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Abstract

Internalization of G-protein coupled receptors is mediated by phosphorylation of the C-terminus,
followed by binding with the cytosolic protein arrestin. To explore structural factors that may play
a role in internalization of cannabinoid receptor 1 (CB1), we utilize a phosphorylated peptide
derived from the distal C-terminus of CB1 (CB1°P454.473). Complexes formed between the
peptide and human arrestin-2 (wt-arr21_41g) were compared to those formed with a truncated
arrestin-2 mutant (tr-arr2,.3g») using isothermal titration calorimetry and nuclear magnetic
resonance spectroscopy. The penta-phosphopeptide CB15P454_475 adopts a helix-loop
conformation, whether binding to full-length arrestin-2 or its truncated mutant. This structure is
similar to that of a hepta-phosphopeptide, mimicking the distal segment of the rhodopsin C-tail
(Rh7P339.348), binding to visual arrestin, suggesting that this adopted structure bears functional
significance. Isothermal titration calorimetry (ITC) experiments show that the CB1%P454_473
peptide binds to tr-arr2,_3g, with higher affinity than to the full-length wt-arr2;_41g. As the
observed structure of the bound peptides is similar in either case, we attribute the increased
affinity to a more exposed binding site on the N-domain of the truncated arrestin construct. The
transferred nOe data from the bound phosphopeptides are used to predict a model describing the
interaction with arrestin, using the data driven HADDOCK docking program. The truncation of
arrestin-2 provides scope for positively charged residues in the polar core of the protein to interact
with phosphates present in the loop of the CB1°P 454473 peptide.

Aurrestins are cytosolic proteins that regulate the functioning of G-protein coupled receptors
(GPCRs) by binding to ligand stimulated, and phosphorylated forms of the receptors (1, 2).
This results in attenuation of G-protein mediated signaling and the internalization of GPCRs,
with arrestin acting as a scaffold for endocytic proteins (1, 3-5). Arrestin may also facilitate
signaling through pathways that are independent of G-protein activation (6, 7). Recent
studies have utilized biased GPCR ligands (8-10) to show that different bound
conformations of arrestin may be responsible for distinct functional outcomes (11). It has
been postulated that this type of directed agonism may be due to ligand stabilization of
specific GPCR conformations that promote distinct, and functionally specific, conformations
in the bound arrestins (11, 12). There is evidence that the conformation of arrestin changes
upon binding a receptor, however, there is limited direct structural detail available for
complexes between GPCRs and arrestins(13, 14).

A key stage in the formation of a complex is thought to involve phosphorylated segments of
the GPCR C-terminus and the N-domain of arrestin (15, 16). The available arrestin crystal
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on the N-domain. This association of the C-terminus of arrestin with the N-domain is
thought to stabilize a basal state of the protein(17-22). In this state, arrestin exhibits a high
affinity for GPCRs that are both activated by a ligand, and phosphorylated, in what is likely
a multisite interaction (15, 16, 23, 24). Arrestins in this state have a far lower affinity for
receptors that are activated by a ligand but unphosphorylated, or, phosphorylated and in an
inactive state. Truncation of the arrestin carboxy-terminus results in a partially active mutant
that binds with higher affinity to GPCRs that are phosphorylated but have not been activated
by a ligand (25).

A number of studies utilizing peptides and mutagenesis have placed the phosphate sensitive
elements of arrestin in the N-domain of the protein (19, 26-28). Furthermore, a peptide
mimicking the distal rhodopsin C-terminus was found to adopt a helix-loop conformation
upon binding to arrestin-1, however, there is little structural information with respect to
other receptors and arrestins(29, 30). In this study, we have employed cannabinoid receptor
1 (CB1) as a model GPCR to probe structural factors involved in the arrestin2-GPCR
interaction. Cannabinoid receptors are G-protein coupled receptors (GPCRs) that have been
extensively targeted for therapeutic benefit (31-35). A number of studies have shown that
CB1 exhibits a complex mechanism of activation that may extend to the nature of the
interaction with arrestin (11, 36-38). It was observed in AtT20 cells that phosphorylation of
the distal C-terminal tail of CB1 from Thr460-Leu473 regulates internalization (39-41). By
contrast phosphorylation at Ser426 and Ser430, located upstream of the distal segment,
mediated desensitization while having no effect on internalization (39, 40). In subsequent
experiments using HEK?293 cells, this delineation between internalization and
desensitization was not as prevalent (41, 42). Nevertheless the distal C-terminal segment of
CB1 was shown to play a key role in limiting internalization when unphosphorylated and
allowing internalization to proceed upon phosphorylation (41).

Several studies have addressed structural aspects of the CB1 C-terminus. The formation of a
helix shortly after the C-terminal end of the conserved NPxxY motif and proximal to the
membrane surface is commonly referred to as helix eight, or as the fourth cytoplasmic loop.
It is a common feature of rhodopsin like GPCRs (43-47) and has been implicated in ligand
binding, signal transduction as well as processes such as phosphorylation and desensitization
(48-50). In the case of CB1, the NPxxY motif may form a microdomain that couples helix
eight to conformational changes within the trans-membrane helix bundle (44, 51, 52). A
study of the C-terminus of CB1 in membrane mimetic media has identified the possible
formation of a second amphipathic helix downstream of helix eight (53). There is, however,
little information concerning the effects of phosphorylation and the nature of complexes
formed with cytosolic partners.

The peptide we utilize in this study mimics the distal section of the C-terminus where no
structure has been observed in solution(53). In a previous study we showed that the doubly
phosphorylated version of a peptide corresponding to residues Thr419-ASN439 of the CB1
C-terminus, responsible for desensitization, binds to arrestin-2 and adopts helical
conformations in the vicinity of the phosphorylated residues (54). This prompted us to study
a phosphorylated peptide corresponding to the residues between Thr454 and Leu473 of the
CBL1 receptor shown to influence internalization (41). We examine the effects of
phosphorylation on the solution structure of CB1°P454.473 and compare the binding of this
peptide to full-length arrestin-2 versus its truncated mutant.
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Experimental Procedures

Peptide synthesis

The non phosphorylated peptide TVKIAKVTMSVSTDTSAEAL (CBlys4.473) and a
pentaphophorylated version, TVKIAKVT(p)MS(p)VS(p)TDT (p)S(p)AEAL 1
(CB1°P454_473), derived from the distal C-terminal sequence of the human CB1 receptor
were obtained from New England Peptides at > 95% purity as shown by HPLC and
MALDI-TOF mass spectral analysis.

Expression of arrestin-2 and a truncated mutant of arrestin-2

For expression of arrestin-2, we modified the pTrcHis vector (Invitrogen) by digesting with
Ncol and BamH1 to remove the hexa-histidine tag and then blunted the ends with klenow
polymerase to ensure that the start codon would be regenerated upon religation. We refer to
this modified vector as pTrcK. All vectors and constructs were verified for integrity by
sequencing (University of Connecticut Biotechnology Center, Storrs, CT).

The plasmids were transformed into Escherichia colistrain BL21 (Invitrogen) following
standard procedures as outlined by the vendor. To express arrestin-2, 1 litre of LB medium
was inoculated with 10 ml of overnight cell culture and induced at 30° C with 300 pM
isopropyl-1-thio-B-D-galactopyranoside at a cell density of 0.6. After a twelve-hour
incubation, cells were harvested by centrifugation at 7500 rpm and resuspended in lysis
buffer containing 20 mM Tris, pH 8.0, 0.5 mM PMSF, 2 mM DTT, 1 mg/ml lysozyme, 10
mM EDTA and 0.2 mg/ml benzamidine. The presence of arrestin-2 was determined by SDS-
PAGE and immuno-gel blot analysis using a commercially available antibody raised against
an epitope found on arrestin-1 that is also present on arrestin-2 (Sigma).

Protein Purification

Purification of wt-arr2,_41g and tr-arr2,_3g, followed methods as elaborated in several
publications that involved ammonium sulfate precipitation of the cell lysate followed by
affinity chromatography on a heparin column and size exclusion chromatography (18, 21,
55). Briefly, re-suspended cells were lysed using a French pressure cell and the lysate
centrifuged at 12000 rpm for 30 min. Ammonium sulfate was added to the supernatant at 4°
C to attain 55% saturation in small lots over 45 mins and the resultant precipitate was
collected after 30 mins by centrifugation. The precipitate was re-dissolved and dialyzed
against the heparin column load buffer containing 10 mM Tris pH=8.0, 0.5 mM PMSF, 2
mM DTT, 100 mM NaCl and 10% glycerol. The heparin column wash and elution buffers
differed only in salt concentration (200 mM & 500 mM NacCl respectively). 12 ml of
Pharmacia Heparin Fast Flow resin was washed with load buffer and equilibrated against the
protein solution with gentle shaking at 4° C for two hours. The column was washed with
200 mM NacCl and eluted with 500 mM NaCl. The elutions were further subjected to size
exclusion chromatography by loading them onto a pre-packed Amersham HiLoad 16/60
Superdex 75 pg column using an AKTA FPLC. The protein was eluted with a buffer
containing 10 mM NaH,PO,4 pH=7.2, 100 mM NaCl and 2 mM DTT. The identities of the
purified proteins were confirmed by immuno-blot analysis using a commercially available
antibody raised against an epitope found on arrestin-1 that is also present on arrestin-2
(Sigma). CD spectra of the purified arrestin-2 in 0.1 M sodium phosphate pH = 7.2 were
recorded on a JASCO J-715 spectrometer over the range of 190-250 nm. NMR samples
were prepared from these elutions by concentrating to a concentration of 0.1 mM protein
using Millipore centricon tubes with 10 kDa molecular weight cutoff.
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NMR analysis of CB1454.473, CB1°P454.473 and arrestin-2-peptide mixtures

Peptide samples of CB1454.473 and CB1°P454_473 were dissolved at 1 mM concentration in
350 pL of a buffer containing 10 mM NaH,PO4/Na,HPO4 pH=7.0, 100 mM NaCl and 10%
D,0. DSS was used as the internal chemical shift reference for NMR experiments. For
preparation of the arrestin-peptide mixtures, a concentrated peptide solution (10 mM PQy,
100 mM NaCl) was added to 270 pL of a wt-arr2;.41g or tr-arr2.3g» solution, prepared in
buffer containing 10 mM NaH,PO,4 pH=7.0, 100 mM NaCl and 10% D,O. The final
concentration of the arrestins and peptides were 0.1 mM and 1 mM respectively (ratio of
1:10) and the final pH of the mixtures was measured at 6.9-7.1.

NMR spectra were acquired on a Varian Unity 600 MHz spectrometer equipped with a
cryoprobe. TOCSY spectra (56) were collected using DIPSI spinlock (57) and watergate
water suppression (58) with mixing time of 80 ms. WATERGATE-NOESY spectra were
acquired with a mixing time of 200, 300, and 400 ms. Spectra were recorded with 2400 data
points, 256 increments and relaxation delay of 1s. Spectra were processed using NMRPipe
(59).

NMR analysis was accomplished using the Sparky NMR assignment program (http://
www.cgl.ucsf.edu/home/Sparky). The chemical shift assignments of the peptides were
obtained by analysis of TOCSY and NOESY spectra obtained at 10°C using standard
techniques (60). TRNOESY experiments performed with mixing times of 400 ms at 10°C
were analyzed using the SPARKY program as no spin diffusion was observed at this mixing
time. The nOes were classified into strong, medium and weak based on peak volume
calculated in SPARKY. The distance range of 1.8-2.8 A for strong, 1.8-3.5 A for medium
and 1.8-5.0 or 6.0 A for weak nOes was given (61, 62). The upper limits for distances
involving methyl protons were increased by an additional 0.5 A (63, 64).

Structure Calculations and Docking Studies

Structure calculations from NOESY distance restraints were carried out using nOe tables as
described in the results section and a hybrid distance geometry simulated annealing protocol
implemented in CNS, version 1.2 (65, 66). Starting structures were generated using NIH-
XPLOR scripts (67) and the required topology and parameter files for phosphorylated
residues were generated using the PRODRG server (68). Low energy structures were
subjected to the water refinement protocol of CNS. Validation of structural geometry and
visualization of structures were carried out using PROCHECK (69) and VMD-XPLOR
programs (70).

For a better understanding of the interaction between the phosphorylated peptide,
CB1°P454.473, and wt-arr24_41g OF tr-arr21.3go, We generated models of the complexes. This
was accomplished by docking families of low energy structures of CB1°P454.473 onto the
crystal structure of bovine arrestin-2 using the data driven HADDOCK program (71). We
docked the CB1°P454.473 structures to full-length arrestin-2 to explore binding sites available
in the basal state of arrestin-2. Full-length arrestin-2 (wt-arr21.41g) contains the C-tail from
residues 383-418, a segment of which presumably dissociates from the N-domain upon
binding to phosphorylated GPCRs. To account for this conformational change that exposes
important residues in the N-domain of arrestin, CB1°P 54473 was also docked onto a
structure where C-terminal residues down to Asp383 were deleted.

Isothermal Titration Calorimetry (ITC) Experiments

ITC experiments were performed using purified wt-arr24_41g and tr-arr2,_sg, against
CBl454_473 or C815P454_473 in 10 mM NaH2PO4 pH 7.0 and 100 mM NacCl. All ITC
measurements were performed at 283K in a VP-ITC isothermal titration calorimeter
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(Microcal, Northampton, MA). The sample cell (1.4 mL) was loaded with arrestin-2 (0.01
mM) and a peptide (0.5 mM) solution was loaded into the syringe. A total of 13 additions of
15 ul each were made sequentially to the sample cell containing arrestin-2. Each addition
was made 210 seconds apart to ensure the titration peak returned to the baseline before the
next addition. The amount of power required for maintaining the reaction cell at constant
temperature after each injection was monitored as a function of time. The peptide was
injected until a 2-fold excess of peptide to arrestin-2 was achieved. As a control experiment,
the individual dilution heats for the peptide CB1°P454.473 were determined under the same
experimental conditions by carrying out identical injections of CB1°P 54473 into 10 mM
NaH,PO, (pH 7.0), 100 mM NaCl buffer solution. Data were collected in high feedback
mode with a filter period of 2 s and analyzed using ORIGIN 7.0 (Microcal, Northhampton,
MA). The isotherms best fitted a one-site binding model assuming a 1:1 stoichiometry.

Expression and purification of arrestin-2

Our purification procedure was equally successful for both wild type and truncated versions
of arrestin. The typical results from SDS-PAGE and western blot analysis of elutions from
the heparin column are shown in figure 1. Reasonable purity is achieved from the heparin
column purification step and the subsequent gel filtration step produced highly purified
samples estimated at > 95% as shown by SDS-PAGE analysis (Fig. 1). The identity of the
arrestin-2 bands was confirmed in western blots (Fig. 1). The CD spectrum is consistent
with literature CD spectra recorded of bovine arrestin that are dominated by the beta sheet
structure of the protein and a shoulder near 222 nm is evidence of the presence of some
alpha-helical character as expected in the N-domain of the protein (Fig. 1D).

Structural Analysis of Free peptides

The amide H spectral regions of the peptides, CB14s54.473 and CB15F 454_475 in H,O/
10%D50 are shown in figure 2. The unphosphorylated peptide shows a great degree of
spectral overlap whereas the spectrum of the pentaphosphorylated peptide is more dispersed.
As a result, assignment of the unphosphorylated peptide CB1454.473 Was not possible. Side
chain spin systems were also overlapped and in cases where the spin system of a residue
such as serine was distinguishable it was not possible to assign the spin system to a specific
residue. The NOESY spectra of CB1454.473 (Fig. 2), even at long mixing times, showed
weak nOes. The fact that resonances do not occur over a wider frequency range combined
with weak nOes suggests that the free peptide CBl4s4.473 is very flexible in solution and
adopts a random coil structure.

The spectrum of the pentaphosphorylated peptide shows great dispersion in the amide region
that is critical for analysis(Fig. 2). A sequential nOe pattern was observed in the NOESY
spectrum of free CB1°P 454.473 that allowed full assignment of the spectrum. Several (i,i+2),
(i,i+3), and one (i,i+4) nOe between backbone and side chain atoms in the region from
residue Thr461 to Thr468 were also observed (Fig 2). These suggest slowed dynamics of the
peptide resulting in a turn in this region of the peptide as shown in figure 3.

Isothermal titration calorimetry of complexes

Using isothermal titration calorimetry (ITC), we attempted a thermodynamic
characterization of the interaction between the peptides and wt-arr2;_41g or tr-arr21_3gy. To
characterize these lower affinity interactions we titrated a fifty fold concentration of peptide
relative to arrestin. The unphosphorylated peptide showed no signs of interaction. For the
pentaphosphorylated peptide, the binding was exothermic as shown for CB1°P 454.473 Vs tr-
arr2q.3g in figure 4. The data fit a single-site model assuming 1:1 stoichiometry with Ky
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values of approximately 116 wm for the wt-arr2;_41g complex and 2.2 wm for the tr-arr2;.3g,
complex (Fig 4).

Structural analysis of peptide binding to wt-arr24_41g and tr-arr24_3g»

When either wt-arr2;.41g Or tr-arr2;_3go was added to a solution of CB14s54.473, there are no
additional peaks in the nOe spectra compared to the free peptide spectrum suggesting little
or no interaction. However, when CB1°P454.473, is in the presence of either wt-arr2;.415 or
tr-arr21.3gp, there are increases to both the intensity and number of nOes (Fig. 5). This
observation is evidence for the formation of complexes between CB1°P54.473 and the
arrestin constructs, with fast-intermediate exchange rates on the NMR time scale. This fast
exchange phenomenon is consistent with the results from the isothermal titration calorimetry
experiments.

The nOes observed for CB15F 454473 in complex with each arrestin construct are
summarized in figure 6. A total of 226 and 252 nOes were used for structure calculations in
the case of wt-arr2,_41g and tr-arr24_sg, respectively. In the first step, twenty substructures
were calculated by distance geometry starting from an extended random coil conformation
of CB15P 454.473. The distance restraints were used as input to calculate five hundred
substructures with a hybrid distance geometry-simulated annealing protocol. The resulting
substructures were further subjected to a simulated annealing protocol where structures were
heated to 2000 K for 3 ps in 1000 steps, and then slowly cooled to 0 K for 5 ps in 1000
steps. During the cooling stage, the force constant on the van der Waals repulsion term was
varied from 0.003 to 4 kcal mol~2 A=4. In the next stage, structures were minimized. The
force constants on the dihedral angle restraints were 200 kcal mol~1 rad=2 during molecular
dynamics and 400 kcal mol~t rad=2 during energy minimization. The force constant on nOe
restraints was 50 kcal mol~1 A=2 throughout all calculations. The CNS task file accept.inp,
identified two hundred and eighty accepted structures satisfying experimental restraints and
local geometry. Fifteen structures with lowest energies out of 180 accepted structures were
selected as final structures and subjected to the water refinement protocol of CNS. Analysis
and stereochemical evaluation of final structures were performed by PROCHECK (69) and
VMD-XPLOR programs (70). An overlay of the six lowest energy structures for arrestin-2
bound CB15P 454473 that satisfied nOe restraints is shown in figure 7.

The sequential nOe patterns of weak dy_n(; #+1) and strong dqn(; #+1), Observed from residue
Val455 to Thr461 is indicative of extended backbone structure. In each of the bound

CB15P 454_473 structures calculated for each arrestin construct, there is a loop formed in the
peptide from Thr461-Asp466. This stable loop is supported by medium range (i, i+2) and (i,
i+3) nOes, in combination with longer range nOes observed between the sidechain of
Met462 to the amide protons of Thr468 and Glu471 in the wt-arr2,_41g complex (Fig 6).
These long range nOes did not appear in the tr-arr2;_3g» complex however the shorter range
nOes consistently resulted in the formation of a loop in this region. The number and
intensity of da_N(,;,q.g), da.-N(i,H—S)n dﬁ_N(,;Hg) dN-N(i,Hl)v and dN_N(I",'+2) nOes in the C-terminal
region of CB1°P454_473 from residue Asp467 to Glu471 revealed the presence of a helical
conformation. The helix loop structure is similar to that observed for a nineteen residue
distal fragment of the rhodopsin receptor binding to arrestin-1. In that case there were nOes
between residues near the N- and C-termini of the peptide that constrained the structure of
the loop. In our results, any such potential long range nOes were ambiguous due to signal
overlap (Fig 6). Therefore, we cannot confirm whether the structure of the peptide is such
that the extended N-terminus is constrained in a position that places the N- and C-termini
near each other. Nevertheless our results do confirm the presence of a helix at the C-
terminus and a stable turn in the middle of the peptide loop across the residues Thr461-
Asp466.
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Docking of CB1°P 454473 to wt-arr24_41g and tr-arr24_3g»

Ambiguous interaction restraints (AIRs) were generated based on mutation data in
conjugation with the coordinate files of arrestin-2 and the peptide. According to criteria of
the Haddock program, the “active” residues are those that have been shown by mutations to
abolish or perturb complex formation and are solvent exposed. Based on our result that
truncation of the C-terminus results in an increase in affinity of the peptide, we focused our
attention to the N-domain region with which the C-terminus of arrestin interacts. For
arrestin-2, positively charged residues in the N-domain were defined as active residues since
mutagenesis studies have shown that they interact with phosphates on the C-tail of receptor
(28, 72). The surrounding residues were chosen as “passive” residues (Fig. 8), which are
defined as residues that are solvent exposed neighbors of active residues. For the peptide,
phosphorylated residues were chosen as active and all other residues were chosen as passive.
Relative solvent accessibility of all active and passive residues was more than 60% as
determined by the NACCESS program (73). The HADDOCK docking program generated
the lowest energy structure via a three-stage process: an initial rigid-body docking to
generate 1000 structures, followed by a semi-flexible simulated annealing in torsion angle
space of 200 best structures in terms of intermolecular energy (sum of van der Waals,
electrostatic, and ambiguous interaction restraints energy terms). Finally, water was included
in the calculation to improve the energy of structures. The solutions were then clustered
using a 3.5 A rmsd cut-off and ranked according to their average interaction energies (sum
of Eelec: Evaw, Eacs) and their average buried surface area according to the HADDOCK
protocol. The structures with the lowest energy and the greatest buried surface area were
taken as the best fits as shown in figure 7. The lowest energy structure for CB1°454_473-wt-
arr21-41g complex had total energy —1027.51kcal/mol and buried surface area of 1314.49 A2,
The lowest energy structure for the CB1°P 454.473-tr-arr2;.3g> complex had a total energy
-1332.83 kcal/mol and buried surface area of 1750.49 A2,

Discussion

Structure of Free Peptides

The peptide CB1454.473 mimics the distal section of the cannabinoid receptor that, upon
phosphorylation, mediates internalization (39). The peptide, displayed little evidence of
structure in aqueous solution as the spectrum showed poor dispersion of peaks and a low
number of nOe peaks at longer mixing times, and at lower temperatures. This correlates with
a recent NMR structure of a segment derived from the entire C-tail of CB1 that found little
structure in aqueous solution (53).

Upon phosphorylation of the peptide we find good dispersion of resonances and more
intense nOes that allowed us to assign and calculate its structure. We find evidence that the
peptide is more conformationally restricted, resulting in the formation of a turn in the
peptide between residues Thr460-Ser466. Intramolecular hydrogen bonding in the
phosphorylated peptide may play a role in this decreased flexibility of the peptide as, shown
in figure 3. In this case, the attached phosphate group of Thr460 allows hydrogen bonding
with both Ser463 and Val464. There are no nOes that support structure at either the N or the
C-terminus of the peptide, and this is most likely due to increased solvent exposure, and
fraying at the peptide termini. However, at the C-terminus, where there is an increased level
of phosphorylation, there is an increase in the number and intensity of NN j+1) nOes,
suggest that the C-terminus of the peptide is more conformationally restricted.

The region in which the data suggests a turn in the peptide, contains the section of the CB1
C-tail, Thr461-Ser463, shown to affect internalization (39-41). A study of the CB1 C-
terminus in membrane mimetic media identified the formation of an amphipathic helical
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region downstream of helix eight, that overlaps with the N-terminus of the CB15P 454.473
peptide. This helical structure terminates at the methionine residue within the Thr461-
Ser463 region (53). We do not observe any structure at the N-terminus of the CB1°F454_473
peptide however our results permit the speculation that an amphipathic helix may be formed
when the C-terminus is in close proximity to the membrane surface. Phosphorylation of
residues in the distal C-terminus may destabilize this helix and cause the C-terminus to
dissociate from the surface of the membrane. This may allow an interaction with arrestin to
proceed.

Numerous studies have shown that affinity for arrestin is driven by phosphorylation of the
GPCR. Moreover, it has been shown that at least two phosphorylated residues are required
in the distal C-terminus for internalization to take place (41). We have observed evidence for
the formation of a turn in a doubly phosphorylated version of CB1454.473 (data not shown).
The fact that nOes suggesting a turn persist in both the free and the bound structure of
CB1°P54.473, at a region that mediate desensitization, suggests that it may be important for
the formation of a complex that leads to internalization.

Binding of CB1°P454.473 to Arrestin

The Transferred NOESY method results in an increase in the number and intensity of nOe
cross peaks when a peptide and a large protein interact, due to chemical exchange between
the peptide in the free and protein bound state (74). The results of ITC experiments showed
no indication of an interaction between the unphosphorylated peptide and wt-arr24_41g or tr-
arr21_3gp. This correlates with the fact that transferred nOes were not observed for mixtures
of the CB1454-473 peptide with either of the arrestin constructs. When the phosphorylated
peptide CB1°P54.473 was mixed with either of the arrestin constructs, a number of
transferred nOes were observed (Fig. 5 & 6). The solution structures of the peptide binding
to wt-arr21_41g, and to tr-arr21.3g», were calculated independently. In each case,
CB15P454.473 binds in a conformation that has a helical region in the C-domain from
residues Asp467 to Glu471, a turn from residues Met462 to Thr466, and an extended region
in the N-terminus from residues Val455 to Thr461. The structural statistics of bound
CB1°P454.473 to Wt-arr21.41g are shown in figure 7, with similar results obtained for binding
to tr-arr21_3gp.

The helix loop conformation we observe resembles the conformation of a peptide mimicking
a segment of the rhodopsin receptor (Rh33g.348) binding with visual arrestin (or arrestin-1)
(30). As in this study, the Rh33q_345 peptide was a mimic for the distal C-terminus of the
rhodopsin receptor, however, the amino acid sequences and the phosphorylation pattern
between CB15P 54473 and Rh330.34g bear no similarity. The fact that similar structures are
observed in each case suggests that there is a specific arrestin binding pocket that may hold
significance to the activation of arrestins. Our ITC results show that CB15P454.473 has
approximately a fifty fold greater affinity for the truncated version of arrestin. This
difference in affinity, combined with the fact that the same bound peptide structure is
observed for both wt-arr2;_41g and tr-arr24_3g, complexes suggests that the protein-binding
site is in the N-domain and is occluded by the C-terminus of arrestin.

Docking studies

Our data is consistent with studies suggesting that the binding surface for the phosphorylated
receptor C-tail is localized to a cavity in the N-domain of arrestin, which contains many
positively charged residues (23). Moreover, our data shows that the state of the arrestin can
affect binding. Mutagenesis studies suggest that Lys11 on B-strand 1 of the N-domain may
be an initial point of contact, while nearby charges direct phosphates towards charged
residues of the polar core (28). The most important residue implicated in binding GPCR
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attached phosphates, Arg169, is buried within the polar core of the protein, and forms a salt
bridge with Asp290, which is a key interaction in stabilizing the basal state. In the crystal
structure, arrestin residues Arg383-Arg393 shield the region of the N-domain near Lys11,
and the cavity that allows access to Arg169, thereby assisting in stabilizing the inactive state
(Fig. 8A&B). Studies utilizing truncated arrestins, and proteolytic cleavage of arrestin in the
presence of phosphopeptides indicate that the C-terminus of arrestin may be displaced by the
phosphorylated GPCR (24). The increased affinity we observed between the peptide
CB15P454_475 and the truncated arrestin supports the notion that CB15P 454.473 may either
compete with, or displace the arrestin C-tail from a binding site in the N-domain.

To further address this issue, we docked low energy structures of CB1°P454.473 to both the
wild-type and truncated arrestins as shown in figure 8. We attempted to minimize
assumptions regarding binding by choosing positively charged residues in the N-domain as
the “active” residues, as shown in figure 8. By doing this, the Haddock program was
allowed to sample a large surface area in the N-domain. The calculation utilized the bound
structure of CB1%P454_473 as a starting structure and initial placement and orientation of the
peptide was calculated according to energies of interaction. The structure of the peptide was
flexible during docking but constrained by the observed nOes. The best solutions were taken
as those with the lowest energy and greatest buried surface area for the peptide.

As shown in figure 8A&B, the phosphates within the helical section of the peptide are
associated with Lys160 and Arg161 residues located in a highly flexible loop region of
arrestin. In the wild-type arrestin, the loop of the CB1°P454.473 peptide enters into the N-
domain cavity and the phosphate group of Ser465 contacts Lys11 of arrestin-2. Similarly,
the Ser463 and Thr461 phosphate groups interact with Lys294 of arrestin as shown in figure
8B. The C-terminus of arrestin, highlighted in Figure 8B, is shielding Arg25 and occludes
the cavity that exposes Arg169. This prevents the peptide from interacting deeper within the
cavity.

Docking of the CB1°P 454.473 with the truncated arrestin resulted in a similar orientation of
the C-terminal helix and association with Lys160 and Arg161, but a closer association
between the peptide and the N-domain cavity as shown in Figure 8C. With the more
exposed binding site, the phosphate of Ser465 interacts with Lys10 and the phosphate of
Thr4d61 with Arg25 of arrestin. This allows the Ser463 residue, located in the loop region of
the peptide, to interact closely with the floor of the cavity and for the phosphate group to
interact with Arg169.

Thus the observed bound, conformation of the peptide can be reconciled with the binding
surfaces of the N-domain cavity. Affinity is clearly governed by phosphorylation, and the
associated charges, however, our results also suggest that phosphorylation serves to limit the
dynamics of the peptide. This would provide a further entropic impetus for binding and
possibly predispose the CB1 terminus towards conformations suitable for binding. The
modeling results shown in figures 8B and 8D are consistent with models of arrestin
activation in the literature (15). In docking to the wild-type arrestin, the Lys11 of arrestin is
an initial point of contact for the Ser465 residue located centrally on the peptide (15, 28).
One may then speculate that the association of the peptide helix with the flexible loop of
arrestin provides increased affinity for this active site and allows the phosphate groups of the
peptide loop-region to interact with functionally important arrestin residues. As the loop
region of the phosphorylated peptide is a persistent feature, the possibility of an interaction
with Lys294 in wt-Arr2 is maximized. This may be a means by which the C-tail of arrestin
may be displaced to yield a more exposed cavity and allow subsequent interactions with key
residues of arrestin as shown in figure 8D.
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summary, the observation of similar bound structures of the CB15P454_475 but increased

affinity for the truncated arrestin suggests binding of the peptide to the N-domain. The
increased affinity for the truncated arrestin can be explained by the increased exposure of
positively charged residues in the N-domain cavity. The interactions modeled against the N-
domain cavity are congruent with arrestin activation models (23) and also with CB1 receptor
mutational studies (40, 41).
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Figure 1.

A) SDS PAGE analysis of fractions obtained from heparin column purification of arrestin.
The supernatant (S), flow through (FT), washes (W14) and Elutions (E12) are shown. B)
Western blot analysis of supernatant (S) and Elution1 (E1) from panel A. C) SDS PAGE
analysis of gel filtration purified E1 from panel A. The overloaded lane shows a clean
product. D) CD spectrum of wt-arr2,_41g showing a predominance of beta-sheet and some
evidence of alpha-helical character.
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Fingerprint and side chain regions of the 1H NOESY spectra, with 1D projections, recorded

Biochemistry. Author manuscript; available in PMC 2013 April 24.

at 10°C of A) CBl4s4.473, B) CB1°P454.473 in 10 mM phosphate buffer, 100 mM NaCl at
pH=7.0. The following long range nOes were observed: Thr461:CH3-Ser463:HN,
Thr461:HN-Ser463:HN, Thr461:CHs-Val464:CHP, Thr461:CHs-Val464:HN, Val464:CHs-
Asp467:HN, Ser465:CH*-Asp467:HN, Thr466:HN-Thr468:HN, Met462:CHP,-Thr468:HN
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Ser465

Figure 3.

(A) Ensemble of five low energy structures of free CB1°P454.473 calculated using long range
nOes. These demonstrate a persistent turn in the peptide. B) Stick representation of
CB1°P454_473 highlighting intramolecular hydrogen bonding that may serve to restrict the
flexibility of the peptide in solution.
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Figure4.

Ti?ration of the truncated arrestin with CB1°P 454.473, showing the calorimetric response as
successive injections of ligand are added to the reaction cell. Panel B depicts the binding
isotherm of the calorimetric titration shown in panel A. The continuous line represents the
least-squares fit of the data to a single-site binding model.
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2D transferred NOESY spectrum of A) Unbound 1.0 mM CB15F 454473 B) Mixture of 1.0

MM CB1°P 454473 with 100 M human arrestin-2 showing the presence of additional

chemical exchange peaks. Arrows indicate short and medium range interactions and circle

indicates a long range interaction in this region.
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Figure®6.

nOe interactions observed for CB1°P454.473 bound to A) wild-type arrestin-2 and B)

Page 21

truncated arrestin-2. Long range nOes included Met462:CHP,-Thr468:HN and Met462:CH)-
Glu471:HN. Ambiguous nOes observed included, Thr454:CHs-Ser469:CH,, Val455:CHs-
Asp467:HN Val455:CH3-Ser469:HN.
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A) Ensemble of the six low energy structures of full-length arrestin-2 bound CB1%P454_473
with backbone superimposition. B) Lowest energy structure with phosphorylated residues

shown as ball and stick C) Ramachandran plot and the structural statistics of bound

CB1%P454.473.
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Lysl0  Arg25 Lys294 Lys10 Arg25  Lys294

Active Residues | 10,11,24,25,30,65,76,147,157,159,160,161,165,169,282,285,292,294,295,393
Passive Residues | 12,14,66,67,68,69,71,72,78,81,149,154,155,156,158,167,293,390,391,392

Figure8.

A) Ribbon representation of CB1°P 454.473, colored in blue (at the N-terminus) to red (at the
C-terminus) binding the wild type arrestin colored in green. B) Ribbon representation of
CB15P 454.473 shown binding to a surface representation of N-domain binding site
highlighted in green. The blue line highlights the placement of the C-terminus residues that
occlude the binding cavity. The positively charged residues in the binding site are labeled
and colored in red. Interactions with phosphorylated residues Thr460, Ser463 and Ser465 of
the peptide are labeled a, b and ¢ respectively. C) Ribbon representation of CB1°P454.473,
colored in blue (at the N-terminus) to red (at the C-terminus) binding the truncated arrestin
colored in green. Note the absence of the C-terminus. D) Ribbon representation of
CB15P454.475 shown binding to a surface representation of the N-domain binding site
highlighted in green. The positively charged residues in the binding site are labeled and
colored in red. Interactions with phosphorylated residues Thr460, Ser463 and Ser465 of the
peptide are labeled a, b and c respectively. The list of active and passive residues chosen to
define the binding site in HADDOCK is shown in the table.
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