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Abstract
In many clinical applications, understanding when measurement of new markers is necessary to
provide added accuracy to existing prediction tools could lead to more cost effective disease
management. Many statistical tools for evaluating the incremental value (IncV) of the novel
markers over the routine clinical risk factors have been developed in recent years. However, most
existing literature focuses primarily on global assessment. Since the IncVs of new markers often
vary across subgroups, it would be of great interest to identify subgroups for which the new
markers are most/least useful in improving risk prediction. In this paper we provide novel
statistical procedures for systematically identifying potential traditional-marker based subgroups
in whom it might be beneficial to apply a new model with measurements of both the novel and
traditional markers. We consider various conditional time-dependent accuracy parameters for
censored failure time outcome to assess the subgroup-specific IncVs. We provide non-parametric
kernel-based estimation procedures to calculate the proposed parameters. Simultaneous interval
estimation procedures are provided to account for sampling variation and adjust for multiple
testing. Simulation studies suggest that our proposed procedures work well in finite samples. The
proposed procedures are applied to the Framingham Offspring Study to examine the added value
of an inflammation marker, C-reactive protein, on top of the traditional Framingham risk score for
predicting 10-year risk of cardiovascular disease.
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1 Introduction
Risk models have been applied in medical practice for prediction of long-term incidence or
progression of many chronic diseases such as cardiovascular disease (CVD) and cancer.
With the advancement in science and technology, a wide range of biological and genomic
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markers have now become available to assist in risk prediction. However, due to the
potential financial and medical costs associated with measuring these markers, their ability
in improving the prediction of disease outcomes and treatment response over existing risk
models needs to be rigorously accessed.

Effective statistical tools for evaluating the incremental value (IncV) of the novel markers
over the routine clinical risk factors are crucial in the field of outcome prediction. Many of
newly discovered markers, while promising and strongly associated with clinical outcomes,
may have limited capacity in improving risk prediction over and above routine clinical
variables (Tice et al. 2005; Wacholder et al. 2010). For example, on top of traditional risk
variables from the Framingham risk score (FRS) (Wilson et al. 1998), the inflammation
biomarker, C-reactive protein (CRP), was shown to provide modest prognostic information
(Cook et al. 2006; Blumenthal et al. 2007; Ridker et al. 2007) while a genetic risk score
consisting of 101 single nucleotide polymorphisms was reported as not useful (Paynter et al.
2010). In a recent paper, Wang et al. (2006) concluded that almost all new contemporary
biomarkers for prevention of coronary heart disease added rather moderate overall predictive
values to the FRS.

One possible explanation for the minimal improvement at the population average level is
that the new markers may only be useful for certain subpopulations. For example, while
much debate about the clinical utility of CRP remains, there is empirical evidence that CRP
may substantially improve the prediction for subjects at intermediate risk (Ridker 2007).
Such finding, if valid, would be extremely useful in clinical practice, since identifying the
subgroups where markers can provide valuable improvement in prediction will not only lead
to more informed clinical decisions but also reduced cost and effort compared to measuring
novel markers on the entire population. However, to ensure the validity of such claims and
more precisely pinpoint such specific subgroups, rigorous and systematic analytical tools for
IncV evaluation are needed.

To quantify the global IncV of new markers for risk prediction, various approaches have
been advocated. For example with the most popular one being focused on a comparison of
summary measures of accuracy under a conventional and new models respectively
(Heagerty and Zheng 2005; Uno et al. 2007; Cai and Cheng 2008). Excellent discussions on
the choices of different accuracy measures can be found in Gail and Pfeiffer (2005).
However, these measures quantify the overall IncV of new markers averaged over the entire
study population and do not provide information on how the IncV may vary across different
groups of subjects. If there are pre-defined subgroups, these measures could be estimated for
each of the subgroups. However, in practice, it is often unclear how to optimally select
subgroups for comparisons and ad-hoc subgroup analyses without careful planning and
execution may lead to invalid results (Rothwell 2005; Pfeffer and Jarcho 2006; Wang et al.
2007). Furthermore, it is vitally important to adjust for multiple comparisons when
conducting any subgroup analysis. Thus, an important question is how to systematically
identify the potential subgroups who would benefit from the additional markers properly
adjusting for multiple comparisons. There is a paucity of statistical literature on approaches
for identifying such subgroups (D’Agostino 2006). Tian et al. (2009) proposed an inference
procedure to estimate the IncVs in absolute prediction error of new markers in various
subgroups of patients classified by the conventional markers. However, their method does
not incorporate censoring. In addition, the subgroups in their paper were defined as groups
of subjects whose conventional risk scores lie in different pre-assigned intervals. However,
how to determine the length of intervals could be an issue. Uno et al. (2011b) proposed
estimation procedures for the conditional quantiles of the improvement in the predicted risk
separately for the cases and the controls. However, they did not provide procedures for
determining which subgroups should be recommended to have the new markers measured.
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Furthermore, no procedures were provided to account for the sampling variation or control
overall type I error which is particularly important in subgroup analysis.

In this paper, we propose systematic approaches to analyzing censored event time data for
identifying subgroups of patients for whom the new markers have the most or least IncV.
We consider two common accuracy measures, the partial area under the ROC curve (pAUC)
and the integrated discrimination improvement (IDI) index. Compared with the standard C-
statistic, for many applications, the pAUC is often advocated as a better summary measure
(Dwyer 1996; Dodd and Pepe 2003; Cai and Dodd 2008), since clinical interests often lie
only in a specific range of the false positive rates (FPRs) or true positive rates (TPRs). For
example, the region with low FPR is of more concern for disease screening (Baker and
Pinsky 2001); while the region with high TPR is of more concern for the prognosis of
serious disease (Jiang et al. 1996). However, the ROC curve does not capture certain aspects
of the predicted absolute risk, since it is scale invariant. Many model performance measures,
including the reclassification table (Cook and Ridker 2009), net reclassification
improvement (NRI) and IDI (Pencina et al. 2008), proportion of case followed (PCF) and
proportion needed to follow-up (PNF) (Pfeiffer and Gail 2010), have been proposed recently
to overcome the limitation of the ROC curve method. Many of these measures, such as the
reclassification table, NRI, PCF and PNF, rely on pre-specified clinically meaningful risk or
quantile threshold values which may not be available for most diseases. For illustration
purposes, we focus primarily on pAUC and IDI in this paper but note that our procedures
can be easily extended to accommodate other accuracy measures.

The rest of paper is organized as follows. In Sect. 2, we present our proposed non-
parametric estimation procedure for subgroup-specific IncV of new markers and along with
their corresponding interval estimation procedures. In particular, resampling based
simultaneous interval estimation procedures are provided as convenient and effective tools
to control for multiple comparisons. We describe results from our simulation studies in Sect.
3 and the analyses of the Framingham Offspring Study using our proposed procedures in
Sect. 4. Concluding remarks are given in Sect. 5. All the technical details are included in the
appendices.

2 Methods
2.1 Risk modeling with and without new markers

Let X denote a set of conventional markers and let Z denote a set of new markers. Due to
censoring, for the event time T†, one can only observe T = min(T†, C), Δ = I (T† ≤ C),
where C is the censoring time, which is assumed to be independent of T† conditional on (X,
Z). See below for more discussions about censoring assumptions. Furthermore, define Y† = I
(T† ≤ t0), where t0 is the prediction time of clinical interest, and Y = I (T ≤ t0). Let

 and  be the true conditional risk of
developing the event by time t0 conditional on X only and (X, Z), respectively. Suppose a
data set for analysis consists of n independent realizations of (T, Δ, X, Z), {(Ti, Δi, Xi, Zi)}.
Although Y† and the conditional risk functions depend on t0, we suppress t0 from the
notation throughout for the ease of presentation. From the Neyman–Pearson Lemma and
similar arguments as given in McIntosh and Pepe (2002), it is not difficult to show that

 achieves the optimal ROC curve for predicting Y† based on X only. Similarly,
 is the optimal score for prediction Y† given (X, Z).

To estimate  and , one may consider a fully non-parametrical approach (Li
and Doss 1995). However, in practice, such non-parametric estimates may perform poorly
when the dimension of X or Z is not small due to the curse of dimensionality (Robins and
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Ya’Acov 1997). An alternative feasible way is approximate  and  by imposing
simple working models

(1)

where V, a p × 1 vector, is a function of X, W, a q × 1 vector, is a function of X and Z, β and
γ are vectors of unknown regression parameters, and g1 and g2 are known, smooth,
increasing functions. An estimator of β and γ can be obtained respectively by solving the
following inverse probability weighted (IPW) estimating equations as given in Uno et al.
(2007):

(2)

where , and  is a root-n consistent
estimator of GX,Z(t) = pr(C ≥ t|X, Z). This IPW estimator may be justified heuristically the

argument that , for y = 0, 1. Let  and  be
the resulting estimator of β and γ, respectively. For a subject with X = x, Z = z whose V = v

and W = w, the risk is estimated by  based on X alone and by

 based on X and Z. It has been previously shown in Uno et al. (2007) that

regardless of the adequacy of the working model (1),  converges in probability to a

deterministic vector  as n → ∞. Let  and .

When the models in (1) are correctly specified,  and . To

obtain a valid estimator , one may impose a semi-parametric model, such as the

proportional hazards (PHs) model (Cox 1972), for GX,Z(t) and obtain  as

, where Wc is a function of (X, Z),  is the maximum partial

likelihood estimator and  is the Breslow’s estimator. When the censoring is

independent of both T and (X, Z), one may obtain  simply as the Kaplan–Meier
estimator. It is important to note that if the in (1) only hold for a given t0 and the dimension
of (X, Z) is not small, root-n consistent estimators of β and γ may not exist without
imposing additional modeling assumptions about GX,Z(t) due to the curse of dimensionality
(Robins and Ya’Acov 1997).

2.2 Subgroup specific IncVs
For illustration purposes, we consider two accuracy measures, the pAUC and the IDI index.
We first define both concepts in the context of evaluating a risk score/model. Suppose that

we use  as a risk score for classifying the event status Y†, and without loss of

generality, we assume that a higher value of  is associated with a higher risk and
refer to the two states, Y† = 1 and Y† = 0, as “diseased” and “disease-free” or “cases” and

“controls”. The discrimination capacity of  can be quantified based on the ROC

curve, which is a plot of the TPR function, , against the FPR

function, . The ROC curve, 
describes the inherent capacity of distinguishing “cases” from “controls”. The pAUC with a
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restricted region of FPR, say FPR ≤ f, is given by , for f ∈ [0, 1]. The

IDI index, is simply .

To evaluate how the IncV of Z may vary across subgroups defined by X, we define new

conditional pAUC and IDI index. We propose to use  as a scoring system for grouping
subjects with potentially similar initial risk estimates and create subgroups ʊs = {X : p̄1(X) =

s}. Then we evaluate the IncV of Z for each ʊs based on how well  can further

discriminate subjects within ʊs with Y† = 1 from those with Y† = 0. Suppose  is
used to classify Y† for subjects in ʊs. The TPR and FPR of the classification rule

 given ʊs  and , respectively, where

Conditional on , the ROC curve of  is , for u ∈

[0, 1]. The conditional pAUC is given by , f ∈ [0,1]. Note that f
= 1 yields conditional AUC(s. If Z is non-informative for ʊs, the corresponding ROC curve
would be a diagonal line, and we expect that pAUCs = f2/2, which is the area under a
diagonal line. Thus, the subgroup ʊs specific IncV of Z with respect to (wrt) the pAUC is

given by pAUCf(s) − f2/2. The IDI index conditional on  is given by

(3)

If Z is non-informative for this subgroup ʊs, the conditional IDI index would be 0, and
therefore, the subgroup ʊs specific IncV of Z wrt the IDI index is IDI(s). Based on these
subgroup-specific IncVs, we are able to identify the set of s such that Z is useful to improve
the prediction accuracy for ʊs, which is referred to as the effective subpopulation ʊ* in our
paper. Specifically, the effective subpopulation wrt pAUC is defined as ʊ∗ = {X :
pAUCf(p̄1(X))−f2∕2> 1}; the effective subpopulation wrt IDI are defined as ʊ∗ = {X :
IDI(p̄1(X))> 2ý, where c1 and c2 are some possibly data dependent threshold values. For the
subjects in the effective subpopulation, measurement of new markers would provide added
accuracy to the conventional risk model.

2.3 Inference about subgroup-specific IncVs

We first discuss the estimation for the conditional TPR and FPR functions 
since both pAUCf(s) and IDI(s) are simple functionals of these two functions. Let

 and . To obtain a consistent estimator of
, since  is between 0 and 1, we consider a non-parametric local likelihood

estimation method (Tibshirani and Hastie 1987) along with IPW accounting for censoring.

Specifically, we obtain  as the solution to the IPW local likelihood
score equation,

(4)
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where , g(x) = exp(x)/{1 + exp(x)}, Kh(x) = K (x/h)/h, K(·) is a known
smooth symmetric kernel density function with a bounded support, and the bandwidth hy > 0
is assumed to be O(nν), for 1/5 < ν < 1/2, and φ(·) is a known, non-decreasing
transformation function that can potentially be helpful in improving the performance of the
smoothed estimator (Wand et al. 1991; Park et al. 1997). Then,  can be estimated by

 for y = 0, 1. In the Appendix A.1, we show that

 in probability as n → ∞, uniformly in c ∈ [0, 1] and

 where [ρl, ρu] is a subset of the support of 

and β0 is the limit of . As a special case, by setting b in (4) to 0, one may obtain a local
constant estimator,

2.4 Inference procedures for pAUCf(s)

Based on  can be estimated as

where  and (h0, h1) is the pair of optimal band-widths for

estimating  and , respectively. In the Appendix A.2, we show that 
is uniformly consistent for pAUCf(s).

As a special case, when both X and Z are univariate, the ROC curve of  conditional

on  is equivalent to the ROC curve of Z conditional on X since the ROC curve is scale
invariant. A simple local constant IPW estimator of  is given by

The resulting estimator of pAUCf(x) is

where  is the estimated truncated placement value
proposed by Cai and Dodd (2008).
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It is difficult to directly estimate the variance of 
since it involves unknown derivative functions. We propose a perturbation-resampling

method to approximate the distribution of . This method has been widely used in
survival analyses (see for example, Jin et al. 2001; Park and Wei 2003; Cai et al. 2005). To
be specific, let Ξ = {ξi, i = 1, …, n} be n independent positive random variables following a
known distribution with mean 1 and variance 1, and Ξ is independent of the data. For each
set of Ξ, we first obtain β* and γ*, as the respective solutions to

where  and  is the perturbed estimator of

GX,Z (·) with Ξ being the weights. Let , ,

and . Subsequently, we obtain the perturbed counterpart of  as

, where  is the solution to the perturbed score equation

Then, the perturbed pAUC is given by, , where

. In the Appendix A.3, we show that the unconditional

distribution of  can be approximated by the conditional distribution of

(5)

given the data. With the above resampling method, for any fixed , one may obtain a

variance estimator of , , based on the empirical the variance of B realizations
from (5). For any fixed  and α ∈ (0, 1), a pointwise 100(1 − α)% confidence interval

(CI) for pAUCf(s) can be constructed via , where cα is the
100(1 − α)th percentile of the standard normal distribution.

2.4.1 Inference for IDI(s)—Based on , we may obtain plug-in estimators for

 and  respectively as

Thus, IDI(s) can be estimated by . Similar to the derivations given in

the Appendix A for , the asymptotic results for  can be directly used to

establish the consistency and asymptotic normality for . In addition, the unconditional

distribution of  can be approximated the conditional
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distribution of , given the data, where

 and  is the perturbed counterpart of

. The pointwise CIs for any fixed  are constructed in a similar way
as the inference for pAUCf(s). As a special case, a kernel local constant estimator of IDI(s)
is given by

with the perturbed counterpart given by

Selection of the optimal bandwidths for pAUCf(s) and IDI(s) is illustrated in the Appendix
B.

2.4.2 Identifying the effective subpopulation—To identify the effective
subpopulation, one may simultaneously assess the subgroup-specific IncV wrt a certain
accuracy measure, denoted by , for example pAUCf(s) − f2/2 or IDI(s), over a range of
s values by constructing simultaneous CI for . Unfortunately, the distribution

of  does not converge as a process in s, as n → ∞. Thus, we cannot apply the standard

large sample theory for stochastic processes to approximate the distribution of .
Nevertheless, by the strong approximation argument and extreme value limit theorem
(Bickel and Rosenblatt 1973), we show in the Appendix A.3 that a standardized version of

the sup-statistic  converges in distribution to a proper random

variable, where  denotes the variance estimator of . In practice, for large n, one can

approximate the distribution of Γ based on realizations of , where

 is the perturbed counterpart of . Therefore, a 100(1 − α) % simultaneous CI for 

can be obtained as , where dα is the empirical 100(1 − α)th quantile
of Γ*. Thus, to account for sampling variation and multiple testing, the effective

subpopulation is chosen as  in real data analyses.

2.4.3 Test for heterogeneous IncV—Another question of interest is whether the
subgroup-specific , for example pAUCf(s), is constant across different values of s
over a certain interval [sl, su]. We define the average IncV over [sl, su] as
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where , and we define the relative subgroup-specific IncV over [sl, su]

as . The point estimate of  is given by

where . In addition, the unconditional distribution of

 can be approximated by the conditional distribution

of  given the data, where 

with  as the perturbed counterpart of  and

. The variance estimator  of

 can be obtained from realizations of .

If the subgroup-specific IncV of Z is constant over [sl, su], i.e.,  for

 and  for s ∈ [sl, su]. Testing whether the subgroup
specific IncV is constant over [sl, su] is the equivalent to testing the null hypothesis

 for s ∈ [sl, su]. To adjust for multiple testing, we consider the standard

version of the sup-statistic  where 

is the statistic  under the null hypothesis H0. One may approximate the distribution of

 based on realizations of . The empirical p value for testing

the null hypothesis H0 can be obtained by , where  are

B realizations of .

3 Simulation studies
To examine the finite sample properties of the proposed estimation procedure, we conduct a
simulation study where the conventional marker X and the new marker Z are both univariate
and jointly generated from a bivariate normal distribution

In this simulation study, μX = μZ = 0, σX = 2 and σZ 0.5, and ρXZ 0.01. The failure time T,
given the markers X and Z, is generated from an accelerated failure time model with a log-
normal distribution for T, i.e., log T = h(X, Z) + ∈, where ∈ is a normal random variable
with mean 0 and standard deviation σT = 1.5. In this simulation study, h(X, Z) is a linear
model, i.e., h(X, Z) = −βX X − βZ Z −βXZXZ. We consider a practical situation where the
new marker Z may make a major contribution to the underlying mechanism in contrast with
the conventional marker X, although it may not be measured routinely. Thus, in this
simulation study, we set βX = 0.01 and βZ = βX Z = 1. The censoring time C is generated

from an exponential distribution with rate . A value of c0 ≈ 20 is chosen such that roughly
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80% of the failure time is censored. A time point t0 ≈ 0.2 is set such that the proportion of
the “cases” in the sample is approximately 20%.

We investigate the kernel local constant estimator for the conditional pAUCf with f = 0.1
representing a low FPR region and f = 1 representing the standard AUC. Since Z and log T
are jointly normal conditional on X = x, it is straightforward to calculate the true values of
pAUCf(x). We consider a relatively smaller sample size 1,000, a moderate sample size of
5,000 and a relatively larger sample size of 10,000. Both of the pAUC with FPR ≤ 0.1, i.e.,
pAUC0.1(x) and the full AUC are estimated at a sequence of values of X. For ease of
computation, the pair of the bandwidths (h0, h1) for constructing the non-parametric estimate
was fixed at (i) for the full AUC, (2.531, 2.102) for n = 1,000, (1.905,1.534) for n = 5,000,
and (1.640, 1.380) for n = 10,000; (ii) for the pAUC0.1, (2.377,2.432) for n = 1,000,

(1.843,2.361) for n = 5,000, and (1.507, 2.085) for n = 10,000. Here,  were chosen
as the average of the bandwidths selected from 10 independent simulated datasets using the
two-stage of five-fold cross-validation method described in the Appendix B and n−0.1 was

multiplied to  to yield the final bandwidths used for simulation. In addition, the kernel
function K (·) was chosen as the Epanechnikov kernel. Here, since we assume that the
censoring time C is independent of both T and (X, Z), GX,Z(t) = G(t) is estimated by a
Kaplan–Meier estimator.

The performance of the point estimates and pointwise 95% CIs obtained by the resampling
method was assessed from 1,000 independent replicates. For all of these scenarios, the non-
parametric estimators have substantially small biases, the estimated standard errors are close
to their empirical counterparts, and empirical coverage levels are close to the nominal level.
In Fig. 1, we summarize the performance of the point and interval estimates for pAUC0.1
with sample size 10,000. For this scenario, the empirical coverage probabilities of the 95%
pointwise CIs range from 92.9 to 95.4%. The empirical coverage levels of the 95%
simultaneous confidence bands for the standard AUC are 93.2% for n = 1,000, 93.3% for n
= 5,000, and 94.5% for n = 10,000; the empirical coverage levels of the 95% simultaneous
confidence bands for the pAUC0.1 are 93.3% for n = 1,000, 93.4% for n = 5,000, and 92.5%
for n = 10,000.

4 Example: the Framingham Offspring Study
The Framingham Offspring Study was established in 1971 with 5,124 participants who were
monitored prospectively on epidemiological and genetic risk factors of CVD. Here, we use
data from 1,687 female participants of which 261 have either died or experienced a CVD
event by the end of follow-up period, and the 10-year event rate is 6%. The Framingham
risk model, based on several clinical risk factors including age, systolic blood pressure,
diastolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, current
smoking status and diabetes, is widely used in clinical settings but only with moderate
accuracy for predicting the 10-year risk of CVD (Cook et al. 2006). The FRS is constructed
as the weighted average of the risk factors in the Framingham risk model using β-
coefficients given in Table 6 of Wilson et al. (1998). The risk estimates are obtained from
the FRS through the transformation 1 − exp{− exp(·)}. The density plot of the risk estimates
obtained from the FRS is shown in Fig. 2a. The overall gain in C-statistic by adding the CRP
on top of FRS is 0.002 (from 0.776 to 0.778, with 95% CI (−0.005,0.01)). Note that a log
transformation is applied on the CRP throughout the analysis. According to the Framingham
risk model (Wilson et al. 1998) and the risk threshold values employed by the Adult
Treatment Panel III of the National Cholesterol Eduction Program (Expert Panel on
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults 2001), these
1,687 female participants may be classified into three risk groups: 1,462 as low risk (<10
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%); 193 as intermediate risk (between 10% and 20%); 32 as high risk (>20 %). The IncVs
wrt C-statistic are 0.00057 (with 95% CI (−0.012,0.013)) for the low risk group; 0.037 (with
95% CI (−0.054,0.13)) for the intermediate risk group; 0.034 (with 95% CI (−0.097,0.16))
for the high risk group. Note that the low risk group consists of about 87% of the entire
cohort. Now we further classify the 1,462 patients of the low risk group into 10 finer
subgroups with the length of the risk interval for each subgroup being 0.01, for example, 0–
0.01, 0.01–0.02, and etc. The IncVs wrt C-statistics for these 10 subgroups of low risk as
well as the intermediate and high risk groups with their 95% CIs are shown in Fig. 2b. This
suggests that adding CRP on top of FRS may be most useful for the risk groups around 5%,
which is also referred to as the intermedium low risk group in some literature.

First, we investigate the IncV of the CRP over the FRS wrt AUC, pAUC0.1 and IDI in
predicting the 10-year risk of CVD events among subgroups defined by the FRS. For the
purpose of kernel smoothing, the transformation function φ(·) in the local likelihood score

equation (4) is , where μX = −3.74 is the sample mean of the FRS and σ X
= 1.35 is the sample standard deviation of the FRS, and Φ(x) is the cumulative distribution
function of a standard normal distribution. Here we use local kernel constant estimates with

Epanechnikov kernel. The optimal bandwidths  in φ-scale are chosen via a 10-fold
cross validation procedure: (0.117,0.393) for the standard AUC, (0.264,0.721) for pAUC0.1,
and (0.018,0.273) for IDI. The point estimates along with the 95% pointwise and
simultaneous CIs for the subgroup-specific IncV wrt AUC, pAUC0.1 and IDI are shown in
Fig. 3. The point estimate for IDI is obtained via a cross-validation procedure to correct for
biases due to overfitting. Based on the pointwise CIs of the subgroup-specific IncV wrt
AUC, the addition of CRP appears to improve risk prediction for subjects with the FRS risk
ranging from 0.028 to 0.096. The corresponding range is 0.008–0.148 when based on the
CIs for the subgroup-specific IncV wrt pAUC0.1; 0.004–0.102 when based on the CIs for the
subgroup-specific IncV wrt IDI. After controlling for the overall type I error, inclusion of
CRP may significantly improve discrimination for subjects with the FRS risk ranging from
0.034 to 0.070 based on AUC; from 0.010 to 0.078 based on pAUC0.1; from 0.032 to 0.068
based on IDI. The IDI findings and the pAUC findings agree with each other. These results
suggest that CPR might be useful to improve risk prediction among patients regarded as
having low to moderate risk according to the FRS.

It is worth to note that the bandwidth selection procedure is not sensitive towards the choice
of the number of folds in cross-validation. Using a five-fold cross-validation, the optimal

bandwidths  are (0.121, 0.394) for the standard AUC, (0.238, 0.614) for pAUC0.1,
and (0.016, 0.272) for IDI. The resulting point estimates and CIs are almost the same as the
results with the bandwidths selected via a 10-fold cross validation procedure. In addition, for
calculating the weights , the survival function G(·) of the censoring time C is estimated by
a Kaplan-Meier estimator since in the study C is likely to be independent of both T and X,
Z. In Sect. 2.1, we commented that if this independence assumption does not hold, we could
still provide a correct estimate of G(·) via a semi-parametric model, for example a Cox PH
model. Here, we also obtained the estimates of G(t0) via a Cox PH model, i.e.,

 where Wc consists of the FRS and the CRP. Based on the resulting
weights , we obtained the point estimates and CIs for the subgroup-specific IncV wrt
AUC, pAUC0.1 and IDI, which is presented in Fig. 4. The results are very similar to the
results using Kaplan–Meier estimator of G(·), and therefore it implies that the independence
assumption about the censoring time C is reasonable.

We are also interested in testing whether the subgroup-specific IncV of the CRP over the
FRS is constant over the values [0,0.4] of the risk estimates obtained from the FRS. The p
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values of testing for constant subgroup-specific IncV are 0.028 for AUC, 0.108 for pAUC0.1
and 0.002 for IDI. These results agree with Fig. 5, which shows the point estimates and
simultaneous 95% CIs for the relative subgroup-specific IncV wrt AUC, pAUC0.1 and IDI.
It shows that the subgroup-specific IncVs wrt AUC and IDI are not constant over the
interval [0,0.4]; on the other hand,the subgroup-specific IncV wrt pAUC0.1 is constant over

this interval. It is worth to note that the asymptotic variance of  is larger than that

of , and therefore, the power of testing whether the subgroup-specific IncV is constant
over a certain interval is not as strong as the power of testing whether the subgroup-specific
IncV is above zero over the interval.

5 Concluding remarks
In this paper, we propose a non-parametric procedure to estimate the IncVs of new markers
in prediction accuracy accross different subgroups defined by the conventional scoring
system. We also provide the pointwise and simultaneous interval estimates via perturbation
resampling. In addition, with proper adjustment for multiple subgroups comparison, our
approach is able to systematically identify the subgroups which would benefit from adding
new markers. Unlike global measures which do not provide information on how the IncV
may vary across subgroups, our methods enables the identification of subgroups for which
the new markers may or may not be useful. Existing procedures often assess subgroup-
specific IncVs empirically. We provide more rigorous and systematic analytical tools to
ensure the validity of such claims and more precisely pinpoint such specific subgroups.

Appropriate choice of prediction accuracy summaries is of great importance to capture the
usefulness of new markers. It is also motived by primary research interests. Discrimination
is one of the major components in assessing the accuracy of prediction models. The AUC is
the most popular summary index which depicts inherent discrimination capacity. However,
it is unable to capture how well the predicted risks agree with the actual observed risks (Gail
and Pfeiffer 2005). In some cases, alternative summary measures should be also considered,
for example, NRI, PCF and PNF. Our approach can be naturally extended to other metrics
that maybe more appropriate for particular clinical applications.

The subgroup-specific TPR  and the

subgroup-specific FPR  both depend on the
time point t, which is usually pre-determined. In some applications, new biomarkers might
produce relatively better long-term performance in prediction accuracy than short-term. It is
straightforward to extend our procedure to different time points over an arbitrary time

interval since the non-parametric estimates of the TPR and FPR, , converge to a
Gaussian process in time t. We could estimate the overall improvement of new markers over
a certain time interval by integrating the subgroup-specific pAUC and the subgroup-specific
IDI index wrt time t. Furthermore, with properly adjusting for multiple comparison, it is
possible to identify the time interval where new markers have the most IncVs for different
subgroups.

Instead of focusing on the prediction of t-year survival for a fixed time point, we might be
also interested in a global assessment of a fitted prediction model for the continuous event
time. One example of such global measure is the C-statistic of the prediction score

 (Harrell Jr et al. 1996; Korn and Simon 1990;

Zhou et al. Page 12

Lifetime Data Anal. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Pencina and D’Agostino 2004). When the event time T† is subject to right censoring which
may have finite support [0, τ], one may consider a truncated C-statistic,

as considered in Heagerty and Zheng (2005) and Uno et al. (2011a). It is straightforward to
extend Cτ to our subgroup-specific C-statistic

and construct an IPW kernel estimator for Cτ (s) as for other accuracy measures.
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Appendix A
Let  and  denote expectation with respect to (wrt) the empirical probability measure of
{(Ti, Δi, Xi, Zi), i = 1, …, n} and the probability measure of (T, Δ, X, Z}, respectively, and

. We use  to denote  for any function , ≃ to denote
equivalence up to op(1), and ≲ to denote being bounded above up to a universal constant.

Let β0 and γ0 denote the solution to  and

, respectively. Let  and . Let ω = ΔI (T

≤ t0)/GX, Z(T) + I (T > t0)/GX, Z(t0),  and . For y = 0, 1,

let fy(c; s) denote the conditional density of  given  and  and we assumed that
fy(c; s) is continuous and bounded away from zero uniformly in c and s. This assumption
implies that ROC(u; s) has continuous and bounded derivative RȮC(u; s) = ∂ROC(u; s)/∂u.

We assume that V and W are bounded, and , is
continuously differentiable bounded derivatives and bounded away from zero. Throughout,
the bandwidths are assumed to be of order n−ν with ν ∈ (1/5, 1/2). For ease of presentation
and without loss of generality, we assume that h1 = h0, denoted by h, and suppress h from
the notations. Without loss of generality, we assume that

. When C is assumed to be independent of both T and
(X, Z), the simple Kaplan–Meier estimator satisfies this condition. When C depends on (X,
Z), ĜX, Z obtained under the Cox model also satisfies this condition provided that Wc is
bounded. The kernel function K is assumed to be symmetric, smooth with a bounded
support on [−1, 1] and we let m2 = ∫ K (x)2dx.
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A.1 Asymptotic expansions for 

Uniform convergence rate for  We first establish the following uniform convergence

rate of :

(6)

To this end, we note that for any given c and s,

is the solution to the estimating equation , where ζy = (ζay, ζby)’ and

,  and

. We next establish the

convergence rate for , where

We first show that

and
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are both Op{(nh)−½ log(n)} where  and [ρl, ρu] is a subset of

the support of . To this end, we note that since supu |ĜX, Z(u) − GX, Z(u)| =

Op(n−½ and ,

This implies that

where  is a class of functions
indexed by β and e. By the maximum inequality of Van der Vaart and Wellner (1996), we
have

Together with the fact that  from Uno et al. (2007), it implies that

. In addition, with the standard arguments used in
Bickel and Rosenblatt (1973), it can be shown that

Therefore, for h = n−ν, 1/5 < ν < 1/2,
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is Op{(nh)−½log(n)}. Following with similar arguments as given above, coupled with the

fact that , we have

Thus, . It follows from same
arguments as given above that

Therefore, . In addition, we note that 0 is the unique
solution to the equation ψy(ζy; c, s) = 0 wrt ζy. It suggests that

, which implies the consistency of ,

Asymptotic expansion for  Let . It follows from a
Taylor series expansion and the convergence rate of ζy(c; s) that

(7)

where . Futhermore, since supt≤to{ĜX, Z(t) −
GX, Z(t)| = Op(n−1/2),

We next show that  is asymptotically equivalent to
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(8)

where . From (8) and the fact that τ{y; φ(s)} is bounded away from 0
uniformly in s, we have

where

is the class of functions indexed by γ, β and e. By the maximum inequality of Van der Vaart

and Wellner (1996) and the fact that  from Uno et al. (2007), we

have  and . It follows that

. Then, by a delta method,

(9)

where

(10)

Using the same arguments as for establishing the uniform convergence rate of conditional
Kaplan-Meier estimators (Dabrowska 1989; Du and Akritas 2002), we obtain (6).
Furthermore, following similar arguments as given in Dabrowska (1987, 1997), we have

 converges weakly to a Gaussian process in c for all s. Note that as for all kernel

estimators,  does not converge as a process in s.

A.2 Uniform consistency of 

Next we establish the uniform convergence rate for . To this end, we write
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where  and

. It follows from (6) that

. Let . Then
. Noting that

, we have  by the continuity and boundedness of RȮC(u; s).
Therefore,

which implies

and hence the uniform consistency of .

A.3 Asymptotic distribution of 

To derive the asymptotic distribution for , we first derive asymptotic expansions

for . From the

weak convergence of  in c, the approximation in (9), and the consistency of

 given in the Appendix A.2, we have

On the other hand, from the uniform convergence of  and the weak convergence

of  in c, we have

This, together with a Taylor series expansion and the expansion given (9), implies that

It follows that
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(11)

where

(12)

It then follows from a central limit theorem that for any fixed s,  converges to a
normal with mean 0 and variance

where  is the density function of ,

and

A.4 Justification for the resampling methods
To justify the resampling method, we first note that

. It follows from similar arguments given
in the Appendix A and Appendix 1 of Cai et al. (2010) that

, where  is

obtained by replacing all theoretical quantities in  given in (10) with the estimated
counterparts for the ith subject. This, together with similar arguments as given above for the

expansion of , implies that

where  Conditional

on the data,  is approximately normally distributed with mean 0 and variance
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Using the consistency of the proposed estimators along with similar arguments as given

above, it is not difficult to show that the above variance converges to  as n → ∞.
Therefore, the empirical distribution obtained from the perturbed sample can be used to

approximate the distribution of .

We now show that after proper standardization, the supermum type statistics Γ converges
weakly. To this end, we first note that, similar arguments as given in the Appendix A can be

used to show that  and

for some small positive constant δ. Using similar arguments in Bickel and Rosenblatt
(1973), we have

where an = [2 log{{ρu − ρl)/h}]½ and . Now justify the
resampling procedure for constructing the CI, we note that

where pr{sups∈Ω(h)|nε∗(s)| ≥ e | data} → 0 in probability. Therefore,

where . It follows from similar arguments as given in Tian et al.
(2005) and Zhao et al. (2010) that

in probability as n → ∞. Thus, the conditional distribution of an(Γ* − dn) can be used to
approximate the unconditional distribution of an(Γ − dn). When h0 = h1, in general, the
standardized Γ does not converge to the extreme value distribution. However, when h0 = h1
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= k ∈ (0, ∞), the distribution of the suitable standardized version of Γ still can be
approximated by that of the corresponding standardized Γ* conditional on the data (Gilbert
et al. 2002).

Appendix B

B.1 Bandwidth selection for pAUCf(s)
The choice of the bandwidths h0 and h1 is important for making inference about  and
consequently pAUCf(s). Here we propose a two-stage K-fold cross-validation procedure to

obtain the optimal bandwidth for  and  sequentially. Specifically, we
randomly split the data into K disjoint subsets of about equal sizes denoted by

. The two-stage procedure is described as follows:

I. Motivated by the fact that  is essentially the (1 − u)-th quantile of the

conditional distribution of  given Y† = 0 and , for each k, we use

all the observations not in  to estimate  by obtaining
, the minimizer of

wrt (α0, α1), where ρτ(e) is a check function defined as ρτ(e) = τ e, if e ≥ 0; = (τ −

1)e, otherwise. Let  denote the resulting estimator of

. With observation in , we obtain

Then, we let .

II. Next, to find an optimal h1 for , we choose an error function that directly

relates to . Specifically, noting the fact that

we use the corresponding mean integrated squared error for

 as the error function. For each k, we use all the
observations which are not in  to obtain the estimate of , denoted by

 via (4). Then, with the observations in , we calculate the prediction
error
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We let .

Since the order of  is expected to be n−1/5 (Fan and Gijbels 1995), the bandwidth we use

for estimation is  with 0 < d < 3/10 such that hy = n−ν with 1/5 < ν < 1/2. This

ensures that the resulting functional estimator  with the data-dependent smooth
parameter has the above desirable large sample properties.

B.2 Bandwidth selection for IDI(s)
Same as bandwidth selection for pAUC, we also propose a K-fold cross validation

procedure to choose the optimal bandwidth h1 for  and h0 for

 separately. The procedure is described as follows: we randomly split

the data into K disjoint subsets of about equal sizes denoted by . Motivated

by the fact (3), for each k, we use all the observations not in  to estimate  by

obtaining  for y = 0, 1, which is the solution to the estimating equation

wrt . Let  and . With observations
in , we obtain

or

Then, we let  and .

Appendix C
R codes for application will be available from the corresponding author upon request.
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Fig. 1.
Performance of the point estimates, the standard error estimates and pointwise CIs for
pAUC0.1 with sample size 10,000: (a) the true pAUC0.1(x) (solid) and the average point
estimates (dashed) over 1,000 replicates, (b) the empirical standard error estimates (solid)
and the average of the estimated errors (dashed) based on the resampling procedure, and (c)
the empirical coverage levels of the pointwise 95% CIs obtained from the resampling
procedures
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Fig. 2.
(a) The density estimates of the 10-year event risk calculated from the FRS. (b) The IncVs
wrt C-statistics for the 10 subgroups of low risk as well as the intermediate and high risk
groups with their 95% CIs
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Fig. 3.
The point estimates (solid line), and its 95% pointwise CIs (dashed lines) and the 95%
simultaneous confidence bands (dark shaded region) for (I) the subgroup-specific IncV with
respect to AUC, AUC(x) − 1/2; (II) the subgroup-specific IncV with respect to pAUC0.1,
pAUC0.1(x) − 0.12/2; (III) the subgroup-specific IncV with respect to IDI. The two vertical
dotted lines represent the-risk category cut-offs, 10 and 20%, from left to right
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Fig. 4.
The point estimates (solid line), and its 95% pointwise CIs (dashed lines) and the 95%
simultaneous confidence bands (dark shaded region) for the subgroup-specific IncV with
respect to AUC and pAUC0.1 as well as IDI. The results are based on the weights  with
GX, Z(t) estimated via a Cox PH model
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Fig. 5.
The point estimates (solid line), and its 95% simultaneous confidence bands (dark shaded
region) for the relative subgroup-specific IncVs, which are used to test for heterogeneous
IncVs, with respect to AUC and pAUC0.1 as well as IDI over the interval [0,0.4] of the risk
estimates obtained from the FRS
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