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Abstract
Joint longitudinal-survival models are useful when repeated measures and event time data are
available and possibly associated. The application of this joint model in aging research is
relatively rare, albeit particularly useful, when there is the potential for nonrandom dropout. In this
article we illustrate the method and discuss some issues that may arise when fitting joint models of
this type. Using prose recall scores from the Swedish OCTO-Twin Longitudinal Study of Aging,
we fitted a joint longitudinal-survival model to investigate the association between risk of
mortality and individual differences in rates of change in memory. A model describing change in
memory scores as following an accelerating decline trajectory and a Weibull survival model was
identified as the best fitting. This model adjusted for random effects representing individual
variation in initial memory performance and change in rate of decline as linking terms between the
longitudinal and survival models. Memory performance and change in rate of memory decline
were significant predictors of proximity to death. Joint longitudinal-survival models permit
researchers to gain a better understanding of the association between change functions and risk of
particular events, such as disease diagnosis or death. Careful consideration of computational issues
may be required because of the complexities of joint modeling methodologies.
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Introduction
Longitudinal studies often collect both repeated measures and time-to-event data. For
instance, aging studies interested in cognitive change repeatedly collect information about
participants’ cognitive function and date of death or dementia diagnosis. Repeated measures
and time-to-event data are often analyzed independently using growth curve models (e.g.,
linear mixed, multilevel, or random coefficients) for the investigation of change as well as
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survival analysis methods such as the Cox proportional hazard models for the time-to-event
data.

Although independent analyses of repeated measures and time-to-event data inform about
each process separately, they do not account for the possible association between the
longitudinal measures and the event data. Joint longitudinal–time-to-event models have been
developed to explicitly account for the dependency between the longitudinal change
functions and event time data.

A second context in which a joint modeling approach may be appropriate is when one is
interested in the longitudinal outcome and the dropout is nonrandom, that is, when the
probability of dropout depends on unobserved longitudinal data. Here, ignoring dropout may
result in biased results (Little & Rubin, 1987). A shared parameter model that models the
joint distribution of the longitudinal outcome and the event data has been proposed to
overcome this limitation (Follman & Wu, 1995). Technical overviews of the joint modeling
literature can be found in Tsiatis and Davidian (2004) and Neuhaus and Heuman (2006).

In the health literature, the association between repeated measures and time-to-event data
has been modeled in various ways. Wang and Taylor (2001) modeled the association
between CD4 counts and the hazard of AIDS by including CD4 counts as a time-dependent
covariate in a proportional hazards model considered for modeling the hazard of AIDS. Lin,
Turnbull, McCulloch, and Slate (2002) described prostate-specific antigen change and
prostate cancer diagnosis, fitting a latent class model and including each person’s class
membership as a covariate in a survival model. Henderson, Diggle, and Dobson (2000)
combined a random effects model for the longitudinal data and a semiparametric
proportional hazards model for the survival data. Joint modeling occurs by including the
random effects from the longitudinal model singly or in combinations in the survival model.
A distinguishing feature of this modeling approach is that the model is estimated in a single
simultaneous step, not as a two-stage model.

Henderson et al.’s model (2000) has been applied to examine the association between
changes in episodic memory and early Alzheimer’s diagnosis (McArdle, Small, Backman, &
Fratiglioni, 2005). McArdle et al. fitted an age-based latent growth model to memory scores
and a Cox proportional hazards model to data about the age of onset of Alzheimer’s disease.
They reported that level of memory function – but not its change – was a predictor of age of
disease onset. Ghisletta, McArdle, and Linderberg (2006) examined the association of a
range of cognitive abilities and mortality, reporting that, when cognitive variables were
analyzed separately, their level was predictive of mortality, but that after controlling for
sensory and motor performance and for broad personality characteristics, verbal knowledge
and one of the episodic memory indicators considered in the analysis were no longer
associated with mortality: Only change in speed and verbal fluency were found to be
associated with mortality. Ghisletta (2008) later extended the longitudinal submodel to a
multivariate model that allowed him to describe change in several cognitive abilities
simultaneously.

Henderson et al.’s model is becoming increasingly popular in health research despite its
considerable complexity and the fact that fitting the model may require sophisticated
modeling skills and the use of specialized software packages. Statistical packages such as
JM and JoineR (Philipson, 2011; Rizopoulos, 2010) were recently developed to fit joint
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longitudinal-survival models using R.1 Both packages use maximum likelihood estimation
techniques for model estimation.

Guo and Carlin (2004) compared results obtained from fitting Henderson et al.’s model
using SAS, which estimates the model using maximum likelihood estimation via the EM
algorithm and WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), which estimates the
model using a Bayesian approach implemented via Markov Chain Monte Carlo methods.
They concluded that the Bayesian approach offered significantly improved and enhanced
estimation, simpler coding, and comparable runtimes. Following Guo and Carlin’s
recommendation and an estimating technique applied in previous publications in the aging
literature (Ghisletta, 2008; Ghisletta et al., 2006; McArdle et al., 2005), we illustrate the fit
of a joint longitudinal-survival model and discuss some of the challenges that may arise
when fitting these models considering a Bayesian approach, though the issues discussed are
not exclusive to the Bayesian paradigm.

With this purpose in mind, we examine the association between change in memory and
death in older individuals using data from a Swedish longitudinal study of aging.

Methods
Data

We analyzed data from participants of a population-based study of aging, the “Origins of
Variance in the Old-Old” study (OCTO-Twin) (McClearn et al., 1997). Initially, 351 intact
aged twin pairs (702 individuals: 149 monozygotic and 202 same-sex dizygotic pairs) were
sampled from the Swedish Twin Registry. These individuals were first interviewed between
1991 and 1993 and then in four further interview waves conducted at 2-year intervals.
Sociodemographic information such as sex, years of education, and marital status were also
collected during the study. Date, cause of death, and dementia diagnosis were collected
throughout and beyond the study from the Swedish Death Registry and medical records.
Dementia was diagnosed by consensus according to the 3rd edition of the Diagnostic and
Statistical Manual of Mental Disorders (APA, 1980). After accounting for mortality, only
10% of the missing data are due to refusal to participate that has been reported to be
associated with ill health (Johansson & Zarit, 1997). Given the low intraclass correlation
previously reported for these data (Johansson & Berg, 1989), the twins were treated as
unrelated singletons.

We examined scores from the Prose Recall test of 618 study participants who were not
demented at baseline. The Prose Recall test is a verbal memory test in which participants are
asked for immediate free recall of a brief (100 words) story that has a humorous point.
Responses are coded for the amount of information recalled in a manner similar to the
Wechsler Memory Scale. The maximum score is 16; Figure 1 shows Prose Recall scores of
a randomly selected OCTO participants plotted against time in study.

Of the 618 participants with available Prose Recall scores, 410 were women and 208 men.
They had an average of 7.2 years of education (SD = 2.3) and at baseline were, on average,
aged 83.4 years (SD = 3.1). The average age at death of the 577 individuals who died during
the duration of the study (93% of sample) was 90 years (SD = 4.3). About 30% of the
sample (180 individuals) received a dementia diagnosis during the study.

1Interested readers can visit the JM website at http://cran.r-project.org/web/packages/JM/index.html, and JoineR website http://
www.liv.ac.uk/joine-r/index.htm.
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Statistical Analysis
We fitted a series of joint longitudinal-survival models with several options for the
longitudinal and survival submodels and their combination.

We modeled the longitudinal outcome using random effects models as they permit the
investigation of mean change while allowing for between-individual variability about
population average parameters. To identify the best fitting model of change in the Prose
Recall scores, we considered a series of random effects models structured as a function of
individual’s time in study. Models considered were (1) a model where rate of decline was
assumed to be constant (Model 1, linear); (2) a model where the rate of decline was assumed
to change with increasing age (Model 2, quadratic); (3) a piecewise linear model with an
inflection point estimated from the data and common to all individuals and with constant
rate of decline before and after the inflection point (Model 3, fixed change point; Hall,
Lipton, Sliwinski, & Stewart, 2000); and (4) a model with individual inflection points
(Model 4, random change point; Hall et al., 2000) with constant rate of decline before and
after the inflection point. Mathematical formulations of these models are presented in Table
1.

All models were adjusted for baseline age, education (considered as a continuous variable
measured as years of education), sex (men = 0, women = 1), and a dementia indicator (1 =
incident case, 0 = dementia free). Continuous variables were centered at their mean values.

To model the hazard of death, we considered a Weibull and an exponential model. Under a
Weibull model, the hazard of death at time t, was modeled as:

with μi(t) = exp(δ0Bagei + δ1Educi + δ2Genderi + δ3Inc.Demi) (1) and λ0(t) = kt(k−1),
where t is the number of years past age 79 and k > 0. The term λ0(t) = kt(k−1) represents the
baseline hazard model for an individual with values of zero in all covariates. The parameter
k is such that, when k > 1, the risk of death increases with time, while if 0 < k < 1, the risk of
death decreases with time. The exponential model is a special case of the Weibull model and
can be obtained from equation (1) by taking k = 1. Under the exponential model the risk of
death remains constant over time. Parameters for δi for i = 1,2, 3, represent the effect of age
at study entry, education, sex, and incident dementia, respectively, on the hazard of death
after age 79.

To link both submodels, we included an extra term Wi(t) in the model presented in equation
(1). This new term, often called frailty, took different forms to represent relevant aspects of
the random effects model, including single individual random effects from the longitudinal
submodel and various combinations of them.

The mean hazard of death modeled in the joint model formulation was then represented as:

For instance, for a linear random effects model with random effects ν0i and ν1i correspond
to baseline memory performance and rate of change, respectively. Possible formulations of
the frailty term Wi(t) include Wi(t) = R0ν0i, Wi(t) = R0ν0i, and where R0 and R1 are
normally distributed parameters. Where both random effects were included, R0 and R1 were
modeled as bivariate normals. R0 and R1 in Wi(t) represent the effect of individual
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variations in memory performance and its annual rate of change on the mean hazard of
death. (See bottom row of Table 1 for other possible formulations of frailty terms Wi(t).)

To compare results from an independent analysis and the joint models proposed,
independent analyses were also conducted fitting the same longitudinal random effects and
survival models previously described but excluding the linking terms Wi(t) from the survival
model.

Model Implementation
All models were fitted in a Bayesian framework following Guo and Carlin’s model
specification. WinBUGS performs MCMC simulations to construct Markov chains that
converge toward a stationary distribution.

Convergence was assessed graphically after discarding an initial burn-in of 7,000 iterations
and by inspection of the Brooks and Gelman (Brooks & Gelman, 1997) method
implemented in WinBUGS. Monte Carlo standard errors of all parameters of interest were
examined, and we verified that they were below 5% of the sample standard deviation as
usually recommended.

Vague prior distributions were considered. Sensitivity analyses were conducted to assess the
impact of the prior distributions on model estimates. Model selection was performed by
comparison of deviance information criterion (DIC) values (Spiegelhalter, Best, Carlin, &
vander Linde, 2002), a generalization of Akaike’s information criterion. Models with small
DIC values are preferred as small values of DIC identify a parsimonious model with good
fit.

Results
Joint Model

A joint model consisting of a quadratic random effects model and a Weibull survival model
with linking termsthat included random effects corresponding to baseline memory
performance (intercept), annual rate of change in memory performance (linear slope), and
acceleration in change (quadratic slope) was identified as the model with the lowest DIC.

Results from the model are presented in Table 2 (left columns). Mean Prose Recall scores at
baseline for a reference individual (nondemented man aged 83 years at baseline with 7 years
of education) was estimated at 9.69 (SD = 0.57) points. Annual rate of change was estimated
at 0.11 (SD = 0.47) points per year, and its change at −0.15 (SD = 0.13) (quadratic slope),
although these estimates did not reach statistical significance.

Individuals who entered the study at an older age performed poorer compared to those who
entered the study at a younger age. Incident dementia cases scored 3.52 points lower at study
entry than individuals who were never diagnosed with dementia. Better educated individuals
also had better performance at study entry than individuals with poorer education. None of
the variables considered as possible predictors of change were found to be significant
predictors of linear or quadratic rate of memory change.

Figure 2 shows estimated mean curves obtained from the joint and independent models
fitted to the data and the effect of risk factors on them. The thick solid line represents the
trajectory estimated by the joint model for a person with reference values in all covariates
(nondemented man with 7 years of education and aged 83.4 years at study entry) and the
thin solid line the trajectory estimated by the random effects model. They illustrate the bias
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induced in the independent model by the missing at random assumption and show how the
independent analysis underestimates the decline experienced by individuals.

Results from the survival model indicate that the risk of death increased with time (k = 3.72
> 1). Women were found to have lower hazard of death after age 79 years than men, incident
dementia cases had a higher hazard of death than those who stayed dementia free during the
study, and individuals who joined the study at an older age had lower hazard of death after
age 79 years than those who joined the study at a younger age. Our results identified poorer
memory function at study entry and a faster change in rate of decline (acceleration) as
associated with an increasing hazard of death after age 79.

The results obtained from the joint analysis illustrates that, even after the inclusion of the
covariates, the residual random effects of both the linear and quadratic slopes are still
significant. This demonstrates that the lack of prediction of the random effects by the
covariates is not due to lack of variance to begin with.

Independent Analyses
Longitudinal Model—Mean Prose Recall scores at baseline for a reference individual
were estimated at 9.86 (SD = 0.59), with an annual rate of change (linear slope) of −0.11
(SD = 0.47) points per year, and a change in rate of change of −0.01 (SD = 0.13) points per
year (quadratic slope). Per extra year of age at study entry (relative to 83 years), memory
performance was 0.30 points lower. Incident dementia cases scored 3.52 points lower at
study entry than individuals who were never diagnosed with dementia. Better educated
individuals also had better performance at study entry than individuals with poorer
education.

Survival Model—Results from the independent survival model were similar to those
obtained from the joint analyses, though the effects of predictors were attenuated when the
linking terms that conveyed information about the longitudinal model were excluded from
the survival model (see right columns of Table 1).

Discussion
Our results support the hypothesis of an association between mortality and memory changes.
We found that the hazard of death increases with poorer cognitive function and a faster
change in rate of memory decline after accounting for dementia.

Only baseline age, incident dementia, and education reached statistical significance as
predictors of memory performance. Being male, being diagnosed with dementia, and being
younger at baseline were identified as predictors of higher hazard of death. These results
agree with previous publications (Lavery, Dodge, Snitz, & Ganguli, 2009; Oksuzyan et al.,
2010). Although initially it may seem counterintuitive that individuals who joined the study
at a younger age have higher hazard of death, we believe our results reflect a survivor effect
(Mendes de Leon, 2007). That is, individuals who joined the study at an older age are likely
to be healthier than those who reach that same age during the duration of the study.

Initially, it may be thought that inferences about the association between death and memory
changes similar to the ones obtained from a joint analysis can be obtained by fitting time to
death linear mixed models (or possibly other independent longitudinal analysis conducted
using linear mixed models where time is structured differently). However, one must bear in
mind that, although time to death mixed models represent an interesting modeling
alternative, inferences obtained from these models are affected by the same issues as other
linear mixed model independent analysis. Specifically, inferences are likely to be biased in
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the presence of nonrandom dropout. Moreover, in order to fit these models it is necessary to
calculate the time elapsed between each interview and death, so only data from individuals
with known dates of death can be included for analysis. This may result in a smaller sample
size and biased inferences because they are produced using data from a selected subsample
of individuals.

The joint modeling approach considered here was specifically developed to avoid biases
induced by nonrandom dropout. Where date of death is unknown, it is treated as censored,
so that nondeceased individuals are not excluded from the analyses.

The comparison of results obtained from a separate analysis of the repeated measures
models and survival models illustrates the differences in the fixed effects estimates obtained
under the assumption of an “immortal cohort” and when death is modeled explicitly as in the
joint longitudinal-survival model. A 2-step analysis (that is, an analysis where a linear mixed
model is first fitted and random effects are then extracted and included in a time-to-event
model) will have similar problems as the ones discussed previously, since results from the
longitudinal model will be biased being produced under a missing at random assumption.
Estimates of change produced by an independent random effects model will be likely to
underestimate change as in the example we considered. Random effects produced will also
be affected by bias. Because these will then inform the time-to-event part of the model, this
second model will in and of itself produce biased estimates of hazard of death.

Differences between estimates obtained from an independent analysis of the longitudinal
data and time-to-event data and estimates obtained from their joint analysis were also
reported by McArdle et al. (2005) in an investigation of the association between episodic
memory and the onset of Alzheimer’ disease. Estimates of memory performance and annual
rate of change reported by McArdle from the independent analysis conducted fitting an age-
based latent growth model were 6.18 (SD = 0.18) and −1.15 (SD = 0.16), whereas the
corresponding estimates from a joint growth-survival model were 7.10 (SD = 0.41) and
−0.95 (SD = 0.18). These results demonstrate the biased estimates obtained from the growth
model when not accounting properly for possible informative dropout.

The fitting of joint models is a time-consuming task for several reasons. First, a range of
measurement and intensity models must be considered if sufficient data are available to
explore longitudinal models that would allow researchers to obtain gain better knowledge
about the shape of the change in the longitudinal outcome. For instance, we had five waves
of data from the OCTO study, which allowed us to examine the possibility of nonlinear
change. We considered four different random effects submodels in addition to two survival
submodels, but restricted our analysis to four longitudinal models with directly interpretable
parameters without considering more complex parametric shapes or nonparametric
alternatives. Within each combination of longitudinal-survival model, several options for
linkage should be considered. The consideration of other longitudinal models would have
considerably increased the number of possible combinations of longitudinal-survival models
and ways of linking them. For instance, where a model with constant rate of decline is
considered, the survival model may include a set of covariates in addition to the random
intercept and the random slope as single terms, and combinations thereof, resulting in at
least three possible models. Although it may be tempting to identify the best-fitting
longitudinal and survival models separately and then combine them in a second-stage
analysis, we do not encourage researchers to do so as results from independent models may
be misleading since they ignore the association of the longitudinal and survival data may
produce biased results.
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Second, analyses performed in a Bayesian framework require the assessment of the impact
of the choice of prior distributions on estimates of model parameters. In a Bayesian
modeling framework, inferences are based on estimates obtained from the posterior
distribution of model parameters, a combination of the data likelihood and the prior
distribution of the parameters. Prior distributions are chosen by the researcher based on
knowledge about the parameters of interest, before the data are seen. Consequently,
sensitivity analyses of the prior distributions considered in the models fitted are a necessary
condition to ensure that results are consistent. Although this further step in the analysis is
necessary only when models are fitted in a Bayesian framework, other issues arise when
fitting joint models using maximum likelihood and the EM algorithm. When fitting joint
models using the EM algorithm, numerical integration is required and convergence
problems have been reported (Ghisletta et al., 2006). Convergence problems have been
reported to affect the number of covariates that could be included in the model, as with an
increasing number of covariates, problems became more acute.

Finally, caution in the choice of the number of covariates to be included in the two submodel
may be needed. Ghisletta et al. (2006) reported limitations in the number of covariates they
could include in their analysis; when they tried to include an additional number of
covariates, they encountered convergence problems. We did not encounter these problems in
our work, though we included only a reduced number of core covariates in our analysis.

The Bayesian approach considered in this paper offers a flexible modeling framework that
does not require sophisticated code-writing skills, though familiarity with Bayesian
inference is necessary. Model selection was conducted via comparison of DIC values.
Unlike other fit indices like the Bayesian information criterion or Akaike’s information
criterion, there is no rule of thumb for model comparison using the DIC. Models with small
DIC values are considered to be parsimonious and fit the data well. Yet, in models of
considerable complexity like the one discussed here, the DIC may not be an appropriate
index, and researchers may need to use alternative indices of fit (Celeux, Forbes, & Robert,
2006; Spiegelhalter et al., 2002). Model fit in Bayesian statistics is an active area of research
that is continuously evolving and where alternative measures of model fit are currently being
investigated.

To conclude, joint models provide researchers with a promising modeling alternative in the
presence of nonrandom dropout and where the focus of interest is on both the longitudinal
and the survival processes and their association. Yet, these are complex models, so that
researchers need to be aware of some of the issues that may arise when joint models are
employed.
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Appendix
Statistical assumptions of longitudinal submodels presented in Table 1 model include the
following:

Errors are assumed to be independent.

Survival Submodels
Under a Weibull proportional hazards model, the hazard of death at time t, for individual i
can be formulated as: λi(t) = kt(k−1) μi(t) with

The exponential model can be obtained from the expression of the formulation of the
Weibull model by taking k = 1.

Joint Models Fitted
For each of the longitudinal submodels and survival models, a set of frailty terms Wi(t) were
used. These are listed in Table 1. The association parameters R0, R1, R2 were modeled as
Gaussian variables with mean zero and constant variance.
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Figure 1.
Prose scores from a randomly selected subsample of participants of the OCTO Twin
longitudinal study who were nondemented at baseline plotted as a function of time in study.
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Figure 2.
Estimated mean trajectories for a reference individual (nondemented man, aged 83 years at
study entry, with 7 years of education) obtained fitting a joint model and a random-effects
model and the effect of covariates of these trajectories.
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Table 1

List of random effects model considered for the independent and joint analyses and frailty terms

Random effects models fitted

Linear
random
effects
model
(Model 1)

Proseit = α0i + α1iTit + εit (1)

α0i = α00 + γ01B.agei + γ02Educi + γ03Genderi + γ04Inc .Demi + ν0i (1.1)

α1i = α11 + γ11B.agei + γ12Educi + γ13Genderi + γ14Inc .Demi + ν1i (1.2)

Quadratic
random
effects
model
(Model 2):

Proseit = α0i + α1iTit + α2iTit
2 + εit (2)

α0i = α00 + γ01B.agei + γ02Educi + γ03Genderi + γ04Inc .Demi + ν0i (2.1)

α1i = α11 + γ11B.agei + γ12Educi + γ13Genderi + γ14Inc .Demi + ν0i (2.2)

α2i = α22 + γ21B.agei + γ22Educi + γ23Genderi + γ24Inc .Demi + ν0i (2.3)

Fixed
change point
model
(Model 3)

Proseit = α0i + α1iTitI(Tit ≤ τ) + α0i + α1iτ + α2i(Tit - τ) I(Tit > τ) + εit (3)

α0i = α00 + γ01B.agei + γ02Educi + γ03Genderi + γ04Inc .Demi + ν0i (3.1)

α1i = α11 + γ11B.agei + γ12Educi + γ13Genderi + γ14Inc .Demi + ν0i (3.2)

α2i = α22 + γ21B.agei + γ22Educi + γ23Genderi + γ24Inc .Demi + ν0i (3.3)

Random
change point
model
(Model 4)

Proseit = α0i + α1iTitI(Tit ≤ τi) + α0i + α1iτi + α2i(Tit - τi) I(Tit > τi) + εit (4)

α0i = α00 + γ01B.agei + γ02Educi + γ03Genderi + γ04Inc .Demi + ν0i (4.1)

α1i = α11 + γ11B.agei + γ12Educi + γ13Genderi + γ14Inc .Demi + ν0i (4.2)

α2i = α22 + γ21B.agei + γ22Educi + γ23Genderi + γ24Inc .Demi + ν0i (4.3)

Frailty terms

Wi(t) = R0ν0i; Wi(t) = R1ν1i; Wi(t) = R2ν2i

Wi(t) = R0ν0i + R1ν1i

Wi(t) = R0ν0i + R2ν2i

Wi(t) = R2ν2i + R3ν3i

Wi(t) = R0ν0i + R1ν1i + R2ν2i
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Table 2

Results from a joint longitudinal-survival model, where the longitudinal model was a quadratic model and the
survival model a Weibull model that included the random intercept, the random slopes before and after the
change point, and the random change point as linking terms

Joint model Independent analysis

Mean (SD) 95% credible interval Mean (SD) 95% credible interval

Random effects model

Fixed effects

Memory performance 9.69 (0.57) [8.57, 10.82] 9.86 (0.60) [8.70, 11.02]

 Baseline age −0.30 (0.10) [−0.51, −0.10] −0.32 (0.10) [−0.53, −0.11]

 Education 0.52 (0.12) [0.28, 0.76] 0.52 (0.12) [0.28, 0.76]

 Sex 0.32 (0.55) [−0.77, 1.40] 0.20 (0.57) [−0.91, 1.33]

 Incident case −3.52 (0.53) [−4.52, −2.47] −3.47 (0.52) [−4.51, −2.43]

Rate of change 0.11 (0.47) [−0.81, 1.03] −0.11 (0.48) [−1.04, 0.82]

 Baseline age 0.01 (0.07) [−0.14, 0.15] 0.00 (0.07) [−0.14, 0.16]

 Education −0.07(0.408) [−0.24, 0.09] −0.08 (0.08) [−0.2, 0.08]

 Sex 0.22 (0.46) [−0.68, 1.10] 0.31 (0.42) [−0.51, 1.22]

 Incident case −0.60 (0.35) [−1.29, 0.08] −0.63 (0.34) [−1.33, 0.01]

Change in rate of change −0.15 (0.13) [−0.42, 0.10] −0.01 (0.12) [−0.26, 0.23]

 Baseline age 0.01 (0.01) [−0.03, 0.04] 0.00 (0.01) [−0.04, 0.04]

 Education −0.00 (0.02) [−0.04, 0.04] 0.00 (0.02) [−0.04, 0.04]

 Sex 0.02 (0.12) [−0.22, 0.27] −0.04 (0.12) [−0.27, 0.19]

 Incident case −0.03 (0.08) [−0.20, 0.13] −0.02 (0.08) [−0.18, 0.14]

Random effects

Res. Variance intercept 3.15 (0.23) [2.70, 3.63] 3.15 (0.23) [2.70, 3.63]

Res. Variance random slope before change point 1.04 (0.20) [0.69, 1.48] 1.04 (0.20) [0.69, 1.48]

Res. Variance random slope before change point 0.31 (0.02) [0.26, 0.37] 0.27 (0.02) [0.22, 0.34]

Error 4.55 (0.02) [3.57, 5.88] 4.54 (0.02) [3.57, 5.88]

DIC 9488.0 9810.8

Survival model

Baseline risk (p) 3.72 (0.22) [3.34, 4.23] 3.32 (0.10) [3.11, 3.52]

Constant −9.04 (0.54) [−10.25, −8.11] −8.13 (0.28) [−8.70, −7.57]

Baseline age −0.20 (0.02) [−0.25, −0.15] −0.17 (0.01) [−0.20, −0.14]

Education 0.01 (0.02) [−0.03, 0.06] 0.02 (0.01) [−0.01, 0.05]

Sex −0.47 (0.11) [−0.70, −0.26] −0.40 (0.08) [−0.56, −0.21]

Incident case 0.37 (0.11) [0.15, 0.59] 0.29 (0.09) [0.11, 0.47]

Random effects intercept −0.07 (0.02) [−0.11, −0.01]

Random effects linear slope −0.21 (0.13) [−0.48, 0.05]

Random effects quadratic slope −1.77 (0.68) [−3.15, −0.44]
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