
Vol. 29 no. 9 2013, pages 1190–1198
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt110

Data and text mining Advance Access publication March 19, 2013

Parametric Bayesian priors and better choice of negative

examples improve protein function prediction
Noah Youngs1, Duncan Penfold-Brown2, Kevin Drew2, Dennis Shasha1,* and
Richard Bonneau1,2,*
1Department of Computer Science and 2Department of Biology, Center for Genomics and Systems Biology,
New York University, New York, NY 10003, USA

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: Computational biologists have demonstrated the utility of

using machine learning methods to predict protein function from an

integration of multiple genome-wide data types. Yet, even the best

performing function prediction algorithms rely on heuristics for import-

ant components of the algorithm, such as choosing negative ex-

amples (proteins without a given function) or determining key

parameters. The improper choice of negative examples, in particular,

can hamper the accuracy of protein function prediction.

Results: We present a novel approach for choosing negative ex-

amples, using a parameterizable Bayesian prior computed from all

observed annotation data, which also generates priors used during

function prediction. We incorporate this new method into the

GeneMANIA function prediction algorithm and demonstrate improved

accuracy of our algorithm over current top-performing function pre-

diction methods on the yeast and mouse proteomes across all metrics

tested.

Availability: Code and Data are available at: http://bonneaulab.bio.

nyu.edu/funcprop.html

Contact: shasha@courant.nyu.edu or bonneau@cs.nyu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on October 18, 2012; revised and accepted on

February 28, 2013

1 INTRODUCTION

The rate of new protein discovery has, in recent years, outpaced

our ability to annotate and characterize new proteins and prote-

omes. To combat this functional annotation deficit, many groups

have successfully turned to computational techniques, attempt-

ing to predict the function of proteins to guide experimental

verification. Specifically, there has been a surge of interest in

applying machine learning methods to the problem of protein

function prediction (FP), to take advantage of the wealth of

biological data available for each protein beyond its sequence,

such as computationally predicted tertiary structure, which has

already been shown to aid FP (Drew et al., 2011). While trad-

itional approaches to FP mainly involved either homology (with

limitations of accuracy) or manual curation (dependent on rare

expertise), these new methods present new evaluation and com-

parative challenges. The MouseFunc competition (Peña-Castillo

et al., 2008) was organized to test the ability of machine learning

methods to take advantage of large integrated datasets and pro-

vide useful predictions of gene function.
The validity of integrative approaches to FP was first demon-

strated by the works of Marcotte et al. (1999) and Troyanskaya

et al. (2003), which respectively used linkage graphs and a

Bayesian network to predict function. By the time of the

MouseFunc competition, FP methods had become diverse,

including Support Vector Machines, Random Forests,

Decision Trees and several composite methods (Guan et al.,

2008; Lee et al., 2006; Obozinski et al., 2008; Tasan et al.,

2008), but a recurring theme was to use protein–protein networks

of various types to determine function based on guilt by associ-

ation (Kim et al., 2008; Leone et al., 2005; Qi et al., 2008; Zhang

et al., 2008). In such a method, genes are represented by nodes in

a network, with weighted edges defined by a similarity metric

obtained from raw data (often the Pearson correlation coefficient

of feature vectors). Predictions are then formed by propagating

information from genes known to have a function, through the

network to unlabeled genes.

While providing unprecedented accuracy, the methods of the

MouseFunc competition exposed several general challenges still

remaining for the FP problem: (i) choosing a set of high-confi-

dence negative examples, (ii) using available data to form prior

beliefs about the biological functions of a gene and (iii) effectively

combining disparate data sources. As no comprehensive data-

base of functional negative examples currently exists, and

nearly all major machine learning methods require a negative

class for the training of a classifier, the selection of high-confi-

dence negative examples is especially important for the FP

problem.
In this work, we begin to address these challenges by present-

ing a parameterizable Bayesian technique for computing prior

functional biases for each gene, and a novel method for selecting

negative examples using these biases. To apply our method, we

use the framework of the GeneMANIA algorithm (Mostafavi

et al., 2008), one of the highest-performing competitors in

MouseFunc. In addition to our new priors and negative ex-

amples, we present a framework for tuning our Bayesian param-

eters and other parameters in the original GeneMANIA

algorithm. To facilitate this parameter tuning, we incorporate

new optimization techniques that take advantage of the structure*To whom correspondence should be addressed

1190 � The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

http://bonneaulab.bio.nyu.edu/funcprop.html
http://bonneaulab.bio.nyu.edu/funcprop.html
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


of the optimization problem. We also integrate our novel nega-

tive examples into the GeneMANIA network combination algo-

rithm that synthesizes heterogeneous data into one affinity

network.
While well-established procedures exist for the comparison of

machine learning methods, recent work (Greene and

Troyanskaya, 2012; Pavlidis and Gillis, 2012) has exposed and

discussed problems that can be introduced into these compari-

sons by the nature of biological data. To mitigate these biases, we

heed the suggestions of Greene and Troyanskaya (2012), and

focus on evaluation with a temporal holdout (an evaluation set

of annotations obtained later in time than the training data,

referred to in this article and in the MouseFunc competition as

the ‘novel evaluation setting’). We also include one of the few

available gold standard evaluation sets (an exhaustive experi-

mental evaluation of the presence of a particular protein function

across an entire genome), obtained from Huttenhower et al.

(2009). Our goal is to demonstrate the performance improve-

ments of our new algorithm over the existing state of the art in

a fair (apples-to-apples) comparison across several datasets. We

expect that these comparative results will generalize to other

datasets as they become available.

2 PREVIOUS WORK

We present our novel methods using the framework of the

GeneMANIA FP algorithm of Mostafavi et al. (2008), which

incorporates prior beliefs and an intelligent network combination

algorithm into its guilt-by-association framework. GeneMANIA

is a form of Gaussian Random Field (GRF) label propagation, a

semi-supervised technique pioneered by Zhou et al. (2004) and

Zhu et al. (2003), and provides predictions for genes one function

at a time. Given a set of nodes (genes) in a network the edges of

which define pairwise similarity, and a vector ~y of prior label

biases for the nodes, given the current function being examined,

the GRF algorithm assigns a discriminant value fi to each node,

which can be ranked to produce predictions. The label biases yi
take values in (�1,1), with �1 representing known negative

labels, 1 representing known positive labels and values in be-

tween reflecting prior belief about the likelihood of a gene

having the function in question. The final discriminant vector ~f
is obtained by solving the optimization problem:

min
f

X
ðfi � yiÞ

2
þ
XX

Wijðfi � fjÞ
2

h i
ð1Þ

This equation has an analytical solution in the form of a linear

system: Ax ¼ b (see Supplementary Material for details), and

also guarantees that the discriminant values fi will lie in the

range (�1,1), with larger values indicating greater likelihood of

an unlabeled node being a positive example of the function in

question.
Intuitively, this algorithm allows prior information to flow

through the network until equilibrium is reached. The objective

function propagates known labels through the similarity network

via the second ‘smoothness’ term in Equation (1), weighted by

the strength of similarity between nodes as specified by the net-

work, and also enforces adherence to the prior bias through the

first ‘consistency’ term in Equation (1). Thus, the label biases,

both the positive and negative examples as well as biases used for

unlabeled nodes, play an important role in the algorithm.

Mostafavi and Morris (2009) explore variations on techniques

to choose the label bias vector, but we expand on this work to

improve accuracy in our algorithm by using more of the infor-

mation contained in current functional annotations to determine

functional biases and negative examples (see Section 3.1).

The other key component of the GRF algorithm is the com-

posite network defining similarity between all pairs of genes.

Mostafavi et al. (2008) proposed a method to combine disparate

data sources, each represented as an affinity matrix, into one

composite matrix, based on the work of Tsuda et al. (2005).

This algorithm, for each Gene Ontology (GO) category of inter-

est, maximizes the similarity between pairs of positively labeled

genes and minimizes the similarity between genes of opposite

labels (see Supplementary Material for details).

This network combination algorithm is prone to overfitting in

cases with few positive examples. The original GeneMANIA al-

gorithm addressed this problem by introducing a regularization

term, but later work (Mostafavi and Morris, 2010) instead at-

tempts to fit the composite data network for multiple GO cate-

gories simultaneously. Our algorithm expands on this second

approach by directly incorporating our negative examples (see

Section 3.3).

3 ALGORITHM

We propose novel techniques focusing on several key aspects of

protein FP: choosing negative examples, forming label biases for

unlabeled genes with some known annotations and an issue spe-

cific to GRF-based methods, namely, combining heterogeneous

data types into one affinity network. In addition, we suggest a

new optimization algorithm tailored to our techniques, and pro-

vide a framework for tuning parameters using the training data.

3.1 Label biases

Mostafavi and Morris (2009) showed that significant perform-

ance gain could be achieved by allowing existing GO annotations

to inform the priors applied to genes in GRF FP, using a tech-

nique called Hierarchical Label Bias (HLBias). This idea is sup-

ported by the work of King et al. (2003), which showed that

patterns of GO annotations alone provided enough signal to

predict future annotations. HLBias specified that genes which

possessed annotations for functions ancestral to the function of

interest received a prior bias equal to the proportion of genes

with the ancestral function that also are known to have the func-

tion in question.

However, owing to the difficulty of defining a functional hier-

archy, the structure of the GO tree is often altered by its curators,

with terms being moved to different parents, virtually guarantee-

ing that there exist functional relationships that are non-ances-

tral. When considering the complexity of functional interactions,

it would seem likely that the presence of some functions might

influence the likelihood of a gene possessing other functions,

regardless of whether the relationship between the two is ances-

tral. This is especially true when considering annotations in all

three branches of the GO hierarchy simultaneously. Accordingly,

we extend HLBias to include the likelihood of a given function

1191

Parametric Bayesian priors and better choice of negative examples

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


co-occurring with all other existing annotations [across all three

branches of the GO tree: Biological Process (BP), Molecular

Function (MF) and Cellular Component (CC)], in the following

manner:
Let p̂ðcjmÞ denote the empirical conditional probability of

seeing annotation c, given the presence of annotation m, then

p̂ðcjmÞ ¼
nþmc

nþm
, where nþmc is the number of gene products where

bothm and c appear, and nþm is the number of gene products that

have annotation m. For a protein i, let Di be the set of all GO

terms annotated to i. For a given function c, we approximate the

conditional prior probability of gene i having function c by the

following score:

priori ¼
1

jDij

X
m2Di

p̂ðcjmÞ ð2Þ

The label biases are then scaled to the range

ð�1, 1Þ : yi ¼ 2 � priori � 1.
Owing to the hierarchical nature of GO categories, some of the

conditional probabilities in this calculation will contain redun-

dant information, and so when considering a protein with anno-

tations Di, we remove from Di all GO terms that have a child in

Di, leaving a set of only the most specific annotations of protein i

to use in calculating the bias.
Figure 1c provides an example of the most predictive GO

terms for the GO function UDP-glycotransferase activity

(UDPGA), which include many terms that have no ancestral

relationship to UDPGA. Examining a specific prediction ex-

ample, we find that the annotations informing the prior bias

for gene Ogt (pictured in Fig. 1a), are all non-ancestral terms,

and contribute to the algorithm making a correct positive pre-

diction (Fig. 1b).
Lastly, we observe a large bias introduced by categories with

small sample size, where one category appears to be a perfect

predictor of another. To reduce the potential for overfitting

stemming from this phenomenon, we introduce a weighted

pseudocount into the calculation of the empirical conditional
probability, whereby p̂ðcjmÞ ¼

nþmc

nþm
is replaced by the following:

bp0ðcjmÞ ¼ nþmc
nþm þ �e

�nþm
ð3Þ

This idea is motivated by the hypotheses that no two GO
categories ‘c1’ and ‘c2’ should both appear in every protein

where one appears, unless ‘c1’ and ‘c2’ have an ancestral rela-
tionship, and also that the number of undiscovered occurrences
of a function is related to the number of currently known occur-

rences. This equation (via the two parameters � and �) allows us
to smoothly transition between two extreme assumptions about
how missing and currently known annotations are distributed: (i)

the number of observations in the data is a proxy for how well a
function has been studied, and so the number of missing counts
in the data should be inversely proportional to the number al-

ready seen, and (ii) the number of currently known occurrences is
a better representation of the specificity of a function, and so the
undiscovered occurrences should be directly proportional to the

number already seen.
To allow the data itself to choose one of these hypotheses, we

sample from a range of combinations of parameters, including

the potential for no pseudocounting (see Supplementary
Material). The final value of the parameters is chosen by
tuning with cross-validation over the training set, as described
in Section 3.5.

For genes with no previous annotations in GO, we follow
Mostafavi et al. (2008) and set the label bias to the mean of all
the label biases calculated for genes with GO annotations,

including the positive and negative example genes with values
of ð1, �1Þ respectively. We refer to our label bias algorithm here-
after as ALBias.

3.2 Negative examples

The choice of negative training examples for use in supervised

machine learning algorithms is a recurring problem for FP

Fig. 1. (a) A subsection of the association network before the algorithm is run, showing prior beliefs for genes for the function: GO:0008194, UDP-

glycotransferase activity, focusing on geneOgt. The shading of the nodes represents the degree of positivity comparedwith themean of all prior biases, with

blue indicating greater likelihood of possessing the function in question, red representing lesser likelihood and white representing genes that had no GO

annotations to use for a prior. Square nodes represent validated true positives (including the training positive exampleWdfy3). (b) The same subsection of

the association network as (a), but after label propagation, showing the final discriminant values of the genes. (c) TheGOcategories that aremost predictive

of the function GO:0008194, with darker shades of blue representing stronger predictors. Network visualized with Cytoscape (Smoot et al., 2011)

1192

N.Youngs et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


methods. While the GO database does include negative annota-

tions, the number of such annotations is currently small. Thus, it

is necessary to infer negative examples for each function (typic-

ally using a heuristic). Past heuristics include (i) designating all

genes that do not have a particular label as being negative for

that label (Guan et al., 2008), (ii) randomly sampling genes and

assuming the probability of getting a false negative is low (often

done when predicting protein–protein interactions, as in Gomez

et al., 2003) and (iii) using genes with annotations in sibling

categories of the category of interest as negative examples

(Mostafavi and Morris, 2009). Mostafavi and Morris (2009)

note in discussion that this last technique may often break

down, as some genes are annotated to more than one sibling

category, and many genes have few siblings to use.

We present a new technique for choosing negative examples

based on the label biases calculated for each function. Namely,

all genes with an annotation in the same branch of GO as the

term being predicted, and which have a priori score of 0 for the

function in question (with the prior score computed across all

three branches of GO), are treated as negative examples for that

function. Intuitively, this amounts to treating a gene ‘g’ as a

negative for annotation ‘c’ if no annotation ‘s’ among the most

specific annotations of ‘g’ ever appeared alongside annotation ‘c’

in any other gene (note that the choice of pseudocounting par-

ameters does not impact the negative examples, as only the mag-

nitude of the label bias will be affected and not whether a bias is

non-zero).
Restricting the negative examples to having an annotation in

the same branch as the GO term being predicted, rather than

simply having an annotation in any branch, decreases the

number of negative examples, and also more significantly de-

creases the number of validated true positives that were misclas-

sified as negatives. The number of negatives in mouse decreased

by 14.9% owing to this restriction, while the number of verifiable

misclassified negatives dropped by 22.5%; in yeast, the number

of negative examples decreased by 23.2%, while the verifiable

misclassified negatives dropped by 91.5%.

3.3 Network weighting

As mentioned in our description of previous work, one essential

component of the GRF algorithm is synthesizing heterogeneous

data sources into one pairwise affinity matrix. Mostafavi and

Morris (2010) found that fitting this matrix for multiple GO

functions simultaneously significantly decreased overfitting, es-

pecially in low-annotation categories. The authors simplified the

calculation of this simultaneous fit by considering negative–nega-

tive pairs of labels as well as the positive–positive and positive–

negative pairs used by the original network-weighting algorithm

of Mostafavi et al. (2008). This simplification also requires the

treatment of all non-positive genes as negative genes for each GO

category (see Supplementary Material).
Mostafavi andMorris (2010) showed that these simplifications

do not hamper performance, and also found that fitting the

combined network to all GO categories in a particular branch

(GO-BP, GO-CC or GO-MF) worked better than any other

subset or grouping of functions. We concur that fitting to all

categories performs better than any of the subsets we attempted,

but propose that the apparent indifference of this algorithm to

the assumption that all non-positive nodes are negative was most

likely due to a lack of any satisfactory alternative for choosing

negative examples.

We return to the unsimplified version of the simultaneous fit

proposed by Mostafavi and Morris (2010), and use our more

specific negative examples that are unique to each GO category

(see Supplementary Material for details of the calculation). We

refer to our modified network combination algorithm as

Simultaneous Weights with Specific Negatives (SWSN).

3.4 Successive block conjugate gradient optimization

The network-weighting scheme defined above creates a single

combined matrix W for all functional categories within the

same GO branch. Thus, the coefficient matrix is identical for

the optimization problem that is solved for each function, and

so we are faced only with the issue of a different right-hand side

(RHS) per function. In such cases, computational costs can be

decreased by methods that solve all of the problems simultan-

eously, rather than iteratively solving each problem without

using any of the information obtained by other solutions. We

propose a modified version of the Successive Block Conjugate

Gradient algorithm (SBCG) proposed by Suarjana and Law

(1994).
In this algorithm, the search direction is obtained simultan-

eously for all of the distinct RHS vectors in the problem. If at

any point, the search direction matrix becomes rank deficient,

dependent RHS vectors are moved to a secondary system, but

are still updated with steps obtained from the search direction in

the primary system, and so still proceed toward convergence. The

speed of this secondary convergence is dependent on the angle

between the vectors in the primary system and secondary system.
Our algorithm differs from the original one proposed by

Suarjana and Law (1994) in several ways. Firstly, not all solu-

tions converge to the desired tolerance in the same number of

iterations, and so we save computation by removing already-

converged RHS vectors from the block calculation rather than

updating the entire system until all RHS vectors converge.

Secondly, when the RHS vectors in the secondary system are

nearly orthogonal to those in the primary system, waiting for

secondary convergence can require a large number of iterations.

Instead, once all primary system RHS vectors are converged, we

restart the algorithm in a second phase, with the secondary

system as the primary system, but using the latest residuals as

our starting point. Lastly, empirical observation has shown some

low condition numbers can occur in the secondary phase when

the number of dependent RHS vectors is large. We find that

splitting up the total number of RHS vectors into a few smaller

blocks alleviates this problem without significantly increasing

computational cost. For the problem at hand, we chose to

divide the FP problems into subproblems with a maximum of

500 RHS vectors. Pseudocode for our algorithm is presented in

the Supplementary Material.

3.5 Parameter tuning

The multiple RHS framework described in Section 3.4 lends itself

well to parameter tuning, as the different combinations of the

parameters � and � described in Section 3.1 simply yield more

1193

Parametric Bayesian priors and better choice of negative examples

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


RHS label bias vectors to solve for with the same coefficient
matrix.
The original formulation of the GRF objective function in

Zhou et al. (2004) included the parameter �, which describes
the relative weight to be placed on each component of the ob-

jective function, which we formulate as follows:

min
f

�
X
ðfi � yiÞ

2
þ ð1� �Þ

XX
wijðfi � fjÞ

2
h i

ð4Þ

This parameter was ignored by the GeneMANIA algorithm,
but we reintroduce it here, and test its impact on FP by adding it
to our tuning methodology.

To choose performance-maximizing parameters, we create a
synthetic learning problem from the training data, which is char-

acteristically similar to the original learning problem, and choose
parameters that yield the best performance on this subproblem.
Details are presented in the Supplementary Details.

4 METHODS

4.1 Evaluation datasets

We evaluate our algorithm on three datasets: the MouseFunc benchmark,

yeast data and a gold standard dataset of yeast genes. With regard to

MouseFunc data, we focus on the Molecular Function branch of the GO

hierarchy. For fair comparison with prior work, we use only data avail-

able to participants at the time of the MouseFunc exercise: these data

include 10 networks (Interpro data, PFAM data, three Gene Expression

networks, Protein–Protein Interaction data, Phenotype, two

Conservation Profile networks, Disease Association data), 1874 molecu-

lar function categories, and 21 603 mouse genes, with all data gathered in

2006 (see Peña-Castillo et al., 2008). Predictions are made, as in

MouseFunc, only for functional categories with between 3 and 300 an-

notations in the genome, but all functional categories are used in the bias

calculation and negative example choice described in Sections 3.1 and 3.2.

For our performance evaluation in yeast, we focus on the Biological

Process branch of the GO tree, using data obtained from Mostafavi and

Morris (2010), which includes 44 networks of data obtained from

BIOGRID (Stark et al., 2006), covering 3904 genes with 1188 biological

process categories (categories with between 3 and 300 annotations). We

augment this yeast data with experimentally confirmed gold standard

annotations in the BP category of GO:0007005, mitochondrion organiza-

tion and biogenesis (MOB), obtained from Huttenhower et al. (2009; see

Section 4.3).

4.2 Functional association data

Association networks are created from feature-based data types using the

Pearson correlation coefficient, after a frequency transform as described

in Mostafavi et al. (2008). Only the top 100 interactions are used for each

gene in the training set to keep the networks sparse, and a normalization

scheme of W0h ¼ D1=2
h WhD

1=2
h is applied to each network and to the final

combined network, where Dh is again the diagonal matrix containing the

row sums of Wh.

4.3 Evaluation frameworks

We categorize protein function through GO ontology annotations, obser-

ving the common convention of excluding annotations denoted as

’Inferred Electronic Annotations’ (IEA).

As in the MouseFunc competition, performance is evaluated in two

different scenarios: (i) a test set where all GO annotations are removed

from a subset of data (1718 genes in mouse) and then predictions are

made from the remaining training data, and (ii) a novel set where

predictions are made for proteins that have received new annotations

at a later date. The member genes of this second set consist of the inter-

section of all proteins that have received at least one new annotation in

any of the GO categories for which we are attempting predictions (1954

genes in mouse, 362 genes in yeast), and so include many proteins that

already had some annotations in the training set, as well as proteins with

no annotations in the training set.

We treat the novel scenario as the more important evaluation scheme

for this work, as we believe it better reflects the true task facing compu-

tational biologists, and is less prone to evaluation biases (Greene and

Troyanskaya, 2012). The test set approach suffers from biases stemming

from the underlying use of sequence-similarity methods in both input

data and GO labeling (discussed in greater detail in the Supplementary

Material), which likely explains the better performance of all algorithms

in the test scenario versus the novel scenario. Error results are presented

for the test scenario as well, to facilitate comparison with MouseFunc

algorithms. For both the novel and test MouseFunc evaluations, predic-

tions are made for the same set of GO Molecular Function categories as

the original competition: 488 and 442 categories, respectively. For yeast,

we show results only in the novel scenario, with data from June 2007, 1

year after the training data, which includes 511 GO BP categories with at

least one new annotation.

Any comparison of computational methods using GO annotations as

the ground truth suffers from the lack of delineation between negative

and absent annotation. This drawback is discussed at length in

Huttenhower et al. (2009), and can create significant difficulty in evalu-

ating computational prediction methods, as observed false-positive pre-

dictions may simply be a function of a lack of study rather than incorrect

prediction. It is for this reason that performance evaluation in the novel

scenario ignores any false positives for genes outside the novel set, as it is

likely that these genes were not studied at all in the time interval between

the annotation date for training and for testing. To further alleviate some

of the uncertainty caused by incomplete annotation, we present perform-

ance evaluation metrics on a ‘gold standard’ benchmark of yeast genes

experimentally verified by Huttenhower et al. (2009) for GO:0007005

MOB. These gold standard annotations include 148 additional positive

annotations that match genes in our yeast gene set, and are also added to

the novel set used for the general yeast benchmark. Lastly, when calculat-

ing performance statistics on the MOB gold standard, we add an add-

itional 2473 genes to the 342 comprising the yeast novel set. These

additional genes are the negative examples from Huttenhower et al.

(2009) that are present in our gene set.

4.4 Evalutation metrics: precision-recall versus

receiver-operator characteristic curve, TopScore

The performance of discriminant-based classification algorithms is most

often represented by two plots: The receiver-operator characteristic

(ROC) curve, and the precision-recall (PR) curve, each of which can be

summarized by their AUC, the area that the curve encompasses. While

both performance measures attempt to describe how well the ordering of

discriminant values captures the true-positive and -negative labels, each

has different strengths and weaknesses. Precision tends to be more easily

interpretable for an experimentalist, but averaging AUCPR numbers over

many classifiers can be misleading owing to the non-linear nature of

precision scores (see Supplementary Fig. S1). Conversely AUCROC pro-

vides a better global view of the rankings, but lacks a meaningful inter-

pretation for experimentalists, and its magnitude depends on the skew of

the dataset. See the Supplementary Material for a more detailed descrip-

tion of the pitfalls of each metric.

When presented with computational predictions, experimentalists must

determine the number of predictions to assay, as well as which functions

to focus on . . . a task made more difficult by complicated performance

metrics. To create a metric more robust to averaging than PR, but which

still enjoys easy interpretability for experimentalists, we propose

1194

N.Youngs et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


TopScorec, defined as
ð#true positives5rank cÞ

minðc, positive label countÞ
. This score represents

the fraction of a fixed number of experiments expected to yield a positive

result, normalized by the maximum number of positive results possible.

In this article, we present results for TopScore10, TopScore100 and

TopScore1000 for mouse, and TopScore10, TopScore50 and TopScore200
for yeast, providing insight into the usefulness of computational predic-

tions at three different scales of experimental testing (see Supplementary

Material for more details on TopScore).

4.5 Algorithm component exploration

Uncovering which component of our algorithm is responsible for what

performance changes is a challenging undertaking, as many of our algo-

rithmic changes are interlinked. For example, our choice of negative ex-

amples affects both the bias value of selected genes and the network

combination algorithm. Additionally, our bias calculation can also pro-

duce genes with a prior of �1, but which were not chosen as negative

examples for the purposes of network combination (owing to our restric-

tion that a gene must have annotations in the branch of interest to be

declared an official negative). We have performed additional experiments

to isolate the performance contributions of each of our algorithm sub-

components, presented in Sections 5.1, 5.2 and 5.3.

5 RESULTS AND DISCUSSION

We present results for our proposed techniques based on the

evaluation metrics and datasets described in Section 4, along
with analysis of the different components of our algorithm: nega-

tive example choice, network combination and parameter tuning.
Our tuned ALBias algorithm shows clear advantages over the

current GeneMANIA methods in the majority of evaluations,
with these differences being especially striking in the novel evalu-

ation scenarios, where prior biases play a more important role in
the algorithm than in the test scenario. In the yeast proteome,

our algorithm achieved a performance increase of 11–26% points

in every metric in the novel scenario, whereas in the mouse prote-
ome, we improved all evaluation scores by 2–6% points in the

novel scenario.

5.1 Negative example choice

To investigate the impact of our novel negative example choice,

we evaluate the SW network combination algorithm with no

label bias method, using three different negative example meth-
ods: the sibling negative examples, setting all non-positive

genes with GO annotations to negative examples and our new
negative example approach. As shown in Table 1, our negative

example choice outperforms previous choices in all three full-
organism evaluations, sometimes even approaching the perform-

ance of our full SWSN with ALBias and tuned parameters algo-
rithm, indicating that our choice of negative examples is

responsible for a significant part of our algorithm’s final

performance.
On the yeast gold standard, even though our algorithm de-

creases the number of validated true positives that are misclassi-

fied as negatives from 110 to 6, our negative example choice

results in lower evaluation metrics than the AllNeg selection.
We attribute the counterintuitive decrease in predictive perform-

ance when using ALBNeg in this setting, to the fact that the
particular category MOB is specific enough to have small preva-

lence in the genome (only 5.3% of yeast genes possess this

function), yet it is common enough that many genes have

shared an annotation with it, resulting in our algorithm only

selecting 691 negative examples. Thus, AllNeg yields high preci-

sion by virtue of having so many more negative examples,

whereby it avoids false positives, while the rarity of the category

means that there are not many true positives, and thus the mis-

labeling of true positives is outweighed by the decrease in pre-

dicted false positives.
Despite the success of our method in increasing performance

in most evaluations, and reducing the instances of mislabeling

validated true positives as negatives, in some GO categories, this

mislabeling still occurs. Accordingly, we believe there is more

potential for refined methods that correctly define high-confi-

dence negative examples, and that these methods will have sig-

nificant impact in the performance of machine learning

algorithms. Indeed, we hypothesize that part of the performance

gain demonstrated by the earlier HLBias algorithm was because

the authors adjusted the labels for all non-positive genes, effect-

ively turning any gene without a label in an ancestral category of

the function in question into a negative example.

5.2 Network combination algorithm SWSN

To examine the effect of our network combination algorithm,

SWSN, we performed a comparison with the SW network weight

algorithm, using no label biases and our negative examples,

yielding mixed results across evaluation scenarios and metrics.

SWSN slightly outperforms SW on the mouse novel set; the two

algorithms are virtually tied on the mouse test set; and SW out-

performs SWSN on the yeast novel and gold standard evalu-

ations. Yet, we believe that further refinement of negative

Table 1. Performance metrics for different negative example choices: sib-

ling negatives (SibNeg) as in Mostafavi et al. (2008), using all non-posi-

tive genes with GO annotations as negative (AllNeg), and negative

examples based on our ALBias method (ALBNeg)

Algorithm AUCROC AUCPR TS10 TS100
a TS1000

a

Mouse novel

SibNeg 0.7347 0.3236 0.4103 0.5342 0.7411

AllNeg 0.8155 0.3420 0.4318 0.5783 0.8354

ALBNeg 0.8366 0.3447 0.4314 0.5793 0.8705

Mouse test

SibNeg 0.8573 0.5019 0.6136 0.7622 0.8725

AllNeg 0.9232 0.5168 0.6207 0.7994 0.9530

ALBNeg 0.9330 0.5171 0.6160 0.8014 0.9745

Yeast novel

SibNeg 0.7566 0.3090 0.3674 0.6014 0.8094

AllNeg 0.7563 0.2865 0.3299 0.5284 0.8405

ALBNeg 0.8711 0.3387 0.4133 0.7127 0.9633

Yeast gold standard

SibNeg 0.7936 0.3729 0.8 0.54 0.5068

AllNeg 0.8679 0.4685 1 0.74 0.4932

ALBNeg 0.8413 0.3896 0.7 0.6 0.4865

Note: All algorithms were run using the SW network combination method, and the

GRF label propagation algorithm of Mostafavi et al. (2008). aFor the yeast scen-

arios, TopScore100 and TopScore1000 are replaced by TopScore50 and TopScore200.

1195

Parametric Bayesian priors and better choice of negative examples

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


example choice will show SWSN to be a more successful method.

To demonstrate this, we add to the comparison of the two algo-

rithms in Table 2 a third algorithm (SWSNOracle) in which our

negative examples are granted access to a negative oracle,

namely, the validation annotations, to ensure we do not select

any negative examples that are demonstrated positives (there are

almost certainly others among our negative examples that are

true positives, but not yet studied at the time of the collection

of validation data). This results in stronger performance on the

mouse novel set and yeast gold standard, but makes no differ-

ence on the mouse test or yeast novel sets, as there were no

instances of negative examples that were demonstrated positives

in the mouse test and only 11 in the yeast novel benchmark.
We believe this result indicates the promise of our SWSN al-

gorithm, although it was likely not a significant factor in the

current performance increase of our algorithm as a whole.

Therefore, we submit SWSN as a logical extension of SW, as it

uses the more accurate and specific negative example informa-

tion now available. We hypothesize the likelihood of future per-

formance gain from using SWSN, once even better negative

example methods are uncovered.

5.3 Parameter-tuning results

From the performance measurements presented in Section 5.1,

we see that while the tuned parameters performed significantly

better than the null parameters in the mouse novel and yeast

MOB benchmarks, their performance was on par with, or occa-

sionally worse than, the null guess in the mouse test and yeast

novel benchmarks. We attribute the decrease in performance,

primarily in the yeast novel set, to the inherent difference

between the state of annotation in yeast and mouse.

Our parameter-tuning algorithm was designed to re-create a

learning problem where annotations are only partially known,

yet in yeast, a well-studied organism, this type of learning prob-

lem was most likely not as representative of the true learning

problem as it was in mouse, a less-studied organism.

In general, adapting the tuning process to be representative of

the original learning problem is a more intricate problem than

first anticipated, and requires further exploration. For detailed

analysis of the parameter-tuning results, and future avenues of

approach, please refer to the Supplementary Material.

5.4 Prediction evaluations

We present the performance, evaluated by AUCROC, AUCPR

and TopScore metrics, of five algorithms: the original

MouseFunc GeneMANIA algorithm, the SW GeneMANIA al-

gorithm presented in Mostafavi and Morris (2010) using sibling

negative examples, the SW algorithm combined with the HLBias

algorithm of Mostafavi and Morris (2009) and two versions of

our algorithm: SWSN with ALBias and naive parameters

ð� ¼ 0, � ¼ 0, � ¼ 0:5Þ and SWSN with ALBias and tuned par-

ameters. Results are averaged over all categories, with an ana-

lysis of results broken down by function specificity available in

Supplementary Figure S2a in the Supplementary Material.

In the novel scenario for MouseFunc, our algorithms show a

strong increase in performance across all metrics, especially our

version with tuned parameters, as seen in Figure 2a. We see here

a large difference in performance between ALBias with tuned

parameters and ALBias with naive parameters, indicating that

some of our algorithmic performance increase in mouse is due to

the ability of our parametric pseudocounting procedure to pre-

vent undue bias influence from understudied GO categories in

mouse.

For the mouse test set, the difference in performance is much

smaller, as the test set is stripped of all labels, thus negating a key

advantage of ALBias (see Fig. 2b for mouse test results). Yet, we

still see a performance increase from our algorithm across most

metrics, owing to better biases for genes sharing edges with test

genes.
In the yeast novel set, we compare all algorithms except the

original MouseFunc GeneMANIA algorithm, and observe a

striking performance advantage of our algorithms across all

evaluation metrics (see Fig. 2c). Further analysis indicates that

much of this performance gain is due to our algorithm’s incorp-

oration of information from all branches of GO into the label

bias calculation. Examining an example GO term, ‘DNA

packaging’, where our algorithm boosted performance in

AUCROC from 0.722 to 0.989 and AUCPR from 0.467 to

0.803, we find the primary cause to be the improvement in rank-

ings of two true-positive genes with useful Cellular Component

annotations. YBR090C-Amoved from rank 102 to rank 5, owing

to the Cellular Component term ‘nuclear chromatin’, which has a

high joint probability with ‘DNA packaging’, and YCL060C

moved from rank 298 to 18, owing to the terms ‘nuclear chromo-

some’, and ‘chromosomal part’. Further examples are provided

in the Supplementary Material.

Lastly, on the yeast MOB gold standard (results in Table 3),

we see strong performance from our tuned SWSN ALBias algo-

rithm, which achieved significantly higher AUCROC and

Table 2. Performance metrics for network combination algorithms: sim-

ultaneous weights (SW) from Mostafavi and Morris (2010), our own

SWSN algorithm and SWSN with a negative oracle (SWSNOracle)

Algorithm AUCROC AUCPR TS10 TS100
a TS1000

a

Mouse novel

SW 0.8366 0.3447 0.4315 0.5793 0.8705

SWSN 0.8376 0.3460 0.4396 0.5878 0.8755

SWSNOracle 0.8775 0.3491 0.4433 0.6027 0.9366

Mouse test

SW 0.9330 0.5171 0.6160 0.8014 0.9745

SWSN 0.9315 0.5177 0.6211 0.8041 0.9684

SWSNOracle 0.9315 0.5177 0.6211 0.8041 0.9684

Yeast novel

SW 0.8711 0.3387 0.4133 0.7127 0.9633

SWSN 0.8632 0.3139 0.3796 0.6294 0.9649

SWSNOracle 0.8636 0.3139 0.3796 0.6294 0.9656

Yeast gold standard

SW 0.8413 0.3896 0.7 0.6 0.4865

SWSN 0.8315 0.3729 0.7 0.52 0.5135

SWSNOracle 0.8569 0.3871 0.7 0.54 0.5270

Note: All algorithms were run using the GRF label propagation method of

Mostafavi et al. (2008). aFor the yeast scenarios, TopScore100 and TopScore1000
are replaced by TopScore50 and TopScore200.

1196

N.Youngs et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


TopScore200 scores, and also from the SW, HLBias algorithm,

which achieved the highest TopScore10 and TopScore50 scores,

as well as a marginally higher AUCPR score. Thus, our algorithm

provided a better global ranking of true positives, while the cur-

rent GeneMANIA algorithm ranked the top true predictions

more highly.

5.5 Computational cost

A theoretical complexity analysis of the SBCG algorithm is not

possible (see Supplementary Material), but empirical testing

shows a 30% reduction in the number of flops required for the

prediction task on original MouseFunc data, with SBCG con-

verging to a solution with smaller residuals as well. On the yeast

benchmark, the reduction in flops was less, at 22%, as the ratio

between the number of genes and the number of functions to

predict is much smaller (see Table 3 in the Supplementary

Material). As expected, there was an observable increase in com-

putation saved as the number of categories increased, but this is

bounded by the fact that our algorithm splits the categories into

subsets with a maximum size of 500. This suggests that further

computation could be saved by devising a suitable strategy to

deal with low condition numbers for larger sets of RHS vectors.

Suarjana and Law (1994) suggest that a pre-conditioner applied

to the data might help reduce the number of iterations required

as well.

6 CONCLUSION

We have addressed several of the key problems encountered by

protein function prediction efforts by proposing novel algo-

rithms, including a method of choosing negative examples, and

a parameterized Bayesian methodology for computing prior

functional biases from existing annotation data. These methods,

applied using the framework of the GeneMANIA algorithm,

have resulted in a significant performance increase across three

large benchmarks. We also introduced a new optimization meth-

odology, which significantly decreased computational costs.
We devised a framework for tuning parameters in a synthetic

novel set, which added further performance gain in the novel

scenario in mouse, but it requires additional work to be more

broadly applicable to other evaluation scenarios. Our new

SWSN network combination algorithm shows even more prom-

ise in settings with more extensive negative example information.

Finally, we presented a new evaluation metric designed to be

easily interpretable by experimentalists, even when averaged

over many function categories.
When comparing performance statistics of different algo-

rithms, a difference of a few percentage points can mean hun-

dreds of new true annotations when applied across all functions.

For example, a 1% increase in TopScore10 would result in 187

new true annotations were an experimentalist to use that metric

to guide experiments over the 1874 GO MF categories in the

mouse genome (at the time of MouseFunc publication). Thus,

we believe the algorithms presented here have the potential to

guide experimentalists to a large number of fruitful assays, and

Fig. 2. Performance metrics in (a) the novel scenario in mouse (488 functions, 1954 genes), (b) the test scenario in mouse (442 functions, 1718 genes) and

(c) the novel scenario in yeast (511 functions, 342 genes). Metrics are averaged over all GO functions (each with between 3 and 300 counts per genome),

and error bars are 1 SD of the error in the mean

Table 3. Performance metrics on the yeast gold standard (GO:0007005),

with experimental data from Huttenhower et al. (2009), composed of 148

positive examples in 2815 genes

Algorithm AUCROC AUCPR TS10 TS50 TS200

SW, HLBias 0.8679 0.4685 1.0 0.74 0.4932

SW, No bias 0.7908 0.3729 0.8 0.54 0.5068

SWSN, naive parameters 0.8842 0.4076 0.8 0.56 0.5068

SWSN, tuned parameters 0.9032 0.4634 0.7 0.70 0.5608

Note: For both algorithms using the SW network combination algorithm, negative

examples were chosen according to the sibling technique discussed in Section 3.2.

1197

Parametric Bayesian priors and better choice of negative examples

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt110/-/DC1


are in general aligned with current biological understanding of
how genes are functionally related to each other through differ-
ent data types.
We have shown that our algorithm can perform function pre-

diction through data integration and guilt by association with
substantially more accuracy and efficiency than previously pub-
lished algorithms, and provided insight into some of the inherent

difficulties encountered by the development and evaluation of
protein function prediction algorithms.

ACKNOWLEDGMENT

The author would like to thank Sara Mostafavi for making her
code and data for the GeneMANIA algorithm publicly available.

Funding: This work was supported by U.S. National Science
Foundation grants 0922738, 0929338, 1158273, and IOS-

1126971, and National Institutes of Health GM 32877-21/22,
RC1-AI087266, RC4-AI092765, PN2-EY016586, IU54CA
143907-01 and EY016586-06.

Conflict of Interest: none declared.

REFERENCES

Drew,K. et al. (2011) The Proteome Folding Project: proteome-scale prediction of

structure and function. Genome Res., 21, 1981–1994.

Gomez,S.M. et al. (2003) Learning to predict protein- protein interactions.

Bioinformatics, 19, 1875–1881.

Greene,C.S. and Troyanskaya,O.G. (2012) Accurate evaluation and analysis of

functional genomics data and methods. Ann. NY Acad. Sci., 1260, 95–100.

Guan,Y. et al. (2008) Predicting gene function in a hierarchical context with an

ensemble of classifiers. Genome Biol., 9 (Suppl. 1), S3.

Huttenhower,C. et al. (2009) The impact of incomplete knowledge on evaluation: an

experimental benchmark for protein function prediction. Bioinformatics, 25,

2404–2410.

Kim,W.K. et al. (2008) Inferring mouse gene functions from genomic-scale data

using a combined functional network/classification strategy. Genome Biol., 9

(Suppl. 1), S5.

King,O.D. et al. (2003) Predicting gene function from patterns of annotation.

Genome Res., 9 (Suppl. 1), S5.

Lee,H. et al. (2006) Diffusion Kernel-based logistic regression models for protein

function prediction. OMICS, 13, 896–904.

Leone,M. and Pagnani,A. (2005) Predicting protein functions with message passing

algorithms. Bioinformatics, 21, 239–247. doi:10.1093/bioinformatics/bth491.

Marcotte,E.M. et al. (1999) A combined algorithm for genome-wide prediction of

protein function. Nature, 402, 83–86.

Mostafavi,S. et al. (2008) GeneMANIA: a real-time multiple association network

integration algorithm for predicting gene function. Genome Biol., 9 (Suppl. 1),

S4.

Mostafavi,S. and Morris,Q. (2009) Using the gene ontology hierarchy when pre-

dicting gene function. In: Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence. AUAI Press, Oregon.

Mostafavi,S. and Morris,Q. (2010) Fast integration of heterogeneous data sources

for predicting gene function with limited annotation. Bioinformatics, 26,

1759–1765.

Obozinski,G. et al. (2008) Consistent probabilistic outputs for protein function

prediction. Genome Biol., 9 (Suppl. 1), S6.

Pavlidis,P. and Gillis,J. (2012) Progress and challenges in the computational predic-

tion of gene function using networks. F1000 Res., 1, 14.

Peña-Castillo,L. et al. (2008) A critical assessment of Mus musculus gene function

prediction using integrated genomic evidence. Genome Biol., 9 (Suppl. 1.), S2.

Smoot,M. et al. (2011) Cytoscape 2.8: new features for data integration and network

visualization. Bioinformatics, 27, 431–432.

Stark,C. et al. (2006) BioGRID: a general repository for interaction datasets.

Nucleic Acids Res., 34 (Suppl. 1), D535–D539.

Suarjana,M. and Law,K.H. (1994) Successive conjugate gradient methods for struc-

tural analysis with multiple load cases. Int. J. Num. Methods Eng., 37,

4185–4203.

Tasan,M. et al. (2008) An en masse phenotype and function prediction system for

Mus musculus. Genome Biol., 9 (Suppl. 1), S8.

Troyanskaya,O.G. et al. (2003) A Bayesian framework for combining heteroge-

neous data sources for gene function prediction (in Saccharomyces cerevisiae).

Proc. Natl. Acad. Sci. USA, 100, 8348–8353.

Tsuda,K. et al. (2005) Fast protein classification with multiple networks.

Bioinformatics, 21 (Suppl. 2), ii59–ii65.

Qi,Y. et al. (2008) Random forest similarity for protein-protein interaction predic-

tion from multiple sources. Pac. Symp. Biocomput., 531–542.

Zhang,C. et al. (2008) An integrated probabilistic approach for gene function pre-

diction using multiple sources of high-throughput data. Int. J. Comput. Biol.

Drug Des., 1, 254–274.

Zhou,D. et al. (2004) Learning with local and global consistency. Adv. Neural Inf.

Process Syst., 16, 321–328.

Zhu,X. et al. (2003) Semi-supervised learning using Gaussian fields and harmonic

functions. In: Proceedings of the Twentieth International Conference on Machine

Learning, AAAI Press, Meno Park.

1198

N.Youngs et al.


