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ABSTRACT

Motivation: The analysis and mechanistic modelling of time series

gene expression data provided by techniques such as microarrays,

NanoString, reverse transcription–polymerase chain reaction and

advanced sequencing are invaluable for developing an understanding

of the variation in key biological processes. We address this by pro-

posing the estimation of a flexible dynamic model, which decouples

temporal synthesis and degradation of mRNA and, hence, allows for

transcriptional activity to switch between different states.

Results: The model is flexible enough to capture a variety of observed

transcriptional dynamics, including oscillatory behaviour, in a way that

is compatible with the demands imposed by the quality, time-reso-

lution and quantity of the data. We show that the timing and number of

switch events in transcriptional activity can be estimated alongside

individual gene mRNA stability with the help of a Bayesian reversible

jump Markov chain Monte Carlo algorithm. To demonstrate the meth-

odology, we focus on modelling the wild-type behaviour of a selection

of 200 circadian genes of the model plant Arabidopsis thaliana. The

results support the idea that using a mechanistic model to identify

transcriptional switch points is likely to strongly contribute to efforts

in elucidating and understanding key biological processes, such as

transcription and degradation.
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1 INTRODUCTION

One of the archetypal challenges of systems biology is the task of

uncovering the network of interactions between genes and pro-

teins using data such as that coming from high-throughput

genome-wide technologies or multi-parameter imaging. Time

series gene expression data from techniques such as

NanoString, reverse transcription–polymerase chain reaction,

microarrays or advanced sequencing are particularly valuable

for addressing such tasks especially if the system can be per-

turbed in an informative way. Such data can also be used to

get genome-wide understanding of the variation in key biological

processes, such as transcription and degradation. In many cases,

one is concerned with better-understood systems, such as the

circadian clock or cell cycle, where relatively sophisticated

models exist. In these cases, it is of interest to uncover both

new connections and deeper details of the regulatory inter-

actions. However, when studying systems where there is a

much lower density of understanding, one is relatively satisfied

with gaining information on the likelihood of the existence of a

regulatory interaction or the importance of a regulatory mech-

anism. Almost all examples studying the response dynamics

when systems are subjected to perturbations, such as drug

dosing (Eisen et al., 1998) or stress (Windram et al., 2012), or

where the progression of disease is studied (Calvano et al., 2005)

fall into this latter category.
Analysis of genome-wide time series gene expression data typ-

ically involves a number of tasks to parse the time series into

groups using various criteria, identify differential expression,

select smaller sets of genes for comparative analysis, identify mo-

lecular signatures and common regulatory elements, sort the data

to identify processes active at certain times and apply network

reconstruction algorithms to identify regulatory interactions.

One is, therefore, interested in computational approaches to

check the similarity or difference in time series expression

between genes and conditions. Many techniques for analysing

expression profiles have been used [see Androulakis et al.

(2007) and Bar-Joseph (2004) for overviews], such as hidden

Markov models (Schliep et al., 2004; Yoneya and Mamitsuka,

2007), spline functions (Bar-Joseph et al., 2003; Grün et al., 2012)

and clustering (Heard et al., 2005; Kiddle et al., 2010).

Unfortunately, however, it is relatively rare that, in terms of

specific molecular mechanisms, there is much common regula-

tion found across the clusters produced by such methods. This is

perhaps less surprising when one notes that the temporal profile

of gene expression depends on several processes, such as tran-

scription, degradation and splicing, and that similar profiles can

be produced from different combinations of these processes. In

particular, the amount of mRNA for a particular gene is the

balance between its synthesis and degradation at any point in

time. It would, therefore, be helpful if one could identify the

effect of these different processes from the data.
This requires the development of algorithms to provide more

mechanistic insight by combining time-course expression data

with parametric models of gene expression, and there has been

some progress in this direction. Relatively sophisticated methods

often using stochastic simulation have been developed for ex-

tracting parameter estimates from high-resolution time series

data (Golightly and Wilkinson, 2011; Komorowski et al., 2009;

Toni et al., 2009). However, these approaches are geared towards

modelling the intrinsic noise associated with the birth and death
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processes of molecules in single cells and are less suitable for
aggregate mRNA data arising from microarray and sequencing
experiments. Recently, a flexible parametric model for the re-

sponse of gene expression to environmental perturbations has
been introduced in Chechik and Koller (2009) and can be used
in this context. Applying it to gene expression time courses in

Saccharomyces cerevisiae after diverse environmental perturb-
ations they show that their model, which is based on the product
of two sigmoid functions and thus can capture exactly two tran-

sitions in the response dynamics, constitutes an improvement
over other general functional forms, i.e. polynomials. However,
although the magnitude and the timing of the response arise as

meaningful parameters, their model is not directly connected to
mechanism and is still not general enough to explain a wider
range of possible dynamic pattern observed in gene expression,

including oscillations.
Consequently, there is a need not only to decouple transcrip-

tional from degradation processes but also to model general
forms of transcription in a way that is compatible with the de-

mands imposed by the quality, time-resolution and quantity of
the data. In particular, the ability to handle an arbitrary number
of transitions where the transcription rate is changed and to infer

the number and types of these transitions from such data would
clearly be an extremely desirable feature. In this article, we pro-
pose an ordinary differential equation model (ODE) model that

addresses these issues and at the same time can be effectively
fitted to data with sufficient computational efficiency to enable
one to handle many genes. It is based on a simple dynamical

model of mRNA synthesis and degradation, where transcrip-
tional activity can ‘switch’ between an arbitrary number of
states. The timing and number of transitions, or ‘switches’, can

be estimated efficiently alongside mRNA stability with the help
of a reversible jump Markov chain Monte Carlo (RJMCMC)
estimation algorithm (Green, 1995). Multiple change-point or

switching models have previously been applied to biological sys-
tems, such as inferring transcription factor interactions (Opper
and Sanguinetti, 2010; Sanguinetti et al., 2009), modelling nega-

tive feedback in circadian clocks (Aase and Ruoff, 2008) and re-
constructing unobserved gene expression dynamics (Finkenstädt
et al., 2008; Harper et al., 2011). However, these models have so

far only supported binary expression dynamics, which are not
general enough to capture expression dynamics with multiple
steady-state expression levels.

The structure of the article is as follows. We first introduce the
modelling approach and estimation algorithm. The performance
of the algorithm has been studied extensively for artificial data

(Supplementary Section ‘Simulation study’). To demonstrate the
methodology and its potential further uses, we focus on model-
ling the wild-type behaviour of a set of 200 chosen oscillatory

expressed genes of the model plant Arabidopsis thaliana. The
approach allows us to investigate whether genes with similar
switch event times also have correlated promoter motifs.

Furthermore, we introduce a Bayesian hierarchical approach to
pool data from several experiments and present results for esti-
mation of mRNA stability. The example datasets consist of time

series from three experiments (called E1, E2 and E3) of varying
timescales and sampling regimes under some mock treatment
conditions (see Supplementary Fig. S1 for examples). Each ex-

periment originally consists of430 000 probes [Sclep et al. (2007);

www.catma.org], which map 425 000 genes from the TAIR9
genome annotation [Lamesch et al. (2012); www.arabidopsis.

org]. Here, we focus on a subset of 200 oscillatory genes
(chosen according to their correlation to a sine function for the

expression data from E1). The set includes a number of ‘core’
circadian clock genes (such as LHY, AT1G01060; CCA1,

AT2G46830; TOC1, AT5G61380). A list of the 200 genes can
be found in Supplementary Table S1.

2 A MULTI-SWITCH MODEL AND ITS INFERENCE

We assume that the aggregate dynamics of mRNA over a popu-
lation of cells can generally be described by a piecewise linear

ODE model where because of transcriptional regulatory pro-
cesses, the transcriptional rate of a gene changes (‘switches’)

from �i�1 to another rate �i at time point si

dM

dt
¼

�0 � �MðtÞ for 05t � s1,

..

. ..
.

�k � �MðtÞ for sk5t � L:

8><
>: ð1Þ

Here, MðtÞ denotes mRNA concentration at time t, � is the

rate at which mRNA is degraded and L is the length of the time
interval over which gene expression is observed. An increase in

the transcription rate �i from the previous regime can be inter-

preted as an ‘on-switch’, whereas an ‘off-switch’ is associated
with a decrease of transcriptional activity. However, we note

that the expression might not be fully turned off, and that
there may be more than just two states. We will refer to the

model in (1) as switch model. Neither the location of the
switch-times s1, ::: , sk nor the number of switches k is known

and need to be estimated along with the kinetic parameters of
the model. Solving the linear ODE for each linear regime and

iteratively inserting the final state of a previous regime as initial
condition of the next regime one can derive the following general

solution

MðtÞ ¼ Mð0Þe��t þ
�0
�
ð1� e��tÞ

þ
�1 � �0
�
ð1� e��ðt�s1ÞÞIt4s1 þ :::

þ
�k � �k�1

�
ð1� e��ðt�skÞÞIt4sk

ð2Þ

for an initial condition Mð0Þ, where It4z ¼ 1 if t4z is an indi-

cator function. Note that by setting

�0 ¼Mð0Þ, �1 ¼
�0
�
, �2 ¼

�1 � �0
�

, ::::

and

X0 ¼ e��t, X1 ¼ 1� e��t, X2 ¼ 1� e��ðt�s1Þ, :::

Equation (2) is a linear model

MðtÞ ¼ �0X0 þ �1X1 þ �2X2 þ ::::þ �kþ1Xkþ1 ð3Þ

for given degradation rate � and switch-times s1, ::: , sk. The

dimension of the model is determined by the number of switches
k. The case of no interior switch points corresponds to

MðtÞ ¼ �0X0 þ �1X1, that is the solution of a single linear
ODE from an initial condition Mð0Þ, whereas each additional

switch-point adds another additive term allowing for

1159

A temporal switch model

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt111/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt111/-/DC1
www.catma.org
www.arabidopsis.org
www.arabidopsis.org
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt111/-/DC1


convergence to a new equilibrium. Inference is carried out

assuming that the ‘true’ model is unknown but comes from a

class of models M0,M1, :: where Mk denotes the model with k

switching points. Using the notation of (3), each model Mk is

associated with a parameter vector �k ¼ ð�0, ::: : ,�kþ1, s1, ::: : ,
sk, �,Mð0ÞÞ, the dimension of which changes with the model.

Inference about k and �k is based on the target distribution

that is the joint posterior pðk, �kÞ. As this is a case of changing

model dimension, we shall generate samples from the joint pos-

terior using reversible jump Metropolis Hastings (Green, 1995).

Let y ¼ ðy
ðrÞ
ti ; i ¼ 1, ::: ,T; r ¼ 1, ::: ,RÞ denote the gene expres-

sion data for a particular gene where R denotes the number of

replicate time series, each with T observations for a given experi-

mental setting. Note that the notation that each replicate has T

observations is only used for simplicity. It will be obvious how to

allow for a different number of observations per replicate.

Assuming that the residuals between the ODE solution (2) and

the expression data are i.i.d. normal with mean zero and un-

known variance �2, the log likelihood function is

lð�kjyÞ ¼ �ðTRÞ logð�Þ �
1

2�2

XT
i¼1

XR
r¼1

ðMkðtiÞ � y
ðrÞ
ti Þ

2, ð4Þ

where �k denotes the vector of all unknown parameters, includ-

ing the initial condition, and MkðtiÞ is the solution to the differ-

ential equations defined by Equation (2) under model Mk.
For given switch-times and degradation rates, we have origin-

ally devised a complete Bayesian regression approach to the

model in (3) by assigning priors and sample from the conditional

posterior (Denison et al., 1998) of the regression coefficients �j.
However, analogous to the conclusions of Denison et al. (1998)

in the context of a spline model, we found that the �j can be

calculated by standard least squares regression, which is compu-

tationally substantially faster leading to results that, for our pur-

poses, are not distinguishable from the ones obtained from the

full Bayesian regression models. Moreover, inference about the

actual values of the �j is not directly of interest, as the time series

data can only be assumed to be proportional to the concentra-

tion MðtÞ, and the values of �j are affected by this scaling.
We use a vague gamma prior for the precision, i.e.

pð��2Þ ¼ �ð103, 103Þ and update the chain for ��2 via a Gibbs

step as in the usual normal Bayesian regression model. The deg-

radation rate � is a parameter shared by all models and ordinary

MCMC updating schemes can be applied. Here, we use a vague

normal prior for logð�Þ and a random walk Metropolis updating

scheme on the log scale. The prior model for k can be specified

by a Poisson distribution fðkÞ ¼ e�� �
k

k!
conditioned on k � kmax

(Green, 1995). Note that by changing �, the expected number of

switches can be controlled reducing potential model overfitting.
With regard to the switch points, we adapted the reversible

jump specifications of the algorithms used in Green (1995) and

Denison et al. (1998) to our model. We assume that the prior

switch-time positions s1, ::: , sk are uniformly distributed on [0, L]

and classify three possible moves:

(i) movement of a randomly chosen existing switch-point si
with probability 	k ¼ 1� bk � dk;

(ii) addition of a switch with probability bk ¼ c min 1, fðkþ1Þ
fðkÞ

� �
;

and

(iii) deletion of a switch with probability dk ¼ c min 1, fðk�1Þ
fðkÞ

� �

for some constant c 2 ½0, 1=2�. For k ¼ 0, we set b0 ¼ 1 and

d0 ¼ 0. The acceptance probability for the moves follows the

general rule (Denison et al., 1998; Green, 1995)

� ¼ min 1, likelihood ratio� prior ratio� proposal ratioð Þ: ð5Þ

For the position change in (i), we randomly chose a switch-

time si from the k existing switches, and a candidate value ~si is

drawn uniformly on ½si�1 þ 
, siþ1 � 
�, where 
 is a fixed min-

imum time between switch-times. The acceptance probability (5)

for this move is

� ¼ min 1, likelihood ratio�
ððsiþ1 � 
Þ � ~siÞð~si � ðsi�1 þ 
ÞÞ

ððsiþ1 � 
Þ � siÞðsi � ðsi�1 þ 
ÞÞ

� �
,

where likelihood ratio here generally refers to the ratio of likeli-

hood of proposed new values of parameters divided by the cur-

rent likelihood. For move (ii), addition of a switch, we propose a

new switch-time s0 uniformly on fðL, s, 
Þ, the support of L given

the constraints imposed by 
 on switch-times s. The proposed

value will lie in some interval ½si þ 
, siþ1 � 
�. The prior ratio is

then

fðkþ 1Þ

fðkÞ

2ðkþ 1Þð2kþ 3Þ

fðL, s, 
Þ2
ðs0 � ðsi þ 
ÞÞððsiþ1 � 
Þ � s0Þ

ðsiþ1 � 
Þ � ðsi þ 
Þ
,

the proposal ratio is dkþ1fðL, s, 
Þ
bkðkþ1Þ

and the acceptance probability for

a suggested switch is computed by inserting these into (5).

Finally, for move (iii) a switch is chosen randomly from the set

of existing switches, and the acceptance probability for this move

has the same form as for move (ii) with all ratios inverted.
Figure 1 shows the fit of the switch model to E1 data for the

core clock gene LHY (AT1G01060). The algorithm estimates a

mean half-life of 1.3h for LHY mRNA and identifies a total of

six switches, which consist of three periodically recurring

switches per day. LHY is a core regulating component of the

A.thaliana clock, and it has been shown to be induced before

dusk and has a peak of expression at dawn (Schaffer et al.,

1998). Around dawn, other clock components repress the expres-

sion of LHY resulting in rhythmic expression (Pokhilko et al.,

2012). The E1 data have a 16:8h light–dark cycle. The estimated

periodic switches show the initial gene induction several hours

before dusk and repression at or shortly after dawn.
This example clearly shows that the model is able to identify

asymmetric oscillations resulting from unequal length of on and

off times and switches that cause additional modes or ‘shoulders’

in the cyclic patterns. The traces of the RJMCMC algorithm for

the switches and their times are plotted in Figure 1C. We have

summarized the posterior results by the marginal distribution of

all accepted switch-times by fitting a Gaussian mixture model to

a function estimated by a non-parametric kernel density. From

this, all local maxima are identified and approximated by fitting

a mixture of Gaussians. We found this to work well in simulation

studies, but note that other parametric or non-parametric

approaches could be applied here. Each mode represents a pos-

sible switch, and the location is summarized by the mean and the

corresponding two-sigma band (shown in Fig. 1C). The latter

could be taken as an indicator of the ‘strength’ of a switch. It

should, however, be noted that by summarizing the marginal
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distribution over all accepted switch-times, we are averaging our

posterior information over all models entertained by the
RJMCMC algorithm. Although we do not follow this in

detail, here, we note that it may be useful to investigate the

MC traces in more detail for correlation between models.
Convergence for gene expression datasets from E1 is usually

achieved after 5K iterations (Supplementary Fig. S2), and the
posterior densities can be estimated from the RJMCMC traces of

75K iterations, after the first 25K iterations are discarded as

burn-in. The computational time for 100K iterations was on
average 128 s on a 2.8GHz computer. Fitting this model is

thus computationally feasible for thousands of genes and can

be easily parallelized.

3 RESULTS

To gain a systematic understanding of how the estimation algo-
rithm performs for time series of varying sampling frequencies

and noise levels, we generate synthetic datasets, for chosen kin-

etic parameter values and using data from E1 to obtain realistic
sample sizes and noise levels. The full study benchmarking the

performance of the model can be found in Supplementary

Section ‘Simulation study’. For the synthetic data, we are able
to obtain accurate estimates for timing and number of switches

and degradation rates under all but the largest noise level (taken

as the 95th percentile from the E1 data). We observe that the
parameter estimation is invariant of the mode of the switch (in-

crease or decrease transcription rate), that multiple switch points

must have at least one observation between them to be reason-
ably estimated and that a higher sampling frequency is generally

more informative for estimation than a larger number of repli-

cate samples. To demonstrate further use of this approach, we
now present case studies referring to the 200 example circadian

time series.

3.1 Correlation of switch-times with promoter motifs

A common aim of gene expression analysis is to identify poten-

tial common regulatory mechanisms between groups of genes

through clustering gene expression and enrichment of semantic

similarity, such as Gene Ontology (Pesquita et al., 2009), or se-

quence similarity, such as promoter motif structure (Cooper

et al., 2006). Here, we shall use the estimation results from the

switch model for the clustering of genes according to similarity in

switch-time distributions. Compared with the usual clustering

approaches based on similarity of the expression profiles, the

basic difference is that we can identify groups of genes that

change transcriptional activity around the same times irrespect-

ive of mRNA stability and whether such regulation is up or

down. Our clustering is based on the similarity matrix whose

entries quantify the pairwise distance between the estimated pos-

terior marginal distributions of switch-times (SD) of the genes.

Figure 2 shows an example cluster from the 200 circadian genes

where we used the symmetric Kullback–Leibler (KL) distance

(Kullback and Leibler, 1951). The KL distance is a common

choice for computing distances between probability densities,

but we note that other distance measures could be implemented

in a straightforward way.
Clustering is performed in all cases applying the affinity propa-

gation algorithm (Frey and Dueck, 2007) to the similarity

matrix. Multiple similarity matrices can be linearly combined,

allowing SDs from multiple experiments to be combined. One

can also focus the clustering on subsets of the domain of the SD.

If the domain is equal to the total length of observational time,

then genes with the same switch-times are clustered together ir-

respective of whether they are on or off switches. As the genes are

all circadian here, the corresponding expression profiles of the

genes in that cluster seem to be either in the same or in the

opposite ‘phase’ (Fig. 2A). If the distance measure is applied

separately to the on and off times, depending on whether tran-

scription is increased or decreased, then two similarity matrices

can be defined for each gene pair. Applying the clustering to the

sum of the two resulting similarity matrices gives clusters where

the expression patterns are in phase (Fig. 2B). The difference

from clustering according to overall similarity of the expression

profile is visible in Figure 2C where the red-highlighted example

gene is now in a group of more highly correlated expression

Fig. 1. Output from the RJMCMC for the gene LHY in E1. (A) The expression data (individual samples shown by � with shading between the extreme

samples at each time point). E1 data have a 16:8-h light–dark cycle, with the light periods starting at 18 and 42h and the dark periods starting at 10 and

34h. Grey-shaded regions indicate periods of no light. The red line shows the fitted piecewise linear ODE model for mean posterior parameter values.

Time in hours is on the x-axis, and mRNA expression in log-scale is on the y-axis. (B) The posterior distributions for the sampled degradation rate (left)

and precision (shown here in terms of �) (right). (C) The sampled switch-times (left) and the posterior distributions (right) for the six estimated switches,

s, and the shaded regions show si � 2�i. 100K RJMCMC iterations are generated, and the end of the burn-in period is indicated by the dashed red line at

25K iterations on (C)
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profiles, but the timing of its switches is visibly earlier than for

most other genes in that cluster.
A commonly explored hypothesis is that correlated gene ex-

pression patterns will also have correlated promoter structure

and regulation mechanisms. In practice, such correlations have

yet to be confirmed. By combining our analysis of switch-time

similarity with promoter motif data we ask whether our ap-

proach can shed more light on this issue. We investigate how

frequently certain listed motifs are encountered in clusters of

genes. If a motif has a high frequency for the genes in a given

cluster then it is more likely that the corresponding transcription

factor binding sites are key for the regulation of those genes. This

could give us an indication of which genes may be turned on or

off by the same transcription factors. Using position-specific

scoring matrix (PSSM) data from the TRANSFAC (Matys

et al., 2006) and PLACE (Higo et al.,1999) databases, 25 plant

motifs were selected, where each motif is present in at least 50 of

the 200 circadian gene subset, identified using APPLES (Baxter

et al., 2012) (see Supplementary Tables S2 and S3 for motifs).

These motifs can be grouped by sequence similarity into three

broad classes of promoter motifs, and a similarity matrix is gen-

erated from co-occurrence of motifs between each pair of genes,

which can then be linearly combined with each of the three simi-

larity scores and clustered.
One could obtain a clustering based on motif co-occurrence

alone (Supplementary Fig. S3A), which does not yield any tem-

poral correlation in the resulting expression profiles

(Supplementary Fig. S4). On the other hand, clustering only

the expression time series (Supplementary Figs S5–S7) brings

up some correlated promoter structure when using switch-

times, rather than overall expression (Supplementary Fig. S3B).

However, the approach is most informative when both the motif

co-occurrence and time series information are combined in that

we are able to identify strong correlations in promoter structure

together with temporal separation of profiles between clusters.
Figure 3 shows heatmaps for the proportions of each motif

present in each of the clusters resulting from combining the motif

co-occurrence similarity matrix with the similarity score of either

the switch-times or the overall expression profiles. The last

column (P) gives the proportion of each motif in the overall

population of the 200 circadian genes. It can clearly be seen

that clusters based on the whole switch-time distribution together

with motif co-occurrence show a very high proportion of some

motifs in several clusters. For instance, in Cluster 1, all motifs

from Group 1 and 2 (19 of 25 motifs) are present in 40% or more

of the genes, and in Cluster 7, 11 motifs from Groups 1 and 2 are

present in470% of genes, whereas the population mean motif

proportion is only 28% (Fig. 3A). Clusters 1 and 7 contain a

number of significantly overrepresented promoter motifs, with

q � 0:001 (denoted by triple asterisk in Fig. 3) using the hyper-

geometric test and corrected with a false discovery rate of 5%

(Benjamini and Hochberg, 1995). Eight clusters contain signifi-

cantly overrepresented motifs and a clear separation of genes

containing motifs from Groups 1, 2 and 3. A similar result is

observed using the additively combined separate on and off com-

ponents and motif co-occurrence for clustering (Fig. 3B), which,

naturally, results in a slightly larger number of clusters.

Comparing with clustering based on expression profiles together

with motif co-occurrence, we find that the proportion of motifs

in clusters is generally smaller and fewer significant clusters are

observed (Fig. 3C). Plots of the expression profiles separated into

clusters are shown in Supplementary Figures S8–S10. Cluster

membership and motif proportions for the combined similarity

measure clusters are given in Supplementary Tables S4–S7.
This example makes it apparent that clustering based on

switch-times combined with motif co-occurrence is useful in iden-

tifying correlation between gene expression and promoter struc-

ture and, therefore, also in identifying potential regulatory

interactions. Motif instance data are often noisy because of re-

dundancy and degeneracy in PSSMs, and in genome-scale ex-

pression data sets many genes may share expression profiles, but

not regulatory dynamics. By incorporating switch-times with

motif data we can link specific temporal events in transcription

with specific promoter structures.

3.2 Hierarchical modelling of multiple time series

Provided that the mRNA process exhibits non–steady-state be-

haviour, the use of the switch model allows for inference on

mRNA degradation rates for many genes without having to

resort to additional experiments that are specifically targeted at

transcriptional inhibition. Although it is straightforward to

obtain posterior distributions from one experiment, it may also

be of interest to pool the information from several experiments

allowing for the possibility that, for a given gene, the mRNA

degradation rate across the experiments should be similar but

allow for variation because of the setting of the experiment

(different laboratories, techniques, mock treatments and time

spans). We also wish to incorporate informative prior informa-

tion from the study by Narsai et al. (2007), which gives estimates

of mRNA degradation rates of413 000A.thaliana genes while

noting that use of such data is problematic because, by its nature,

Fig. 2. Example clusters using different similarity scores. (A) Cluster con-

taining 21 genes based on the switch-time distribution (SD) over the

whole time interval: (i) normalized expression profiles, highlighted are

two example genes with inverted expression dynamics (red¼

AT1G10740; green¼AT1G12845); (ii) SD for the two highlighted

genes, indicating the three similar switch times. (B) Cluster containing

24 genes based on the sum of the individual similarity matrices obtained

by separately considering on and off times of the SD: (i) normalized

expression profiles, with the same gene (AT1G10740) in red; (ii) SD for

the highlighted gene where the on set is given by the solid line, and the

two off sets are given by the dotted line. (C) Cluster containing 22 genes,

including the same gene (AT1G10740) in red, resulting from using the

sum of squared error between normalized expression profiles as similarity

score
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there is no independent validation of the results of such studies,

and their experimental conditions are different from ours. We

address this in the following Bayesian hierarchical modelling

framework.

Let yðiÞ denote the time series data (including replicates) for a

particular gene in experiment i and Y the pooled data for that

gene over N experiments. Bayesian hierarchical modelling

(Gamerman and Lopes, 2006) provides a natural framework to

account for the fact that parameters may be similar but are sub-

ject to stochastic variability between experiments. Assuming

experiments are independent, the full log likelihood is

lð�;YÞ ¼
XN
i¼1

lð�ðiÞk jy
ðiÞÞ ð6Þ

where lð�ðiÞk jy
ðiÞÞ is the log likelihood as specified in (4), and each

�ðiÞ is a vector of varying dimension ki containing all model par-

ameters for experiment i. In a Bayesian hierarchical model, we

assume that parameters or subsets of the parameters are similar

but subject to some stochastic variation in the sense that they are

realizations of the same probability distribution whose param-

eters we wish to identify. Here, we assume that the mRNA deg-

radation rate for a gene across the experiments comes from the

same distribution �ðiÞ � pð�ðiÞj��Þ, which is characterized by the

parameter vector ��. The latter thus quantifies the mean value

and variability of the degradation rate across the experiments. It

should be noted that with respect to the switch-times we main-

tain a non-hierarchical structure, as regulatory switches may gen-

erally occur at different times for each of the experiments given

that the initial entrainment of the clock may have varied across

the experiment, and the different light/dark input for each

experiment may have caused phase changes. However, the hier-

archical approach can be used for scenarios where there is reason

to assume that switch-times are similar between experiments.

Inference is achieved by formulating an appropriate MCMC

algorithm that samples from pð��,YÞ (Gamerman and Lopes,
2006). In practice, we specified pð�ðiÞj��Þ by a Gamma distribu-

tion parameterized to have mean �� and variance �2� . We as-

signed a Gamma prior distribution to the mean �� and an

exponential distribution to the coefficient of variation (CV)

��=��. The CV is used, as the mean value is close to 0; therefore,

it is a more robust parameter for sampling �2� . We derive inform-

ative priors from degradation rates from413K A.thaliana genes

from Narsai et al. (2007):

�ðiÞ � �ð��, �
2
� Þ;�� � �ð�Nar, �

2
NarÞ;

��
��
� Expð�NarÞ

where �Nar and �
2
Nar are estimated from the mean degradation

rates in the dataset, and �Nar is taken to be the 95% percentile of

the CV distribution from the data. All models use the same in-
formative population-level prior distributions, rather than the

gene-specific estimates because of large potential differences be-

tween experimental protocols. The approach taken by Narsai

et al. was to fit exponential decay least squares regression

models to microarray data collected at six time points after the

transcriptional inhibitor actinomycin D was added. Although

this is conceptually a straightforward approach for estimating
degradation rates, it is neither clear whether the method com-

pletely inhibits transcription nor whether its invasiveness has an

effect on the degradation processes themselves. Therefore, a

strong gene-specific prior derived from the Narsai et al. estimates

could not be justified.
Figure 4 shows all estimates of the mRNA degradation rate of

the core clock gene LHY from Narsai et al., the hierarchical

model and, for comparison, the non-hierarchical (independent)

model. The Narsai et al. estimate has an approximate range in

half-life of 1.5–2.25h, and our posterior estimates are broadly in

a similar range. The estimated joint distribution summarizes the
variability of the three experiments and provides a theoretically

rigorous summary statistic of the degradation rate (which cannot

be achieved by averaging over the independent results).

Estimates from the individual models show a range of estimates

from 1.3 to42h. Results for E2 and E3 are more variable prob-

ably because they cover shorter timescales of 17.5 and 6h,

whereas E1 covering two circadian cycles provides more precise

estimates despite smaller sampling frequency. An interesting ob-
servation is the difference between the E1 estimate and E2, E3

and Narsai et al. estimates. There are a number of potential

reasons for the difference, given the experiments were performed

over different time intervals and in different laboratories.

However, it may also be related to the light conditions, as E1

is the only experiment incorporating two 8h dark periods. Light

is a key driver in the A.thaliana circadian clock, and a recent

study has suggested a light-specific degradation rate for CCA1,
a core partner of LHY (Yakir et al., 2007), and a current model

for the A.thaliana clock uses different degradation rates for the

LHY/CCA1 component in light and dark (Pokhilko et al., 2012).

This result complements the hypothesis that light plays a role in

mRNA degradation in at least some core circadian clock com-

ponents. A possible extension to the model could include light/

dark cycles, for which separate degradation rates are assumed.
For further comparison with the Narsai et al. estimates, we

grouped all genes for which there was an estimate available in

their dataset (136 of the 200 genes) into five broad mRNA

Fig. 3. Heatmaps of proportion of motifs present in gene clusters using

different similarity measures. Motifs are aligned on y-axis and grouped

into three classes by sequence similarity. Each column gives the propor-

tion of motifs in a gene cluster. (A) Motif co-occurrence is combined with

the switch-time distribution (SD) similarity matrix over the whole time

interval, (B) motif co-occurrence is combined with the SD similarity sep-

arately over on and off times. (C) Motif co-occurrence is combined with

similarity of the overall expression profiles. Clusters are assigned signifi-

cance by the hypergeometric test with false discovery rate correction on

the cluster motif proportions against the population motif proportions;

	 ¼ q � 0:05, 	 	 ¼ q � 0:01 and 	 		 ¼ q � 0:001. Cluster ‘P’ shows

the population motif proportions

1163

A temporal switch model



stability groups based on half-life, as used by Narsai et al. (0–1,

1–3, 3–6, 6–12 and 412h). We find that 32% (43 of 136 genes)

have a similar hyperdistribution estimate using our approach to

the Narsai et al. study, and agreement between the three individ-

ual estimates and Narsai et al. ranges from 34% up to 36%

(Supplementary Table S8). However, despite this overlap, there

is also considerable variability in degradation rates between the

experiments, which may be natural variability or because of the

experiments carried out under different conditions.

4 DISCUSSION

The aim of this article is to present a novel approach for iden-

tifying timing of transcriptional activity from time series mRNA

expression data. The model introduced here consists of a piece-

wise linear simple ODE model of mRNA dynamics, which can

be fitted efficiently with a RJMCMC sampler to estimate gene-

specific parameters, i.e. mRNA stability and number and times

of switches in transcriptional activity. Estimation and perform-

ance of the algorithm is investigated for synthetic data of varying

sampling frequencies and noise levels in a simulation study. With

the example of time series microarray data from 200 circadian

genes, further directions are explored exploiting different aspects

of the model output. Namely, using the timing of the switches as

a basis for clustering, which, when combined with promoter

motif data, seems to identify more significant groups of motifs

than simple profile clustering with promoter motif data, poten-

tially implying a stronger correlation with regulatory mechan-

isms. We also explore the potential for the estimation of

mRNA degradation rates. Usually, degradation rate studies in-

volve treatment with a transcriptional inhibitor, such as

actinomycin D, or translational inhibitor, such as cycloheximide.

It is not clear whether such inhibition is ever achieved fully and

whether such treatments have undesired side-effects on degrad-

ation, and may, therefore, impact on estimated rates in unpre-

dictable ways. The model introduced in this study has several

advantages over a transcription inhibition study. The primary

advantage is that a specific experiment does not have to be

designed and performed, often at great cost in time and re-

sources, to produce a suitable dataset for degradation estimation,

effectively allowing recycling of existing datasets further increas-

ing their potential scientific value. As only free-running mRNA

expression dynamics are required, potential side-effects intro-

duced by using a chemical inhibitor can be avoided. We demon-

strate how to pool data from several experiments in a

theoretically rigorous way with a Bayesian hierarchical model.

Degradation estimates can easily be obtained for suitably

resolved time series and can be compared between different ex-

perimental conditions. As the number of large high-resolution

gene expression time series datasets publicly available is likely

to increase with the development of cheaper and faster high-

throughput technologies, new methods are required to analyse

these data. The model proposed here is mechanistic yet is flexible

and rich enough to capture a wide range of expression dynamics

observed in mRNA time series data, from steady-state behaviour

to oscillatory expression. At the same time, it is simple enough to

be estimated with feasible computational time for thousands of

genes. Using a mechanistic model to identify transcriptional

switch points is likely to strongly contribute to efforts in eluci-

dating and understanding regulatory interactions within tran-

scriptional networks.
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