membrane of Gram-negative bacteria into the extracellular milieu
(Douzi et al., 2012; Korotkov et al., 2012; McLaughlin et al., 2012). The T2SS spans two
membranes and consists of multiple copies of at least 12 different proteins. In the cytoplasm,
the secretion ATPase GspE interacts with the inner membrane platform consisting of GspL,
GspM, GspF and GspC. This platform interacts with GspG, which is the most abundant
subunit of a helical subassembly called the pseudopilus. The outer membrane channel is
formed by the secretin GspD. Secretins are also channels for secreted proteins, fimbriae or
phages in a number of other systems, including the type III secretion system (T3SS), the
type IV pilin system (T4PS) and the filamentous phage assembly system (Korotkov et al.,
2011).

The biogenesis of secretins in the outer membrane requires in several cases lipoprotein
chaperones called pilotins (Koo et al., 2012). The related T2SS secretins PulD from
Klebsiella oxytoca (KoGspDPulD) and OutD from Dickeya dadantii, formerly Erwinia
chrysanthemi, (DdGspDOutD) rely, respectively, on their cognate pilotins PulS (KoGspSPulS)
and OutS (DdGspSOutS) for outer membrane targeting (Hardie et al., 1996; Shevchik et al.,
1997). These pilotins have an outer membrane lipoprotein-sorting signal that directs them to
the outer membrane via interactions with proteins of the Lol sorting pathway (Collin et al.,
2011). In addition to pilotins, some secretins require additional accessory proteins for
stability (Ast et al., 2002; Gauthier et al., 2003; Schuch and Maurelli, 2001; Strozen et al.,
2011).

The pilotins KoGspSPulS and DdGspSOutS have been shown to interact with the C-terminal
60 residues of their secretins, the so-called S-domain, and protect secretin monomers from
proteolysis (Daefler et al., 1997; Shevchik et al., 1997). However, the absence of pilotin or
deletion of S-domain does not prevent the multimerization of KoGspDPulD and
DdGspDOutD, but then these multimers assemble in the inner membrane of a bacterium
causing phage shock response (Guilvout et al., 2011; Guilvout et al., 2006; Shevchik and
Condemine, 1998). Interestingly, KoGspDPulD can also spontaneously form multimers in
liposomes in vitro (Guilvout et al., 2008).

In EHEC, the T2SS cluster on the pO157 plasmid contains the etpO gene that encodes a
protein with approximately 40% amino acid sequence identity to some, but not all, other
T2SS pilotins. Here we report the crystal structure of this pilotin, which we call EHEC GspS
(Korotkov et al., 2012). Based on extensive extra density in a hydrophobic groove of EHEC
GspS, we suggest a possible binding site of EHEC GspS for the S-domain of the EHEC
secretin GspD.
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2. Protein expression, purification and crystallization
The gene fragment corresponding to the residues 16–106 of EHEC GspS (EtpO) was cloned
into a modified pET-28b vector (Novagen) for expression as a fusion with maltose-binding
protein (MBP). The construct has an N-terminal hexahistidine tag followed by MBP,
tobacco etch virus (TEV) protease cleavage site and GspS. The protein was expressed in
BL21(DE3) cells (Novagen) in LB media for 4 h at 30 °C. The harvested cells were
resuspended in buffer containing 20 mM HEPES pH 7.5, 300 mM NaCl and lysed using a
French press. The protein was purified on a Ni-NTA column (Qiagen) followed by cleavage
with TEV protease and size-exclusion chromatography on Superdex75 10/300 GL column
(GE Healthcare Bio-Sciences). SeMet-labeled GspS was produced using metabolic
inhibition of methionine biosynthesis (van Duyne et al., 1993) and purified using the same
protocol as for native protein. Protein was flash-frozen for storage (Deng et al., 2004). The
crystals of GspS were obtained by the vapor diffusion method with a crystallization solution
containing 0.1 M Tris-HCl pH 8.5, 0.2 M MgCl2, 30% (w/v) PEG3350. For cryoprotection,
crystals were rapidly frozen in liquid nitrogen directly from the crystallization solution.

3. Data collection, structure determination and analysis
A native dataset was collected at the beamline 8.2.1 of the Berkeley Center for Structural
Biology, the Advanced Light Source, at 100 K using a wavelength of 0.9794 Å. The native
crystal was exposed at a low dose in an (unsuccessful) attempt to utilize anomalous signal
from sulfur for phasing because Se-Met crystals were not available at that time. A dataset
from SeMet-labeled crystal was collected at the beamline 9-2 of the Stanford Synchrotron
Radiation Lightsource at 100 K using a wavelength 0.97915 Å. The crystals of Se-Met
substituted protein diffracted to much lower resolution and longer exposures were necessary
for data collection, therefore only a single-wavelength dataset was collected due to radiation
damage to the crystal. Data were indexed, integrated and scaled using HKL2000
(Otwinowski and Minor, 1997) and XDS (Kabsch, 2010).

The positions of Se sites were found using SHELXD (Sheldrick, 2008). The phasing,
density modification and initial model building were carried out using SOLVE and
RESOLVE (Terwilliger, 2004). The structure was completed using ARP/WARP (Langer et
al., 2008) followed by manual building in Coot (Emsley et al., 2010). The structure was
refined with REFMAC5 (Murshudov et al., 2011) using 1 TLS group. The stereochemical
quality of the final structure was verified using Coot and Molprobity server (Chen et al.,
2010). Sequence alignment was produced using ClustalW2 (Larkin et al., 2007) and
rendered using Espript (Gouet et al., 2003). The omit map for the secretin peptide in the
DdGspSOutS-GspDOutD complex (Gu et al., 2012) was calculated using deposited structure
factors (PDB 3UYM) and PHENIX (Adams et al., 2010). Structural illustrations were
generated using PyMol (Schrodinger, 2010).

4. Overall structure of GspS and putative secretin binding site
In order to obtain protein suitable for crystallization, we constructed a soluble variant of
GspS from enterohemorrhagic E.coli O157:H7 that encoded residues 13–110 of mature
protein and hence lacked the signal sequence and the N-terminal lipidation residue. Because
this variant failed to crystallize, the construct was optimized to include residues 16–106
based on secondary structure prediction analysis (Cole et al., 2008). The resultant crystals
yielded the structure of the EHEC pilotin GspS to 1.9 Å resolution. The crystals belong to
space group P6122 with one molecule in the asymmetric unit. The structure was solved de
novo by the single wavelength anomalous dispersion method from crystals with
selenomethionine-substituted protein, yielding a structure with good refinement statistics
(Table 1). Interestingly, the Se sites substructure search revealed an additional site that was
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associated with the disulfide bond between Cys36–Cys90. It is likely that Se from
selenomethionine was shuttled to cysteine during cell growth in minimal media.

EHEC GspS is an all-helical protein containing four α-helices, with helix α1 surrounded by
the other three helices (Fig. 1). Helices α1 and α2 are straight, helix α3 is curved and the C-
terminal helix α4 bends at residue Leu97 where the α-helical hydrogen bond pattern is
interrupted by residue Pro99. Two Cys residues, one located at the end of α1 and the other
near the beginning of α4, form a disulfide bridge. A prominent feature of the structure is a
deep groove formed by helices α1, α3 and α4. Intriguingly, in the final difference Fourier a
distinct electron density, resembling two turns of an α helix, occupies this groove (Fig. 2A).
Residues Ala28, Ile75, Leu79 and Phe93, which approach this extra density, are also
hydrophobic in DdGspSOutS and KoGspSPulS (Fig. 1B). This suggests that the hydrophobic
groove is the binding site for a helix from the S-domain of EHEC GspD. The extra density
probably belongs to a peptide, or a mixture of peptides, that co-purified with GspS. Our
efforts to identify the sequence of this peptide by mass-spectroscopy were unsuccessful due
to the limited number of available crystals and possible heterogeneity of the peptide.

5. Structural and functional comparisons
While this manuscript was in preparation, structures of related pilotins have been reported:
Klebsiella oxytoca KoGspSPulS and Dickeya dadantii DdGspSOutS (Gu et al., 2012; Tosi et
al., 2011), which allows us to analyze all available structures. The EHEC GspS structure
could be superimposed with KoGspSPulS with an r.m.s.d. of 0.96 Å and 43% sequence
identity over 90 amino acid residues, and with DdGspSOutS with an r.m.s.d. of 1.08 Å and
39% sequence identity over 89 residues (Fig. 1C). The disulfide bridge linking α1 and α4 in
EHEC GspS is conserved in DdGspSOutS and KoGspSPulS (Fig. 1).

Interestingly, substitutions in residues located in the groove of KoGspSPulS affected the
binding of the KoGspDPulD S-domain in vitro, although only the Val42Asp substitution
(corresponding to Ile25 of EHEC GspS, which approaches the extra density in the EHEC
GspS structure (Fig. 2A)) led to abolishing T2SS secretion in vivo (Tosi et al., 2011).
Moreover, in the structure of the complex between DdGspSOutS and a peptide derived from
the S-domain of DdGspDOutD, the S-domain moiety is located in a concave area on the
surface of DdGspSOutS, which corresponds to the hydrophobic groove of EHEC GspS (Fig.
2B) (Gu et al., 2012). Taken together, these data suggest that the T2SS pilotins KoGspSPulS,
DdGspSOutS and EHEC GspS all share the same binding site for the α-helical S-domain of
their cognate T2SS secretin.

Some pathogenic and non-pathogenic E. coli strains encode two clusters of the T2SS genes
on the chromosome, named alpha (T2SSα) and beta (T2SSβ) (Strozen et al., 2012).
Interestingly, both the T2SSα and T2SSβ clusters lack a homolog of a pilotin in contrast to
the T2SS cluster of the pO157 plasmid. However, the T2SSβ cluster contains a gene yghG
that encodes a small lipoprotein, which functions as a pilotin — and therefore named GspSβ
or AspS (Alternate secretin pathway subunit S) — for its cognate secretin (Dunstan et al.,
2013; Strozen et al., 2012). Moreover, AspS homologs have been recently identified in other
bacteria, including V. cholerae (Dunstan et al., 2013). The structure of V. cholerae AspS is a
novel α/β fold composed of 5 β-strands flanked by 4 α-helices (Dunstan et al., 2013).
Remarkably, although the structure of AspS is unrelated to the structures of the T2SS
pilotins of KoGspSPulS, DdGspSOutS and EHEC GspS family, AspS interacts with the S-
domain of its cognate secretin (Dunstan et al., 2013). Therefore, the T2SS’s from different
organisms, or different clusters within the same organism, appear to engage structurally
unrelated pilotin chaperones to assist secretin targeting to the outer membrane.
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Other secretin-containing systems, such as the T4PS and the T3SS, also contain pilotin
proteins that are involved in secretin targeting and multimerization, although functional
details may vary between different pilotin-secretin pairs (Koo et al., 2012). The functionally
characterized T4PS pilotins include Myxococcus xanthus lipoprotein Tgl (Nudleman et al.,
2006), Neisseria meningitidis PilW (Carbonnelle et al., 2006; Carbonnelle et al., 2005; Szeto
et al., 2011) and Pseudomonas aeruginosa PilF (Koo et al., 2008), whereas the T3SS pilotins
include Salmonella typhimurium InvH (Crago and Koronakis, 1998), Shigella flexneri
MxiM (Schuch and Maurelli, 2001), Yersinia enterocolitica YscW (Burghout et al., 2004)
and P. aeruginosa ExsB (Izore et al., 2011). Structural analyses of the T4PS pilotins PilW
(Trindade et al., 2008) and PilF (Kim et al., 2006; Koo et al., 2008) reveal a similar
arrangements of six tetratricopeptide repeat (TPR) motifs. Thus, despite multiple structural
and mechanistic similarities between the T2SS and T4PS machineries (Ayers et al., 2010;
Korotkov et al., 2012), PilW and PilF pilotins are unrelated in structure to the T2SS GspS
and AspS pilotins. Moreover, the mode of interaction between PilW and PilF pilotins and
their cognate secretins is also different, because the T4PS secretins lack the S-domain
present in the T2SS secretins (Korotkov et al., 2011).

The structures of the T3SS pilotin proteins MxiM from S. flexneri (Lario et al., 2005; Okon
et al., 2008) and ExsB from P. aeruginosa (Izore et al., 2011) show that these pilotins adopt
two different structures: a cracked β-barrel and a β-sandwich fold. Remarkably, these T3SS
pilotins are hence unrelated to (i) the T4PS pilotins PilW and PilF, and (ii) the T2SS GspS
and AspS pilotins. Clearly, multiple entirely different folds have been adapted in the course
of evolution to perform the same function: assisting the assembly of a multimeric protein in
the bacterial outer membrane.

6. Conclusions
Since EHEC can cause severe foodborne disease, and can even be life threatening, the
spread of antibiotic resistant variants of pathogenic bacteria is a source of growing concern.
At the same time, the importance of commensal human microorganisms raises questions
about safety of broad-spectrum anti-microbial drugs. Therefore, much attention has recently
been given to the concept of devising alternative therapies based on targeting virulence
factors (Cegelski et al., 2008). Increasing our understanding of T2SS secretin biogenesis in
EHEC, such as identifying the critical hydrophobic groove EHEC pilotin, might assist in the
development of compounds which bind tightly to this site. Such compounds would prevent
the interaction of the pilotin with the S-domain of the secretin, leading to mis-targeting of
the secretin multimer, and inhibition of secretion of potentially lethal virulence factors.
Hence, such compounds might be a starting point for developing novel therapies against the
diseases caused by EHEC.
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Fig. 1. Structure of GspS from enterohemorrhagic Escherichia coli
(A) Overall structure of GspS in cartoon representation, colored from N-terminus (blue) to
C-terminus (red). Four α-helices of GspS are labeled. The cysteine residues that form a
disulfide bond are shown as sticks.
(B) Sequence alignment of EHEC GspS and homologous pilotins DdGspSOutS from D.
dadantii and KoGspSPulS from K. oxytoca. Secondary structure elements are shown above
the alignment. The conserved Cys residues forming the disulfide bond in GspS structures are
highlighted in yellow. The amino acid residues implicated in secretin binding in the
KoGspSPulS pilotin (Tosi et al., 2011) are labeled by green triangles. The capping Asp
residue, involved in secretin binding in the DdGspSOutS pilotin (Gu et al., 2012), is labeled
by a red star. The numbering shown is for EHEC GspS.
(C) Stereo view of EHEC GspS (purple) superimposed on pilotins KoGspSPulS from K.
oxytoca (blue) (Tosi et al., 2011) and DdGspSOutS from D. dadantii (green) (Gu et al.,
2012). The amino acid residues highlighted in (B) are shown in stick representation.
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Fig. 2.
The putative secretin-binding site of GspS.
(A) The extra electron density in the groove on the surface of EHEC GspS. The blue mesh
represents a σA-weighted 2FO-FC map contoured at the 1σ level; the green mesh represents
contours at the 2.5 σ level. The amino acid residues Ile25 and Leu29 from EHEC GspS that
are homologous to the residues implicated in secretin binding in KoGspSPulS (Tosi et al.,
2011), as well as the secretin α-helix-capping Asp82 of EHEC.
(B) The omit maps of the 18-residue secretin peptide from the DdGspSOutS-GspDOutD

structure (Gu et al., 2012) (PDB 3UYM) shown for comparison with the extra electron
density in the ETEC GspS structure. The map is contoured at the same levels as in (A).
Pilotin helices α1, α3 and α4 are labeled and shown in the same colors as in Fig. 1
underneath a transparent surface. The equivalent capping residue of Asp 82 in EHEC GspS
(Fig 2A) is Asp107 in DdGspSOutS.
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Table 1

Data collection and refinement statistics

Native Se-Met

Data collection

Space group P6122 P6122

Cell dimensions

 a, b, c (Å) 73.35, 73.35, 70.73 73.43, 73.43, 70.39

 α, β, γ (°) 90, 90, 120 90, 90, 120

Resolution (Å) 47.3-1.90 (2.00-1.90)1 47.2-2.50 (2.64-2.50)

Rsym 0.085 (0.851) 0.111 (0.691)

I/σI 24.4 (3.1) 19.0 (2.5)

Completeness (%) 99.9 (98.8) 99.9 (99.4)

Redundancy 11.5 (11.1) 10.1 (5.1)

Refinement

Resolution (Å) 47.3-1.90

No. reflections (total/free) 9323/426

Rwork/Rfree 0.190/0.222

No. atoms

 Protein 743

 Ligand/ion 4

 Water 61

B-factors

 Protein 38.0

 Ligand/ion 38.1

 Water 40.1

 Wilson B 30.4

R.m.s. deviations

 Bond lengths (Å) 0.011

 Bond angles (°) 1.102

Ramachandran distribution (%)2

 Favored 100

 Outliers 0.0

1
Values in parentheses are for the highest-resolution shell.

2
Calculated using Molprobity (Chen et al., 2010).
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