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14Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract
Background & Aims—Interferon-alfa (IFN)-related cytopenias are common and may be dose-
limiting. We performed a genome wide association study on a well-characterized genotype 1 HCV
cohort to identify genetic determinants of peginterferon-α (peg-IFN)-related thrombocytopenia,
neutropenia, and leukopenia.

Methods—1604/3070 patients in the IDEAL study consented to genetic testing. Trial inclusion
criteria included a platelet (Pl) count ≥80 × 109/L and an absolute neutrophil count (ANC) ≥ 1500/
mm3. Samples were genotyped using the Illumina Human610-quad BeadChip. The primary
analyses focused on the genetic determinants of quantitative change in cell counts (Pl, ANC,
lymphocytes, monocytes, eosinophils, and basophils) at week 4 in patients >80% adherent to
therapy (n = 1294).

Results—6 SNPs on chromosome 20 were positively associated with Pl reduction (top SNP
rs965469, p = 10−10). These tag SNPs are in high linkage disequilibrium with 2 functional variants
in the ITPA gene, rs1127354 and rs7270101, that cause ITPase deficiency and protect against
ribavirin (RBV)-induced hemolytic anemia (HA). rs1127354 and rs7270101 showed strong
independent associations with Pl reduction (p = 10−12, p = 10−7) and entirely explained the
genome-wide significant associations. We believe this is an example of an indirect genetic
association due to a reactive thrombocytosis to RBV-induced anemia: Hb decline was inversely
correlated with Pl reduction (r = −0.28, p = 10−17) and Hb change largely attenuated the
association between the ITPA variants and Pl reduction in regression models. No common genetic
variants were associated with pegIFN-induced neutropenia or leucopenia.

Conclusions—Two ITPA variants were associated with thrombocytopenia; this was largely
explained by a thrombocytotic response to RBV-induced HA attenuating IFN-related
thrombocytopenia. No genetic determinants of pegIFN-induced neutropenia were identified.
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Introduction
Chronic infection with hepatitis C virus (HCV) affects up to 170 million individuals
worldwide [1] and may lead to progressive hepatic fibrosis and cirrhosis with risk of liver
failure and hepato-cellular carcinoma. HCV-related liver disease is currently the most
common indication for liver transplantation in North America. Antiviral therapy with
pegylated-interferon-alfa (pegIFN) plus ribavirin (RBV) may be curative, but is poorly
tolerated by many patients.

Bone marrow suppression is an important adverse effect of pegIFN therapy, leading to
neutropenia and thrombocytopenia, with risk of secondary sepsis and bleeding, respectively
[2,3]. Dose reduction may be required potentially compromising treatment outcome, as rates
of viral clearance are significantly reduced in patients who cannot be maintained on at least
80% of their pegIFN and ribavirin dosage for the duration of treatment [4]. Identifying
patients at greatest risk for such complications would be clinically useful for selecting
patients for therapy, as well as planning the frequency of monitoring and likely need for
growth factor support on treatment. Patients with advanced hepatic fibrosis are at highest
risk [5], but bone marrow suppression remains prevalent in patients with early stage fibrosis
and there is a need for more accurate biomarkers. A genetic biomarker for predicting risk of
IFN-related bone marrow suppression would be particularly useful as a pre-treatment test.
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A number of lines of evidence suggest that genetic variants may be associated with IFN-
induced cytopenia. Firstly, persistently low neutrophil counts are more commonly observed
in persons of African American ancestry compared to Caucasians (‘benign ethnic
neutropenia’) [6], and this has recently been linked to a regulatory variant in the Duffy
Antigen Receptor for Chemokines gene (DARC) [7]. The relevance of this variant to drug-
induced neutropenia is not known. Secondly, polymorphism in the region of the interleukin
28B gene (IL28B), coding for IFN-lambda(λ)-3, has recently been identified to be strongly
associated with viral clearance following pegIFN plus RBV therapy [8–11]. Although the
mechanism remains unclear, the polymorphism is believed to regulate sensitivity to the
antiviral effects of IFN. Whether IL28B polymorphism is relevant to other IFN-mediated
effects has not been evaluated. Finally, functional variants in the inosine triphosphatase gene
(ITPA) causing inosine triphosphatase (ITPase) deficiency, previously recognized as a
benign red cell enzymopathy, have recently been identified to protect against RBV-induced
hemolytic anemia [12,13]. RBV depletes red cell GTP levels, leading in turn to ATP
depletion, oxidative stress, and hemolysis. The protective ITPA variants are associated with
red cell inosine triphosphate (ITP) accumulation, and it has been shown that ITP is able to
substitute for GTP in the biosynthesis of ATP, thereby protecting against RBV-hemolysis
[14].

In this study we have performed genome-wide analyses for determinants of treatment-
related bone marrow suppression in a large, well characterized cohort of genotype 1 HCV
patients treated with pegIFN plus RBV in the IDEAL study. We have focused primarily on
treatment-induced neutropenia and thrombocytopenia.

Materials and methods
Patient and control population

1604/3070 patients in the IDEAL study [15] consented to collection of DNA samples for
genetic testing (ClinicalTrials.gov number, NCT00081770). Clinical and laboratory data
were collected as described previously [15,16]. All patients included in this study were
treatment-naïve and infected with genotype 1 HCV [15]. Patients were treated with either
pegIFN-alfa-2b (1.0 or 1.5 μg/kg/week) or pegIFN-alfa-2a (180 μg/week) plus weight-
based RBV (800–1400 mg for peg-IFN-alfa-2b, and 1000–1200 mg for pegIFN-alfa-2a)
[15]. For all patients, the protocol-specified treatment duration was 48 weeks, with an
additional 24 weeks follow-up. All patients had a full blood count performed at baseline,
weeks 2, 4, 8, 12, 18, 24, 30, 36, 42, and 48 of therapy and at weeks 4, 12, and 24 post-
treatment. Inclusion criteria for the parent study required an absolute neutrophil count
(ANC) ≥ 1500/mm3 and platelet count (Pl) ≥80 × 109/L. All patients had compensated liver
disease. Protocol specified dose reduction of pegIFN was indicated for ANC <750/mm3 or
Pl <50 × 109/L, and discontinuation of both pegIFN and RBV was required for ANC <500/
mm3 or Pl <25 × 109/L. The use of growth factor support for neutropenia or
thrombocytopenia was not permitted. Detailed records of drug compliance were kept for all
patients on-treatment. Only patients who were more than 80% adherent to pegIFN to week 4
of treatment were included in the primary analyses (26 patients were excluded from
analysis).

Genotyping
A total of 1604 DNA samples were genotyped in the context of a previously reported study
of anti-HCV treatment response, using the Illumina Human610-quad BeadChip (Illumina,
San Diego, CA, USA) as previously described [8]. Quality control steps are described in
Supplementary Material I. Genotyping of the two ITPA variants, rs1127354 and rs7270101,
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was performed using the ABI TaqMan allelic discrimination kit (Applied Biosystems,
Carlsbad, CA, USA) in a previous study of RBV-induced hemolytic anemia [12,17].

Definition of clinical endpoints
The primary analyses focused on the genetic determinants of quantitative change in (i)
platelet, and (ii) leukocyte counts, at week 4 of treatment in adherent patients. The following
leukocyte sub-populations were separately analyzed: absolute neutrophil count (ANC),
lymphocytes, monocytes, basophils, and eosinophils. Week 4 was chosen as a time point to
minimize confounding by dose modification of pegIFN and RBV, or confounding by the use
of erythropoietin supplementation.

Statistical analysis
The primary association tests involved single-marker genotype trend tests performed in three
independent groups (European-Americans, African-Americans, Hispanics), using a linear
regression model. Association tests were implemented in the PLINK software [18],
correcting for the relevant clinical covariates baseline cell count (Pl, leukocyte cell lines),
age, gender, body mass index, liver fibrosis stage (METAVIR F0–2 vs. F3–4), pegIFN dose
(binary variable: pegIFN-α2b 1.0 μg/kg/week vs. pegIFN- α2b 1.5 μg/kg/week and RBV
dose (mg/kg). The association signals (p values) were then combined using Stouffer's
weighted Z-method [19], adjusting for sample sizes, effect sizes and effect directions in each
population. This combined p value was then reported as the main result, along with the p
values in each ethnic group. A series of quality control steps resulted in 565,759
polymorphisms being included in the association tests. Methods to assess copy number
variants were applied and the relation between copy number variants and reduction of Pl/
leukocyte cell lines was tested. To control for the possibility of spurious associations
resulting from population stratification, we used a modified EIGENSTRAT method [20] and
corrected for population ancestry within each group. We assessed significance with a
Bonferroni correction (Pcutoff= 4.4 × 10−8).

Results
Interferon-alfa-mediated thrombocytopenia

We performed a genome-wide association study (GWAS) of genetic determinants of IFN-
related thrombocytopenia at week 4 in compliant genotype 1 HCV patients from the IDEAL
study. Following quality control steps, 1284 individuals (984 European-Americans, 201
African-Americans, 99 Hispanics) were included in the analysis (patient characteristics are
summarized in Table 1). Baseline Pl counts were not significantly different between the 3
populations (p = 0.8977, Table 1). We tested each of 565,759 single nucleotide
polymorphisms (SNPs) passing quality control measures in a linear regression model
incorporating the relevant clinical covariates: age, gender, body mass index (BMI), hepatic
fibrosis stage, pegIFN dose (binary: pegIFN-alfa-2b 1.0 μg/kg/week vs. pegIFN-alfa-2b 1.5
μg/kg/week or pegIFN-alfa-2a 180 μg/week), RBV dose (mg/kg) and baseline Pl count.

6 SNPs on chromosome 20 were significantly associated with Pl reduction at week 4 (top
SNP rs965469, p = 9.02 × 10−10 in European Americans, Fig. 1 and Table 2). These SNPs
have previously been shown to co-segregate with 2 functional variants in the ITPA gene on
chromosome 20, rs1127354 and rs7270101 (Supplementary Material III), that are each
independently associated with reduced ITPase activity and protect against RBV-induced
hemolytic anemia (HA) [12]. rs1127354 is a mis-sense variant in exon 2 of the ITPA gene
(P32T), and rs7270101 is splicing-altering variant located in the second intron (IVS2).
Neither variant was included on the genome-wide array but they had been genotyped in the
context of a previous GWAS [12]. These 2 functional variants showed strong independent
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associations with week 4 Pl reduction (rs1127354, overall p = 10−12 and rs7270101 p =
10−7, respectively, Table 2). The level of ITPase activity may be predicted according to an
individual's ITPA genotype, based on previous functional studies (Supplementary Material
III), and a combined low activity allele made up of either functional variant may be used to
define an ITPase deficiency variable [21–25]. This ITPase deficiency variable was more
strongly associated with Pl reduction (p = 10−20). Furthermore, when the two functional
ITPA variants were incorporated into a regression model, they were found to entirely
explain the genome-wide significant association between rs965469 and Pl reduction
(European American patients: p value fell from p = 10−10 to p = 0.9204 after adjustment for
the 2 functional variants, Table 2). The functional ITPA variants remained strongly
associated with Pl reduction in this model.

Whereas the ITPA variants associated with ITPase deficiency have previously been shown
to protect against RBV-induced hemolytic anemia [12], in this study they were associated
with more pronounced reduction of Pl counts. The decline in platelet counts that occurs
during antiviral therapy is known to be less pronounced when IFN is combined with RBV
than in the setting of IFN monotherapy [26,27]. This has been attributed to a relative
thrombocytosis occurring in response to RBV-induced hemolysis. In the current cohort, a
negative correlation was noted between week 4 hemoglobin (Hb) reduction and Pl reduction
(European Americans, r = −0.28, p value = 10−17, Fig. 2). Inclusion of week 4 Hb reduction
in the same model with the ITPase deficiency variable largely attenuated the strength of the
association with Pl reduction (European Americans, from p = 10−16 to p = 10−6,
Supplementary Table 5).

In order to evaluate the clinical relevance of this observation we considered the relationship
between the ITPase deficiency variable and reductions of Pl count over the course of
therapy. The ITPase deficiency variable was significantly associated with more profound
reductions in Pl count at week 4, 12, and 24 (Fig. 3). Beyond week 24, there were non-
significant trends in the same direction. Despite this, the number of patients in whom Pl
levels fell to below 50 × 109/L, the level at which dose reduction is indicated, was low
(<1.5% at any time point) and there were no significant differences in the frequency of Pl
<50 × 109/ L according to predicted ITPase deficiency (data not shown). This was true both
for the overall cohort, as well as an analysis limited just to those patients treated with
pegIFN-alfa-2a 180 μg/week or pegIFN-alfa-2b 1.5 μg/kg/week.

Finally, genetic variation in the region of the IL28B gene on chromosome 19 is strongly
associated with the pegIFN and RBV response rate [8,10,11,28]. No relationship between
IL28B genotype and week 4 thrombocytopenia was noted in the 3 ethnic populations.

Interferon-alfa-mediated neutropenia
We performed a second genome-wide analysis focused on the genetic determinants of week
4 reductions in ANC as a continuous variable. The final analysis included 1292 patients
(European Americans = 991, African Americans = 203, Hispanics = 98). At baseline,
median ANC were lower in the African American population (European Americans = 3.65
(2.96–4.68), African Americans = 3.04 (2.14–4.04), Hispanics = 3.36 (2.77–4.24), p =
10−12). Median ANC reduction at week 4 was then less prominent in the AA population
(European Americans = 2.0 (1.34–2.68), African Americans = 1.22 (0.61–1.97), Hispanics =
1.72 (1.0–2.38), p = 10−18). We tested for genetic determinants of week 4 ANC reduction
using linear regression models including the covariates age, gender, BMI, hepatic fibrosis
stage (F0–2 vs. F3–4), pegIFN dose (binary: alfa-2b 1.0 μg/kg/week vs. 1.5 μg/kg/week or
alfa-2a 180 μg/week) and baseline neutrophil level. No common genetic variants were
associated with treatment-related reduction in ANC at week 4 at the level of genome-wide
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significance. In particular, IL28B polymorphism was not associated with IFN-related
neutropenia.

A genome-wide analysis of baseline ANC was also negative. In the AA population, we
noted associations between baseline ANC and DARC gene polymorphism but these did not
meet genome-wide significance criteria (top SNp rs3027041, p = 10−6, Supplementary
Material VI).

Genome-wide analysis for variants associated with other leucopenia
We were also interested in identifying common genetic variants associated with baseline and
pegIFN-related week 4 reductions in other white cell counts. Lymphocyte, monocyte,
basophil, and eosinophil count were all considered separately. No significant associations
were observed in any of these analyses (data not shown).

Discussion
To our knowledge this is the first study to consider genetic determinants of treatment-related
cytopenia using a genome-wide approach in chronic hepatitis C patients. We have identified
an association between ITPA variants causing ITPase deficiency and treatment related
thrombocytopenia. We did not detect any common genetic variants that influenced IFN-
related neutropenia or leukopenia, an important negative finding. Of note, IL28B
polymorphisms, recently identified to be strongly associated with pegIFN plus RBV
treatment outcome, were not associated with IFN-related cytopenia.

Two functional variants in the ITPA gene that cause ITPase deficiency, red cell ITp
accumulation and protection against RBV-induced HA [12,14] were associated with more
profound pegIFN-induced thrombocytopenia. This association was largely explained by a
relative, reactive thrombocytosis in response to RBV-induced HA in those patients with
wildtype ITPase activity. Thus the RBV-induced anemia attenuated the pegIFN effect to
reduce Pl counts. Thrombocytosis is well-described as a consequence of hemolytic anemia
[29], which is in keeping with the original observation in the late 1990s that on-treatment
reductions of Pl counts were less marked following the addition of RBV to standard-of-care
HCV therapy [26,27]. This therefore represents an indirect genetic association, where
wildtype ITPase activity is associated with more profound RBV-related anemia, which in
turn stimulates Pl production, manifesting as less pronounced pegIFN-induced
thrombocytopenia. The ITPA variants, which protect against RBV-hemolysis, are therefore
associated with greater IFN-induced thrombocytopenia. The biological mechanism
underlying this relationship between Hb levels and Pl counts is not clearly understood, but
may involve stimulation of the bipotent erythroid/megakaryocyte progenitor cell by
erythropoietin [30,31]. Although adjustment for Hb reduction in the linear regression model
largely attenuated the association between the ITPA variants and Pl counts, a residual
association with the combined ‘low activity’ allele persisted (European Americans, p =
10−16 reduced to p = 10−6). Although this association was not genome-wide significant, we
cannot exclude the possibility of two separate phenomena, with a weaker secondary effect
due to a biological relationship between ITPA variants, exogenous IFN and Pl levels. This
will require further mechanistic studies.

Despite the strong statistical association between ITPA variants, Hb reduction and Pl counts,
the clinical relevance of this finding remains uncertain. Relatively few patients decreased
their Pl counts to levels requiring dose reduction. It is likely that ITPA genotyping may find
a role in predicting RBV-induced anemia in high risk individuals [12,13], but on the basis of
the current data, there does not appear to be great clinical utility for predicting severe
thrombocytopenia. We note that the current dataset did not include significant numbers of
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patients with advanced stage fibrosis, and it will be important to assess whether ITPA
variants may predict treatment-limiting Pl reductions in this population.

No common genetic variants were associated with pegIFN-induced neutropenia or
leucopenia. It was interesting that the hematological complications of IFN therapy were not
associated with IL28B variants. Although a negative result, this has important implications
for our understanding of the biology of the IL28B–pegIFN interaction. The data suggest that
the biology of the IL28B–pegIFN treatment response association in HCV is not directly
relevant to pegIFN-induced bone marrow suppression. IL28B polymorphism is strongly
associated with on-treatment viral kinetics and pegIFN plus RBV treatment outcome [9].
Although the mechanism by which IL28B variation effects pegIFN sensitivity remains
unclear, there is evidence that levels of intrahepatic ISG expression are important [32,33]
and the effect is believed to primarily reflect sensitivity to exogenous IFN. The current data
suggest that this is a liver-specific phenomenon. IFN-λ is induced by similar stimuli to type
1 IFN, and shares a common downstream signaling pathway, however the expression of the
IFN-λ-receptor (IFNLR) is more restricted than that of the ubiquitous IFN-α-receptor
(IFNABR). Although the IFNLR has been shown to be expressed by hepatocytes, IFNLR
gene expression is not expressed in hematopoietic cells, with the exception of B
lymphocytes [34,35]. Consistent with this, minimal bone marrow suppression was observed
in a recent early phase clinical trial using IFN-λ-1 for the treatment of HCV, despite good
antiviral potency [36]. The IL28B polymorphism may therefore act to regulate IFN-α
signaling, which is dependent on co-expression of the IFNLR and the IFNABR within the
same tissue.

In conclusion, two functional variants in the ITPA gene that are strongly associated with
protection from RBV-induced HA are also associated with greater thrombocytopenia in
chronic hepatitis C patients. This association is largely explained by a relative reactive
thrombocytosis in response to RBV-induced HA, which attenuates IFN-related
thrombocytopenia.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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DARC Duffy Antigen Receptor for Chemokines

IL28B Iinterleukin 28B

ITPA inosine triphosphatase gene

ITPase inosine triphosphatase

ANC absolute neutrophil count

Pl platelet

Hb hemoglobin

SNP single nucleotide polymorphism

GWAS genome-wide association study

BMI body mass index

HA he-molytic anemia

IFNLR IFN-λ-receptor

IFNABR IFN-α-receptor
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Fig. 1. The Manhattan plot shows a genome-wide view of the p values [2log10(P)] for association
between SNPs tested and week 4 platelet reduction in patients of European American ancestry
The SNPs that show genome-wide significant association with quantitative reduction in Pl
levels are marked in red. [This figure appears in color on the web.]
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Fig. 2.
Correlation of Pl reduction at week 4 (× 109/L) with hemoglobin reduction at week 4 (g/dl),
limited to the patients of European American ancestry.
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Fig. 3. Median platelet count over time (× 109/L) according to predicted ITPase deficiency in the
overall population
All patients included in the analysis were >80% adherent to week 4 (n = 1284); for time
points beyond week 4, patients were included if they remained on treatment, and a platelet
count was available. WT = wildtype (normal ITPase activity); + = mild ITPase deficiency; +
+ = moderate ITPase deficiency; +++ = severe ITPase deficiency.
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Table 1
Patient characteristics

European Americans African Americans Hispanics p value

No (platelet analysis) 984 201 99

Gender (n, %) 608 (62%) 121 (60%) 63 (64%) 0.8387

Age, yrs* 48 (44-52) 50 (47-54) 46 (39-51) <0.0001

BMI, kg/m2 27.4 (24.8-30.4) 29.3 (26.6-32.6) 28.6 (25.1-32.8) <0.0001

METAVIR fibrosis stage (n, %) 873 (89%) 183 (91%) 85 (86%) 0.3886

 Minimal (F0-2) 111 (11%) 18 (9%) 14 (14%)

 Advanced (F3-4)

RBV starting dose, mg/kg 13.2 (12.4-14.1) 12.8 (12.1-13.7) 13.6 (12.5-14.7) 0.0004

RBV starting dose (n, %) 0.0065

 800 mg 86 (9%) 4 (2%) 6 (6%)

 1000 mg 373 (38%) 65 (32%) 41 (41%)

 1200 mg 463 (47%) 118 (59%) 44 (44%)

 1400 mg 62 (6%) 14 (7%) 8 (8%)

PegIFN starting dose (n, %)

 PegIFN-α-2b 1.0 332 (34%) 71 (35%) 31 (31%) 0.8532

 PegIFN-α-2b 1.5 321 (33%) 62 (31%) 37 (37%)

 PegIFN-α-2a 331 (34%) 68 (34%) 31 (31%)

Baseline Pl count (×109/L) 225 (184-269) 228 (184-273) 230 (186-275) 0.8977

Baseline Pl count <100×109/L 17 (1.7%) 2 (1%) 1 (1%) 0.6724

Wk 4 Pl reduction (×109/L) 37 (11-72) 28 (0-61) 26 (2-65) 0.0052

Wk 4 Pl count (n, %)

 <75×109/L 24 (2%) 4 (2%) 0 (0%) 0.2796

 <50×109/L 2 (<1%) 0 (0%) 0 (0%) 0.7369

 <25×109/L 0 (0%) 0 (0%) 0 (0%) 1.0000

No (ANC analysis) 991 203 98

Baseline ANC count (/mm3) 3.65 (2.96-4.68) 3.04 (2.14-4.04) 3.36 (2.77-4.24) <0.0001

Week 4 ANC reduction (/mm3) 2.0 (1.34-2.68) 1.22 (0.61-1.97) 1.72 (1.0-2.38) <0.0001

 <1.0/mm3 (n, %) 124 (13%) 26 (13%) 12 (12%) 0.9892

 <0.75/mm3 (n, %) 30 (3%) 8 (4%) 1 (1%) 0.3816

 <0.5/mm3 (n, %) 2 (<1%) 2 (1%) 0 (0%) 0.1588

*
Continuous data are presented as median (25th – 75th centile).
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Table 2
(A) Six variants in the 20p13 were associated with Pl reduction at the genome-wide
significant level. These tag SNPs have previously been shown to be in linkage
disequilibrium with 2 functional variants in the ITPA gene, which cause ITPase
deficiency. (B) The two functional ITPA variants rs1127354 and rs7270101 entirely
explained the GWAS association signals detected in the region. The adjusted p value (*)
was obtained for each SNP in a linear regression model in which the two ITPA functional
variants are incorporated

A

Wk 4 Pl reduction European Americans African Americans Hispanics Combined p value

Top discovery SNPs (Illumina 610 chip)

rs965469 9.02×10−10 0.1818 0.0792 1.29×10−9

rs3310 1.30×10−9 0.4035 0.0816 3.91×10−9

rs6051702 1.30×10−9 0.4621 0.0812 4.41×10−9

rs6051762 2.76×10−9 0.5050 0.1118 1.28×10−8

rs6051841 2.16×10−8 0.0858 0.1424 2.09×10−8

rs6051693 2.21×10−8 0.3207 0.0953 4.96×10−8

ITPA variants

rs1127354 (P32T) 1.70×10−10 0.0005 0.0600 1.38×10−12

rs7270101 (IVS2) 9.95×10−6 0.0038 0.0231 3.39×10−7

ITPase deficiency variable 2.05×10−16 0.00002 0.0021 8.42×10−20

B

GWAS hit Population GWAS p value Adjusted p value*

rs965469 European Americans 9.02×10−10 0.9204

rs3310 European Americans 1.30×10−9 0.7914

rs6051702 European Americans 1.30×10−9 0.7914

rs6051762 European Americans 2.76×10−9 0.8065

rs6051841 European Americans 2.16×10−8 0.9204

rs6051693 European Americans 2.21×10−8 0.8876
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