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  Prolyl 4 hydroxylases (P4H) are iron- and 2-oxoglutamate-dependent dioxygenase enzymes and 
hypoxia-inducible transcription factor (HIF)-P4Hs play a critical role in the regulating oxygen 
homeostasis in the local tissues as well in the systemic circulation. Over a period of time, a number 
of prolyl hydroxylase inhibitors and activators have been developed. By employing the pharmacological 
tools and transgenic knock out animals, the critical role of these enzymes has been established in 
the pathophysiology of number of diseases including myocardial infarction, congestive heart failure, 
stroke, neurodegeneration, inflammatory disease, respiratory diseases, retinopathy and others. The 
present review discusses the different aspects of these enzymes including their pathophysiological role 
in disease development. 
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INTRODUCTION

  Prolyl hydroxylases belong to the family of iron- and 2-ox-
oglutamate-dependent dioxygenase enzyme and its several 
distinct isoforms have been identified. The hypoxia-in-
ducible factor (HIF) prolyl hydroxylase enzymes, termed as 
prolyl hydroxylase domain (PHD), play an important role 
in oxygen regulation in the physiological network. Its three 
isoforms including PHD1, PHD2 and PHD3 have been iden-
tified in different tissues and organs [1]. 
  Cells recognize and respond to hypoxia by accumulating 
the transcription factor hypoxia-inducible factor 1 (HIF-1), 
composed of an oxygen-sensitive inducible HIF-1α and a 
constitutive HIF-1β subunits. PHD enzyme are involved 
in the degradation of HIF-1α sub-unit by regulating its 
hydroxylation of 402/504 proline residues. Under hypoxic 
conditions, the lack of oxygen leads to stabilization of HIF-1α 
to form HIF heterodimer which is subsequently trans-
located to the nucleus. The binding of the HIF-heterodimer 
to specific DNA sequences within the nucleus, named hypo-
xia-responsive elements, triggers the trans-activation of 
target genes. The nature of target gene and type of ex-
pressed proteins may vary depending upon the type of tis-
sues and disease conditions. The present review describes 

the different aspects of these PHD enzymes including the 
therapeutic implications of its modulators in different dis-
ease states.

TYPES OF PROLYL 4-HYDROXYLASES

Collagen Prolyl 4-Hydroxylases

  Collagen prolyl 4-hydroxylases (C-P4Hs) are located 
within the lumen of the endoplasmic reticulum and catalyze 
the hydroxylation of prolines in -X-Pro-Gly- sequences in 
collagens and more than 15 other proteins that have colla-
gen-like domains [2]. These C-P4Hs have a central role in 
the biosynthesis of collagens as 4-hydroxyproline residues 
are essential for the formation of the collagen triple helix. 

1. Nematode collagen P4Hs
  The nematode C. elegans has a large gene family of more 
than 150 members that encodes cuticle collagens [3]. The 
PHY-1/PHY-2/PDI2 mixed tetramer is the main P4H form 
in wild-type C. elegans, along with a small amount of 
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PHY-1/ PDI dimers, while PHY-2/PDI dimers have not been 
detected. The PHY-1, PHY-2, and PDI2 subunits of nemat-
odes C-P4H are complementary to α(I), α(II), and β2 sub-
units of vertebrates C- P4H [4]. P4H α subunit from D. 
melanogaster has been cloned and characterized and con-
sists of 516 amino acid residues and shows 34∼35% and 
31% sequence identities to the vertebrate α subunits and 
the C. elegans PHY-1, respectively [5]. C-P4Hs have also 
been cloned and characterized from the parasite filarial 
nematodes Onchocerca volvulus and Brugia malayi [6,7].

2. Plant and viral P4Hs
  Although plants have no collagens, yet 4-hydroxyproline 
is found in many plant glycoproteins. Unlike the animal 
P4Hs, partially purified P4Hs from unicellular and multi-
cellular green algae have been shown to be monomeric in 
nature [8]. In addition, higher plant P4Hs has also been 
noted to exist as monomers [9]. Partly purified plant P4Hs 
have been shown to effectively hydroxylate poly (L-proline) 
[10]. However, plant P4Hs have been unable to hydroxylate 
free prolines suggesting that a poly (L-proline) type II helix 
conformation is required in the substrate for hydroxylation 
[10]. None of the animal P4Hs use poly (L-proline) as a 
substrate, but it has been noted to be an effective com-
petitive inhibitor of the former [11,12]. Arabidopsis thali-
ana genome has been noted to contain six genes encoding 
α-subunit like short polypeptides of 280∼332 residues 
that show 21∼27% amino acid sequence identity to the cat-
alytic C-terminal regions of the human P4H α subunits 
[13].
  4-Hydroxyproline has been reported to be absent in viral 
and bacterial proteins, but viral and bacterial genomes are 
also known to encode polypeptides with proline-rich repeats 
and even short collagen-like sequences [14-16]. A viral P4H 
has been cloned from an algal virus, Paramecium bursaria 
Chlorella virus-1 (PBCV-1). PBCV-1 P4H was found to hy-
droxylate prolines in both positions in the -Pro-Ala-Pro-Lys- 
repeats but those preceding the alanines are hydroxylated 
more efficiently [15]. 

3. Vertebrate collagen P4Hs
  Collagen P4Hs, from all vertebrate sources so far has 
been studied, are composed of α2β2 tetramers in which 
the β subunit is identical to protein disulfide isomerase 
(PDI) [11,12]. C-P4H had long been assumed to be of one 
type only, with no isoenzymes, however, now several iso-
forms of catalytic α subunit have been identified in hu-
mans, mice, Caenorhabditis elegans and Drosophila mela-
nogaster [5,17,18]. Both the α(I) and α(II) subunits asso-
ciate with β subunit to form [α(I)]2 β2 or [α(II)]2 β2 tet-
ramers, called the type I and type II enzymes, respectively 
[17,19]. Insect cell co-expression data strongly argue 
against the existence of mixed vertebrate α(I) α(II) β2 
tetramers [17].
  The human α(I) subunit consists of 517 amino acids and 
a signal peptide of 17 additional residues, whereas the α
(II) subunit consists of 514 amino acids and a signal peptide 
of 21 residues. The overall amino acid sequence identity 
between the human α(I) and α(II) subunits is 64%, and 
highest degree of identity (80%), is observed within the cat-
alytic C-terminal regions [17,20]. Type I C-P4H is the main 
form in the most cell types and tissues, while the type II 
enzyme has been shown to represent approximately 30% 
of the total P4H activity in cultured human WI-38 and 
HT-1080 cells and approximately 5∼15% in various chick 

embryo tissues [17]. However, type II P4H represents at 
least 70% and 80% of the total P4H activity in cultured 
mouse chondrocytes and cartilage, respectively [21], and is 
thus likely to have a major role in the development of carti-
lage, cartilagenous bone and capillaries in vertebrates.

HYPOXIA INDUCIBLE FACTOR-PROLYL 
4-HYDROXYLASE (HIF-P4H) SYSTEM

Discovery, types and distribution of HIF-1

  Semenza and Wang discovered the HIF-1, a protein with 
DNA binding activity, by identifying the presence of hypo-
xia response element (HRE; 5’-RCGTG-3’) in the eryth-
ropoietin gene [22]. The two isoforms or subunits of HIF-1 
viz., HIF-1α (inducible) and HIF-1β (constitutive) have 
been identified that form a heterodimeric complex to regu-
late target gene in response to hypoxia [23]. HIF-1 β, also 
known as the aryl hydrocarbon nuclear translocator 
(ARNT), was originally identified as a binding partner of 
the aryl hydrocarbon receptor [24] and was known much 
earlier as compared to its binding partner HIF-1α [25]. The 
subsequent studies revealed the ubiquitous presence of 
HIF-1α in the human and the mouse tissues and described 
its general role in multiple physiological responses to hypo-
xia [26]. HIF-1α and HIF-1β proteins belong to the basic 
helix-loop-helix−Per-ARNT-Sim (bHLH-PAS) protein fam-
ily [23] and bHLH and PAS motifs are essential for dimeri-
zation of these subunits and subsequent DNA binding [27]. 
HIF-2α (also termed as HIF-like factor and HIF-related 
factor) was identified and cloned in the lung, endothelium, 
and carotid body [28-30]. HIF-3α, mainly expressed in the 
Purkinje cells of the cerebellum and corneal epithelium, 
was subsequently discovered. A splice variant of HIF-3α 
does not possess endogenous transactivation activity and 
mainly functions as inhibitory PAS (IPAS) to prevent the 
binding of HIF-1α to its target DNA binding site [31]. 
  Structurally, HIF-1α protein possesses N-terminal (N- 
TAD) and C-terminal (C-TAD) as two transactivation do-
mains in its C-terminal half part that are involved in acti-
vating the transcriptional process [32]. The C-TAD partic-
ularly interacts with CBP/p300 (acting as co-activators) to 
activate gene transcription [33]. The hydroxylation of an 
asparagine residue in the C-TAD inhibits the association 
of HIF-1α with co-activators CBP/p300 and thus inhibits 
its transcriptional activity [34,35]. HIF-1 α also possess 
an oxygen-dependent degradation domain (ODDD) that me-
diates oxygen-regulated stability [35]. 

HIF-P4H enzymes

  HIF-P4Hs, a novel and distinct family of cytoplasmic 
prolyl 4-hydroxylases, plays a critical role in the regulation 
of the hypoxia-inducible transcription factor (HIF-1α) 
[36,37]. No overall amino acid sequence homology has been 
detected between the collagen-P4Hs and HIF-P4Hs, with 
the exception of critical residues in catalytic domain. It has 
been reported that human type I and type II collagen-P4Hs 
do not hydroxylate 19-residue synthetic peptide correspond-
ing to the sequence around Pro564 in HIF-1α [38]. HIF- 
P4Hs have been identified in humans, C. elegans and D. 
melanogaster. Three human cytoplasmic HIF- P4H iso-
enzymes that hydroxylate HIF-1α have been identified. 
The three different human HIF-P4Hs shows a 42∼59% se-
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Fig. 1. The effects of O2 changes (hypoxia and normoxia) on the 
fate of HIF-1α and mechanism of HIF-induced transcriptional 
changes.

quence identity to one another but no distinct sequence sim-
ilarity to the collagen P4Hs [37,39,40]. Like collagen-P4Hs 
these novel enzymes require Fe2+, 2-oxoglutarate, O2, and 
ascorbate as co-factor for catalytic activity. Although all 
three enzymes are widely expressed in many tissues, they 
exhibit tissue-specific overexpression. P4H2 are abundant 
in adipose tissue [41], P4H3 in the heart and placenta 
[41,42], and P4H1 in the testis [42]. The differences of the 
enzyme activity of P4Hs, sub-cellular localization and tis-
sue distribution enables a graded or tissue-specific response 
to hypoxia.
  Three isoforms of HIF-P4Hs have nearly identical Km 
value for O2, indicating that changes in the O2 are likely 
to have similar effects on the catalytic activities of all three 
isoenzymes. These Km values have been found to be slight-
ly higher than the concentration of dissolved O2 in air and 
much higher than the Km for O2 of the type I collagen-P4H. 
The difference in Km values may correspond to different 
functions of the two classes of P4H. HIF-P4Hs have been 
to act as effective oxygen sensors, their Km values for O2 
are close to atmospheric oxygen concentrations and even 
small decreases in O2 have been noted to influence their 
activities. However, type I collagen-P4H has been known 
to act in situations with very low O2 concentrations, which 
is in wounds and tissues of low vascularity. Therefore, the 
Km values for O2 of type I collagen-P4H is much lower.

Gene regulatory function and mechanism of HIF-1

  The hypoxia-inducible transcription factors (HIFs) has 
been noted to play a central role in the regulation of cellular 
and systemic O2 homeostasis [22]. The functional role of 
HIF-1α in regulating target gene expression in response 
to hypoxia is mainly under the control of oxygen sensing 
HIF-1α dioxygenases also termed as prolyl-4-hydroxylase- 
domain (P4HD) containing enzymes [23]. These enzymes 
are also termed as HIF-prolyl hydroxylase (HPH) and 
Egg-laying Nine (EGLN) and its three isoforms have been 
identified that include PHD1/HPH3/EGLN2, PHD2/HPH2/ 
EGLN1, and PHD3/HPH1/EGLN3 [37]. These belong to the 
superfamily of non-heme iron (Fe2+)-containing 2-oxoglu-
tarate (2-OG)-dependent oxygenases and these enzymes 
sense the cellular oxygen and use it as a co-substrate in 
hydroxylation reaction [43]. During normoxia (normal oxy-
gen concentration), P4HD enzymes rapidly hydroxylate the 
proline residues i.e., proline 402 (Pro402) and 564 (Pro564) 
located within ODDD on the de novo synthesized cytoplas-
mic HIF-1α [44-46]. Once the two proline residues are con-
verted to hydroxyproline, the hydroxylated HIF-1α fits ac-
curately on the surface pocket of von Hippel−Lindau 
(pVHL) in a highly specific manner [47,48]. Before binding 
to HIF-1 α, the pVHL associates with other proteins elon-
gin C, elongin B, cullin-2, and Rbx1 to form the VCB-Cul2 
E3 ligase complex [49]. The subsequent binding of HIF-1α 
to this multiprotein E3 complex causes polyubiquitination 
of HIF- 1α, ultimately leading to its degradation by 26S 
proteasome [25].
  However, hydroxylation of proline residues of HIF-1α 
does not occur during hypoxia due to inhibition of P4HD 
enzymes which in turn prevents its degradation. The per-
sisting HIF-1α forms a stable hetero-dimer with HIF-β 
using bHLH and PAS motifs [38,49]. HIF-1α-HIF-β het-
ero-dimer translocates into the nucleus and binds to the 
HIF-responsive elements in a number of hypoxia-inducible 
genes, such as those for erythropoietin, vascular endothelial 

growth factor and glycolytic enzymes etc (Fig. 1) [38,49]. 
Interestingly, the gene for the α(I) subunit of human type 
I collagen P4H has been shown to be one of the hypoxia-in-
ducible target genes of HIF-1α [50]. HIF-1α has been 
termed as ‘master regulator of gene expression’ during hy-
poxia and the consequences of HIF-1α activation are mani-
fold [51]. HIF-1α has been known for its ability to stim-
ulate glycolysis, angiogenesis and erythropoiesis at cellular 
level. HIF-1α has been reported to modulate the ex-
pression of many genes involved in cell survival including 
insulin-like growth factor-2 (IGF-2), transforming growth 
factor-α (TGF-α) and nitric oxide synthase-2 (NOS-2) 
[52-54]. HIF-1α also has the property to increase the glu-
cose uptake and anaerobic metabolism through activation 
of glucose transporters GLUT-1 and GLUT-3, and glycolytic 
enzymes such as phosphoglycerate kinase-1 (PGK-1) and 
aldolase A (ALDA) [55]. These changes increase the toler-
ance of cells to hypoxic conditions. HIF-1α has also been 
shown to modulate activities at the tissue level by up-regu-
lating genes involved in angiogenesis and blood flow, in-
cluding genes for vascular endothelial growth factor 
(VEGF) and heme oxygenase-1 (HO-1) [56]. Finally, HIF-1
α has also been noted to exert effects at the level of the 
whole organism, by inducing the erythropoietin (EPO) gene 
responsible for the generation of hemoglobin and con-
sequently the oxygen-carrying capacity of blood.

Stabilization of HIF-1α due to decreased functioning 
of P4H enzymes

  The stability regulation and subsequent trans-activa-
tional functions of HIF-1α are mainly controlled by its 
post-translational modifications, such as hydroxylation, 
ubiquitination, acetylation, and phosphorylation [57]. It has 
been reported that mutation of both proline residues dis-
rupts the interaction of HIF-1α with pVHL and increases 
its stability in the presence of normal oxygen levels, where-
as mutation of either proline alone only partially stabilizes 
HIF-1α [45]. The half-life of HIF-1α may also be increased 
by inactivating the P4HDs by 2-OG analogs [38,40]. Fe2+ 
at the active site of the P4HDs is loosely bound by two histi-
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dine residues and one aspartic acid to form a 2-histi-
dine-1-carboxylate coordination motif. The diminished avai-
lability of Fe2+ for the enzyme or substituting Fe2+ from the 
Fe2+ binding site inhibits the P4HD activity and stabilizes 
HIF-1α [46]. The genetic knockdown of P4HD2, not PHD1 
or PHD3, by its specific small interfering RNA also sta-
bilizes HIF-1α levels under normoxia [58].

PHYSIOLOGICAL ROLE OF HIF-P4H 
IN EMBRYONIC DEVELOPMENT

  The large number of evidences has indicated that early 
placental environment is hypoxic [59]) and that HIF-1α is 
present in the placenta before 10 weeks [60]. HIF-1α has 
been shown to play a critical role during the development 
as evidenced by early embryonic lethality in HIF-1α knock-
out animals [61,62]. Murine embryos lacking HIF-1α dis-
play defects in cephalic vascularisation, cardiovascular 
functioning and neural tube formation. Tissue-specific 
knockouts have demonstrated HIF-1α is crucial for the 
survival of hypoxic chondrocytes and that modulation of 
chondrocyte proliferation, differentiation and growth arrest 
[63]. Hypoxia has been known to influence adipogenesis, 
via HIF-1α dependent pathway [64]. Finally, HIF-1α has 
been shown to play a role in brain development through 
the use of neural-specific HIF-1α knockout mice and in 
these mutated mice had reduced numbers of neural cells 
and suffered from hydrocephalus [65]. 

PROLYL 4-HYDROXYLASE MODULATORS

Prolyl 4-Hydroxylase inhibitors

  Prolyl 4-hydroxylases inhibitors are divided into two fol-
lowing categories:

1. Peptide inhibitors
  Poly (L-proline), with molecular weight 15,0000, is a 
highly effective competitive inhibitor of the vertebrate type 
I prolyl 4-hydroxylase with a Ki of 0.02μM. Peptides in 
which the proline residue is to be hydroxylated has been 
replaced by 5-oxaproline, a proline analog containing oxy-
gen as a part of the five-membered ring, become suicide 
inactivators of prolyl 4-hydroxylases [66]. The most effec-
tive such peptide studied to date has the structure benzy-
loxycarbonyl-Phe-oxaproline-Gly-benzylester and inactiva-
tes type I prolyl 4-hydroxylase by 50% in 1 h at 0.8μM 
concentration.

2. Non-peptide inhibitors
  Inhibitors of prolyl 4-hydroxylase have been charac-
terized with respect to all its co- substrates. An interest 
has been focused especially on competitive inhibitors with 
respect to 2-oxoglutarate [67]. Pyridine 2,4-dicarboxylate 
and pyridine 2,5-dicarboxylate have functional groups that 
can interact with all the sub-sites of the 2-oxoglutarate 
binding site of P4H and inhibit the enzyme with Ki values 
of 2μM and 0.8μM, respectively [68,69]. These two com-
pounds are only very weak inhibitors of 2-oxoglutarate de-
hydrogenase, an enzyme which differs from P4H in that 
its reaction mechanism does not involve any metal ion. 
N-oxalylglycine is another compound that interacts with 
2-oxoglutarate binding site and inhibits the enzyme with 

Ki of 0.5∼8μM [67,70].
  3,4-Dihydroxybenzoate (EDHB) also has functional groups 
needed for binding with all the sub-sites of the 2-oxoglu-
tarate binding site and inhibits the enzyme with a Ki of 
5μM [71]. It differs from the pyridine derivatives in being 
competitive with respect to both 2-oxoglutarate and ascor-
bate, whereas the latter are uncompetitive with respect to 
ascorbate. L-Mimosine inhibits P4H by 50% at a 120μM 
concentration [72]. Three groups of compounds have also 
been identified that act as irreversible inactivators of P4H 
by a suicide mechanism. The first group consists of peptides 
containing 5-oxaproline, as discussed above. The second 
group includes coumalic acid, which acts as a 2-ox-
oglutarate analog but is only a weak inactivator, as it lacks 
a functional group needed to bind to the Fe2+ at a catalytic 
site [73]. The third group consists of the anthracyclines dox-
orubicin and daunorubicin, which inactivate P4H by 50% 
in 1 hr at a 60μM concentration [74]. Hydralazine, deal-
anylalahopcin and its analogues as human HIF-P4H in-
hibitors have also been reported [75,76].

Prolyl 4-Hydroxylases activators

  α-Ketoglutarate (α-KG) is an activator of humans P4Hs 
and has been used employed as an important pharmaco-
logical tool. It is a key intermediate in the Krebs cycle, and 
is a rate-limiting cofactor of P4H. It also has a potent effect 
on increasing the proline pool during collagen production 
and it is involved in collagen metabolism through a variety 
of mechanisms including glutamine precursor [77].

THERAPEUTIC IMPLICATIONS OF 
HYPOXIA INDUCIBLE FACTOR-PROLYL 

4-HYDROXYLASES (HIF-P4H) MODULATORS

  The pharmacological modulation of P4H enzymes have 
revealed the important role of HIF-P4H system in the path-
ophysiology of number of diseases and accordingly, these 
modulators have potential to attenuate these disease state 
(Fig. 2).

Myocardial infarction (MI)

  Wright et al. [78] examined the consequences of activa-
tion of prolyl hydroxylase domain containing enzymes 
(PHD) in cultured neonatal myocytes using EDHB and di-
methyloxalylglycine (DMOG) as P4H enzyme inhibitors. 
The treatment with these inhibitors and short duration hy-
poxia were found to induce the expression of different pro-
teins including glucose transporter 1 (GLUT1), nitric oxide 
synthase (NOS) and heme oxygenase-1 (HO-1). In conjunc-
tion with these changes in gene expression and HIF-P4H 
inhibition, increased myocyte viability was observed in the 
face of metabolic inhibition with cyanide and 2-deoxyglu-
cose. These results point to a key role for the HIF-P4H 
pathway in the phenotypic changes observed in a hypoxic 
myocyte and suggest a strategy to pharmacologically induce 
protection in heart. In another study, Ockaili et al. [79] re-
ported that systemic administration of the potent HIF- P4H 
inhibitor, DMOG, prior to ischemia and reperfusion is asso-
ciated with attenuated serum IL-8 levels, myocardial poly-
morphonuclear cells (PMN) infiltration and significantly re-
duced myocardial infarct size. It has also been demon-
strated that silencing of HIF-P4H2 genes with small inter-
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Fig. 2. Therapeutic implications of HIF-P4H inhibitors in different 
diseases.

fering RNAs (siRNAs) leads to cardioprotection against my-
ocardial ischaemia.
  Recently, it has been reported that the orally absorbed 
PHD inhibitor enzyme, GSK360A, modulates HIF-1α sig-
naling to protect the failing heart following myocardial in-
farction [1]. The cardiomyocyte-specific knock out of PHD2 
has been associated with protection from acute myocardial 
ischemic injury [80]. The earlier studies also demonstrated 
that the hearts of HIF-P4H-2 hypomorphic mice are more 
resistant to acute ischemia-reperfusion injury [81]. The con-
jugated linoleic acid-induced blockade of PHD1 and in-
duction of HIF-2α in myocardium is associated with up- 
regulation of pyruvate dehydrogenase lipoamide kinase iso-
zyme 4 (PDK4) by activation of PPARα. It is described to 
reprogram the basal metabolism and protect against oxida-
tive damage in myocardium in mice [82].

Congestive heart failure (CHF)

  Left ventricular (LV) remodeling after myocardial in-
farction (MI) involves disruption of supporting structures, 
myocyte hypertrophy, and collagen deposition both at the 
site of infarction and at areas remote from the infarct. This 
process is adaptive initially but may progress to LV dilata-
tion and dysfunction [83]. The final common pathway for 
collagen formation involves the activation of HIF-P4H, and 
accordingly, the inhibition of this enzyme after MI has been 
proposed to prevent interstitial fibrosis. Nwogu et al. [84] 
substantiated this proposal by showing the decreased fib-
rosis and collagen deposition in the presence of FG041, an 
orally available P4H inhibitor. In another study, P4H in-
hibitor was shown to improve the LV dysfunction and re-
duce the imbalance of matrix turnover and hypertrophy as-
sociated gene expression [85]. The conditional inactivation 
of PHD2 in mice sufficient to activate a subset of HIF target 
genes has been associated with premature mortality char-
acterized by marked venous congestion and dilated car-
diomyopathy [86]. 

Cancer

  The activation of the HIF-1α system has been observed 
in numerous cancers due to induction of a hypoxic environ-
ment in the wake of rapidly dividing cancerous cells [87]. 

The different molecular mechanisms have been proposed 
for the up-regulation of the HIF-1α system in tumoro-
genesis [88] and it is apparent that its down-regulation may 
be an attractive target for cancer therapy. Bordoli and 
co-workers demonstrated that down-regulation of PHD2 
leads to increased tumor growth in a hormone-dependent 
mammary carcinoma and the clinical samples of human 
breast cancer showed significantly shorter survival times 
of patients with low-level PHD2 over a period of 10 years. 
In the absence of PHD2, an increase in amphiregulin was 
reported and its levels were normalized after PHD2 
reconstitution. Amphiregulin is an angiogenesis-related an-
tibody and is regulated on the transcriptional level specifi-
cally by HIF-2, but not HIF-1. Accordingly, it has been pro-
posed that PHD2/HIF-2/amphiregulin signaling is critical 
in regulating breast tumor progression and PHD2 is a po-
tential tumor suppressor in breast cancer [89]. The studies 
have also indicated that PHDs function as tumor sup-
pressors in human colorectal cancer (CRC). A recent clinical 
study has described that the low expression of PHD2 in 
CRC predicts poor survival (in early stage tumors) in-
dependent of HIF-1α [90]. Heindryckx and co-workers de-
scribed the increased hepato-carcinogenesis and develop-
ment of cholangiocarcinoma in PHD2 deficient mice in re-
sponse to diethylnitrosamine, a carcinogenic agent. The 
growth of these tumors is limited as they rapidly outgrow 
their vascular supply and become hypoxic. Therefore, it is 
proposed that deficiency of PHD2-induced stabilization of 
HIF-1α promotes angiogenesis to accelerate the growth of 
these tumors in mutant mice suggesting PHD2 as good tar-
get for potential therapeutic intervention [91]. On the con-
trary, Klotzsche-von Ameln and co-workers demonstrated 
the anti-tumor effects due to inhibition of oxygen sensor 
PHD2 in tumor cells through matrix metalloproteinase- in-
duced TGF-β activation pathway [92]. 

Respiratory diseases

  Bronchopulmonary dysplasia (BPD), a disorder of pre-
term newborns, is characterized by impairment in lung mi-
crovasculature development and distal airway formation. 
It has been reported that pharmacological inhibition of 
HIF-P4H with FG-4045 is associated with an increased an-
giogenesis in lung due to augmented growth factors like 
vascular endothelial growth factor (VEGF) and platelet-en-
dothelial cell adhesion molecule 1 (PECAM-1) [93]. The 
augmentation of lung angiogenesis with elevated HIF-1α, 
in primate model of BPD, suggests the potential usefulness 
of HIF-P4H inhibitors in the management of BPD in pre-
term newborns. The involvement of prolyl hydroxylases in 
the process of hypoxic pulmonary vascular remodeling in 
chronic obstructive pulmonary disease (COPD) via regu-
lation of HIF-1α gene expression has been demonstrated. 
The levels of HIF-lα mRNA and protein levels in COPD 
group are shown to significantly higher as compared to nor-
mal subjects [94].

Peripheral vascular diseases

  Peripheral vascular disease is one of ischemic disease and 
its treatment is still unsatisfactory. Using the rat sponge 
model for angiogenesis, Warnecke et al. [95] provided the 
evidences of increased vascularization with local injection 
of HIF prolyl hydroxylase inhibitor and projected it as novel 
target for the treatment of peripheral ischemic diseases. 



116 R Kant, et al

Within hours after a single application of HIF prolyl hy-
droxylase inhibitors such as L-Mim and S956711, the in-
duction of cytoprotective genes including HO-1 was demon-
strated suggesting their capability to mediate acute pro-
tection against hypoxic damage. Accordingly, it has been 
proposed that the topical application of HIF-P4H inhibitors 
could be clinically useful to augment vascularization in pe-
ripheral artery disease or to preserve organ transplant [95]. 
A recent study has shown that although the HIF1α levels 
in vein wall are not affected during thrombosis, yet its 
up-regulation in local vein wall promotes angiogenesis to 
recanalize the veins and resolve the thrombus [96].

Stroke

  Stroke is an ischemic disease of the brain and its treat-
ment like other ischemic diseases is still unsatisfactory. 
There have been studies suggesting that the HIF-1α prolyl 
hyroxylases are inhibited during ischemic preconditioning 
and pharmacological inhibitors of these enzymes may be 
viable targets for stroke therapy (Bergeron et al., 2000). 
Siddiq et al. [97] demonstrated the up-regulation of HIF 
dependent target genes like enolase, VEGF, P21waf1/cip1 and 
erythropoietin in the embryonic cortical neurons in vitro 
and even in adult rat brain in vivo as a consequence of 
HIF-P4H inhibition. The expression of these genes due to 
HIF-P4H inhibition has been shown to prevent oxidative 
stress-induced death in vitro and ischemic injury in vivo. 
Recently, the inhibition of prolyl hydroxylase and sub-
sequent stabilization of HIF activity with oral administra-
tion of TM6008 has been shown to protect the neurons in 
the forebrain from focal ischemia by inhibiting apoptosis 
[98]. 

Neurodegenerative diseases

  The HIF prolyl hydroxylase inhibitors are shown to pre-
vent mitochondrial toxins- induced neuronal death, thus, 
implicating their therapeutic potential for Huntington's dis-
ease and Alzheimer's disease [99]. The pharmacological in-
hibition of prolyl hydroxylases by 3,4-dihydroxybenzoate 
(DHB) administration has been shown to produce protection 
against MPTP-induced neurotoxicity, animal model of 
Parkinson’s disease [100]. The in vitro studies have demon-
strated that DHB attenuates LPS-mediated induction of ni-
tric oxide synthase and pro-inflammatory cytokines in mur-
ine BV2 microglial cells. Furthermore, it was also shown 
to reduce ROS production and activation of NFκB and 
MAPK pathways possibly due to up-regulation of HO-1 
levels. The in vivo treatment with DHB also suppressed 
MPTP-induced microglial activation suggesting that its 
beneficial neuroprotective properties may be due to in-
hibition of microglial activation via HO-1 induction [101]. 
The earlier studies have shown HIF prolyl hydroxylase in-
hibition increases cell viability and potentiates dopamine 
release in dopaminergic cells and hence, prolyl hydrox-
ylases may represent novel targets for therapeutic inter-
vention in disorders characterized by dopamine homeo-
stasis dysregulation like Parkinson's disease [102].

Kidney diseases

  The intrinsic HIF activation is sub-maximal in acute kid-
ney injury and the augmentation of HIF has been shown 
to ameliorate the acute disease manifestations of the kid-

ney [103]. The activation of HIF has been shown to protect 
the kidney from acute ischemic cell death, while it promotes 
fibrosis in experimental models of chronic kidney diseases. 
Kapitsinou and co-workers demonstrated that the pharma-
cologic inhibition of HIF prolyl hydroxylation before acute 
kidney injury ameliorates fibrosis and prevents the devel-
opment of anemia. Accordingly, the pre-ischemic targeting 
of the PHD/HIF pathway has been suggested as an effective 
therapeutic strategy for the prevention of chronic kidney 
disease resulting from acute injury [104].

Inflammation and related diseases

  Using a pharmacologic approach leading to HIF-1α sta-
bilization, and genetic manipulation of HIF-1α homologs 
in zebrafish, Elks and co-workers demonstrated the key 
role of HIF-1α in neutrophilic inflammation. Both ap-
proaches suggested that the activated HIF-1α delays reso-
lution of inflammation and its activation leads to reduced 
neutrophil apoptosis and increased retention of neutrophils 
at the site of tissue injury, thereby delaying the resolution 
phase [105]. Using neutrophils from mice deficient in 
PHD3, the unique role for PHD3 in prolonging neutrophil 
survival during hypoxia (distinct from other hypo-
xia-associated changes in neutrophil function and metabolic 
activity) has been demonstrated. The reduced neutrophil 
survival due to PHD3 deficiency was associated with 
up-regulation of the proapoptotic mediator Siva1 and loss 
of its binding target Bcl-xL. An increased neutrophil apop-
tosis and clearance in PHD3-deficient mice has also been 
reported in in vivo models of inflammation (acute lung in-
jury model and acute mouse model of colitis) [106].
  The studies have shown that HIF prolyl hydroxylase in-
hibitors are protective in mouse models of inflammatory 
bowel disease (IBD). The PHD1(-/-), but not PHD2(+/-) or 
PHD3(-/-), mice are shown to less susceptible to the devel-
opment of dextran sulphate sodium-induced colitis in terms 
of reduction in weight loss, disease activity, colon histology, 
neutrophil infiltration, and cytokine expression. Further-
more, the reduced susceptibility of PHD1(-/-) mice to colitis 
was associated with increased density of colonic epithelial 
cells due to decreased apoptosis and enhanced epithelial 
barrier function [107].

Oxygen-induced retinopathy

  The major side effect of oxygen therapy for preterm in-
fants is retinopathy which in turn leads to blindness in 
children. Duan and co-workers demonstrated that the ex-
posure of 75% oxygen leads to degradation of retinal HIF-α 
proteins in the neonatal Smice expressing normal amounts 
of PHD2 and it was accompanied by massive loss of the 
retinal microvessels. PHD2 deficiency significantly stabi-
lized HIF-1α, (HIF-2α to some extent), in neonatal retinal 
tissues, to protect retinal microvessels from oxygen-induced 
obliteration. Accordingly, it has been proposed that there 
is close association between PHD2-dependent HIF-α deg-
radation and oxygen-induced retinal microvascular ob-
literation, and PHD2 may serve as promising therapeutic 
target to prevent oxygen-induced retinopathy [108].

Preconditioning

  Three HIF-P4Hs (HIF-P4H1, HIF-P4H2, and HIF-P4H3) 
affect the proteosome-mediated degradation of HIF by cata-
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lyzing the hydroxylation of key proline residues in the 
HIF-1α subunit under normoxic conditions. When oxygen 
tension is reduced, HIF-P4H-mediated hydroxylation do not 
occur and HIF-1α accumulates in the nucleus leading to 
enhanced HIF-mediated gene transcription [109]. The in-
volvement of HIF-P4Hs in preconditioning in the various 
tissues has been recently shown by many workers. 
Bernhardt et al. [110] has reported that hypoxic pre-
conditioning or HIF-P4Hs inhibitors confer renal protection 
in ischemic acute renal failure [110]. Ran et al. [111] re-
ported that hypoxic preconditioning shows neuroprotection 
against sustained ischemic insult and HIF-P4Hs inhibitors 
mimic this hypoxic preconditioning reflecting the involve-
ment of HIF-P4Hs in hypoxic preconditioning. Prolyl 4-hy-
droxylase inhibition-induced preconditioning is also in-
volved in myocardial protection. From our own laboratory, 
it was demonstrated that pharmacological preconditioning 
with EDHB (HIF-P4Hs inhibitor) mimicked the cardio-
protective effects of remote renal preconditioning. Adminis-
tration of α-KG (HIF-P4Hs activator) and diethyldithio-
carbamic acid (NFkB inhibitor) were shown to abolish the 
cardioprotective effects of remote renal preconditioning and 
EDHB. Therefore, it was proposed that inhibition of 
HIF-P4H has a key role in remote renal precondition-
ing-induced cardioprotection and HIF- P4H inhibition trig-
gers a transduction pathway involving NFkB activation 
[112].
  In the model of cultured hippocampal slices, the applica-
tion of anoxia preconditioning before oxygen-glucose depri-
vation is shown to prevent the neuronal damage and sup-
pression of HIF-1α and HIF-3α mRNA expression. Fur-
thermore, the effects of HIF prolyl-hydroxylase inhibition 
with 2,4-pyridinedicarboxylic acid diethyl ester pre-treat-
ment were similar to anoxia preconditioning. It suggests 
that anoxia preconditioning increases anti-ischemic neuro-
nal resistance which correlates with the changes of HIF-1α 
and HIF-3α expression [113]. It has been described that 
ischemic preconditioning produces reinforcing effect on 
HIF-1 accumulation during the subsequent hypoxic injury 
and HIF-1 induction during hypoxic preconditioning pro-
duces reinforcing effect to accumulate HIF-1 and develops 
a tolerance against a subsequent hypoxic neuronal injury 
[114]. 

Others

  The loss of the oxygen sensor PHD1 is suggested to make 
the skeletal muscles and liver more resistant to ischemia 
reperfusion injury, thereby projecting it as critical target 
in ischemia reperfusion-induced injury in these organs 
[115]. Muz and co-workers described that PHD-2 is the ma-
jor isoform that regulates HIF-α levels in RA fibro-
blast-like synoviocytes (RA FLS) suggesting the major im-
portance of this enzyme in hypoxia- and angiogenesis- de-
pendent inflammatory diseases such as RA [116]. 

CONCLUSION

  The preclinical studies have projected prolyl 4 hydrox-
ylase as critical target in the pathophysiology of number 
of diseases. Therefore, its pharmacological modulators may 
also be clinically effective in management of diseases. 
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