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Oxygen sensing and hypoxia signalling pathways in
animals: the implications of physiology for cancer

Peter J. Ratcliffe

Henry Wellcome Building for Molecular Physiology, Old Road Campus, University of Oxford, Oxford OX3 7BN, UK

Abstract Studies of regulation of the haematopoietic growth factor erythropoietin led to the
unexpected discovery of a widespread system of direct oxygen sensing that regulates gene
expression in animals. The oxygen-sensitive signal is generated by a series of non-haem Fe(II)-
and 2-oxoglutarate-dependent dioxygenases that catalyse the post-translational hydroxylation
of specific residues in the transcription factor hypoxia-inducible factor (HIF). These hydro-
xylations promote both oxygen-dependent degradation and oxygen-dependent inactivation of
HIF, but are suppressed in hypoxia, leading to the accumulation of HIF and assembly of an active
transcriptional complex in hypoxic cells. Hypoxia-inducible factor activates an extensive trans-
criptional cascade that interfaces with other cell signalling pathways, microRNA networks and
RNA–protein translational control systems. The relationship of these cellular signalling pathways
to the integrated physiology of oxygen homeostasis and the implication of dysregulating these
massive physiological pathways in diseases such as cancer are discussed.
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Introduction

All large organisms face the fundamental physiological
challenge of matching oxygen supplies to the needs of
respiring tissues. In many animal species, both large size
and the capacity for rapid movement enhance the difficulty
of this task. In higher animals, specialized organs evolved
to facilitate oxygen delivery, and the lungs, heart, blood
and vascular system are all devoted to this purpose.

Peter Ratcliffe is Nuffield Professor of Clinical Medicine at the University of Oxford. He trained as a Nephrologist, researching
the pathophysiology of renal injury in shock, before switching fields to study the regulation of erythropoietin by the kidneys.
The work on erythropoietin led to the discovery of a widespread system of gene regulation by oxygen and to the elucidation of
the underlying oxygen sensing process. He has directed the hypoxia biology laboratory at Oxford for more than 20 years and
has won many awards for this work including the Louis-Jeantet Prize for Medicine, the Canada Gairdner International Award
and the Grand Prix Lefoulon-Delalande of the Institut de France.

This article is based on the Annual Review Prize Lecture delivered at Physiology 2012 (the annual meeting of The Physiological Society), Edinburgh, UK, 4 July 2012.

The co-ordination of these complex homeostatic systems
requires robust mechanisms for detecting and responding
to error signals in oxygen homeostasis.

A direct oxygen sensing system that regulates gene
expression in animals

In principle, detection systems that ‘sense’ an ‘error signal’
in oxygen homeostasis might operate at many different
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levels. For instance, inadequate oxygen levels might
be detected either indirectly, through the compromise
of metabolism, or directly, through changes in the
availability of oxygen itself. The central role of oxygen
in energy metabolism makes these possibilities difficult
to distinguish. However, early observations on one
highly dynamic response, the increased production of
the haematopoietic growth factor erythropoietin (Epo)
by the kidneys, when blood oxygen is reduced, strongly
suggested the existence of a process that was responding
to the lack of oxygen itself (for review see Jelkmann,
1992; Bunn & Poyton, 1996). Notably, the demonstration
that cobalt intoxication produces striking increases in
erythropoiesis without obvious metabolic compromise
(Berk et al. 1949) and that metabolic inhibitors were
unable to mimic this effect (Necas & Thorling, 1972)
pointed to a distinct oxygen sensing process. Nevertheless,
the prevailing view was that this oxygen sensing system
was restricted to Epo and not of general relevance to
other cellular and systemic responses that defend oxygen
homeostasis, a perspective that was reinforced by the
distinctive, high-amplitude dynamics of the Epo response.
This initially led to major efforts to identify and isolate the
erythropoietin producing cells from kidney. Somewhat
contrary to expectations, these cells were shown to be
a population of interstitial fibroblasts without obvious
specialized features (Bachmann et al. 1993; Maxwell et al.
1993a).

In parallel with this, and again contrary to expectations,
early studies of the transcriptional control of the
erythropoietin gene revealed that the underlying oxygen
sensing system that regulated control DNA sequences
at the erythropoietin locus was in fact not restricted to
erythropoietin producing cells. A key oxygen-regulated
control element, termed the erythropoietin 3′ enhancer,
was shown to manifest activity that was inducible
by both hypoxia and cobaltous ions (thus mimicking
the characteristics of endogenous erythropoietin) when
introduced by transfection into a very wide range of
cells (Maxwell et al. 1993b). Many of these cells were
entirely unrelated to the kidney or to the production
of erythropoietin, indicating that the system must be
widespread and involved in other responses. In subsequent
work, it became clear that the key transcription factor,
hypoxia-inducible factor (HIF), originally identified in
erythropoietin producing hepatoma cells (Semenza &
Wang, 1992), is indeed expressed very widely (probably
universally) in mammalian cells (Wang & Semenza, 1993;
Firth et al. 1994) and that the HIF system is conserved
in primitive animal species that lack erythropoietin,
red blood cells or even any specialized oxygen-delivery
apparatus (Nagao et al. 1996; Loenarz et al. 2011). In
human cells, pan-genomic analyses of HIF binding to DNA
have now revealed the existence of in excess of 500 direct
transcriptional targets of HIF in a given cell line (Mole et al.

2009; Xia et al. 2009; Schödel et al. 2012b). Recent work
has demonstrated that HIF also interacts with microRNA
networks (Kulshreshtha et al. 2007), engages in cross-talk
with other signal pathways (Koshiji et al. 2004; Gustafsson
et al. 2005) and acts as a non-transcriptional regulator
of gene expression, for instance by affecting translation
of specific genes (Uniacke et al. 2012). These primary
activities will initiate secondary cascades of pathway
activation, so that the overall complexity of activating the
HIF response is enormous.

Hypoxia-inducible factor binds to DNA as an α/β
heterodimer; both α and β subunits belonging to the basic
helix-loop-helix PAS protein family (Wang et al. 1995).
The β subunits are constitutively expressed and form
heterodimers with several other members of this family to
mediate other transcriptional responses, whilst the α sub-
units are specifically involved in the response to hypoxia.
Early work that aimed at defining the upstream pathways
connecting HIF to the signalling of oxygen levels defined
discrete domains within the HIF polypeptide that could
independently convey oxygen sensitivity on heterologous
transcription factors (Jiang et al. 1997; Pugh et al. 1997;
Huang et al. 1998). This work suggested a dual process
of regulation, because some of these domains conveyed
oxygen-dependent instability, whereas some appeared to
affect transcriptional activity independent of stability (Fig.
1; Pugh et al. 1997). All domains shared the property of
responding both to hypoxia and to cobalt stimulation,
suggesting that they interacted independently with the
same, or a closely similar, oxygen sensing signal. It was
widely believed that, in common with most intracellular
signalling pathways, protein phosphorylation would be
involved in signal transduction. However, mutation of
every phospho-acceptor residue in one of the isolated
regulatory domains of HIF failed to ablate its oxygen
sensitivity, suggesting that this signal process could operate
independently of protein phosphorylation, thus excluding
many known transduction mechanisms (Pugh et al. 1997).

An important insight into the upstream processes
regulating HIF was gained through the recognition that
the von Hippel-Lindau tumour suppressor (pVHL) was
essential for proteolytic regulation of HIF-α, functioning
as a ubiquitin ligase, targeting each of two internal
HIF-α domains to mediate oxygen-dependent instability
(Maxwell et al. 1999; Cockman et al. 2000; Ohh et al.
2000; Tanimoto et al. 2000; Masson et al. 2001). Detailed
biochemical, mutational and mass spectrometric analysis
of this interaction revealed the regulatory modification
that governs the binding of HIF-α to pVHL to be
oxygen-dependent trans-4-hydroxylation at specific prolyl
residues within each of two regulatory domains in
HIF-α (Pro-402 and -564 in human HIF-1α; Ivan et al.
2001; Jaakkola et al. 2001; Masson et al. 2001). A
combination of structurally informed bioinformatic pre-
diction and testing of candidate enzymes then led to the
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identification of a single non-redundant prolyl hydro-
xylase in Caenorhabditis elegans and to the recognition
that the human genome encodes three closely related
HIF prolyl hydroxylases, which we termed PHD (prolyl
hydroxylase domain) 1, 2 and 3 (also known as Egln 2,
1 and 3, respectively; Bruick & McKnight, 2001; Epstein
et al. 2001). These enzymes are dioxygenases, and their
absolute requirement for molecular oxygen as cosubstrate
immediately suggested a mechanism for oxygen sensing.
Though all three enzymes contribute to the regulation of
HIF, in most cells PHD2 (Egln1) is the most abundant
enzyme and therefore has a dominant role in the oxygen
sensing process (Berra et al. 2003; Appelhoff et al. 2004).
Prolyl hydroxylated HIF-α is recognized by the β-domain
of pVHL through a hydrogen bonding network to the
hydroxyproline residue, which cannot be formed by
proline (Hon et al. 2002; Min et al. 2002). Added specificity
to this ‘molecular switch’ is achieved by stereoelectronic
effects that alter the bias of the pyrrolidine ring of the prolyl
residue from the C4-endo to the C4-exo conformation
upon hydroxylation. Specific binding of pVHL to the
C4-exo conformation of the hydroxyprolyl residue results
in a >1000-fold increase in affinity of HIF-α for pVHL
upon hydroxylation, thus promoting the destruction of
HIF-α in the presence of oxygen (Loenarz et al. 2009).

Similar biochemical and mass spectrometric analysis of
the third (C-terminal) sequence, which had been shown
to mediate oxygen-dependent transcriptional activity
independently of any change in protein stability, revealed
a third site of HIF-α hydroxylation (Lando et al. 2002b).

In this case, the target of hydroxylation is a specific
asparaginyl residue (Asn-803 in human HIF-1α). This
residue is buried in a hydrophobic region that is formed
when C-terminal HIF-α sequences are bound by the CH1
domain of the p300 coactivator (Dames et al. 2002).
Hydroxylation at the asparaginyl residue reduces trans-
criptional activity of HIF-α, at least in part by preventing
this interaction with p300 (Fig. 1). Further bioinformatic
analyses identified the HIF asparaginyl hydroxylase as a
molecule termed FIH (factor inhibiting HIF; Hewitson
et al. 2002; Lando et al. 2002a), a protein that had pre-
viously been identified in a screen for HIF interacting
proteins and shown to inhibit HIF activity (Mahon et al.
2001).

The HIF hydroxylases (three HIF prolyl hydroxylases
and the HIF asparaginyl hydroxylase) are all members of
the 2-oxoglutarate (2-OG)-dependent dioxygenase super-
family (for review see Loenarz & Schofield, 2008). These
enzymes are non-haem iron-dependent enzymes that bind
the catalytic iron using a 2-histidine-1-carboxylate ‘facial
triad’ that occupies three of the six iron co-ordination sites
(Fig. 2). The enzymes use the Krebs cycle intermediate
2-OG (α-ketoglutarate) as cosubstrate; as ‘dioxygenases’,
they split molecular oxygen and incorporate both
atoms directly into their reaction products (for review
see Loenarz & Schofield, 2011). Thus, oxidization
of the prime substrate (HIF-α) is coupled to the
oxidative decarboxylation of 2-OG to succinate. Based
on mechanistic studies of other 2-OG dioxygenases, it
is likely that the reaction proceeds via the creation of

Figure 1. Schematic diagram illustrating the dual regulation of hypoxia-inducible factor (HIF) by
oxygen-dependent prolyl and asparaginyl hydroxylation.
Pro, proline; OH Pro, hydroxyproline; Asn, asparagine; Asn OH, hydroxyasparagine; p300/CBP, E1A binding protein
p300/CREB-binding protein.
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a highly reactive [e.g. Fe(IV) = O (ferryl iron)] inter-
mediate at the catalytic site (Price et al. 2003). Failure of
the coupling process can leave the enzyme in an inactive
oxidized state, and reduction of the catalytic iron centre
is then required for activity. This process is considered
to be the basis of the dependence of many members of
this class of enzyme (including the HIF hydroxylases)
on the reducing agent ascorbate. Direct utilization of
molecular oxygen confers sensitivity to hypoxia, under-
pinning the role of these enzymes as intracellular oxygen
sensors. Interestingly, whilst 2-OG oxygenases are pre-
valent in both eukaryotic and prokaryotic species (Loenarz
& Schofield, 2008), and many primitive organisms exhibit
well-defined programmes of gene regulation by oxygen
(Bunn & Poyton, 1996), including systems that use 2-OG
oxygenases (West et al. 2007; Hughes & Espenshade, 2008),
the HIF hydroxylase (PHD/pVHL/HIF) system appears to
be specific to (and universal within) the animal kingdom
(Loenarz et al. 2011). Most vertebrate organisms express
multiple PHD and HIF-α isoforms as a result of gene
duplication, PHD2 and HIF-1α being the most universally
expressed (Loenarz et al. 2011).

In the following sections, some of the biochemical
and physiological characteristics of this system of oxygen
sensing are reviewed, the challenges faced in linking
molecular mechanisms to integrated physiology are
highlighted, and the implications of dysregulation of
these massive ‘hard-wired’ HIF hydroxylase pathways in
disease are considered, particularly in relation to solid
tumours, which commonly manifest tissue hypoxia and
upregulation of HIF.

Biochemical aspects of oxygen sensing by HIF
hydroxylases

It is estimated that the human genome encodes as
many as 60–70 predicted or biochemically assigned 2-OG

oxygenases with diverse roles in biology (Loenarz &
Schofield, 2008). This has raised an important question
as to whether the oxygen sensing function of the HIF
hydroxylases is associated with some special biochemical
property of these particular enzymes or whether they are
biochemically similar to other 2-OG dioxygenases, but
derive the oxygen sensing property from the physiological
context in which they operate.

Values for K mO2 (the concentration of oxygen required
for half-maximal initial catalytic rate) have been reported
for the HIF prolyl hydroxylases to be in the range
200–250 μM (Hirsilä et al. 2003). These values are
unusually high, but were obtained using recombinant
enzymes and short HIF-α peptide substrates. Subsequent
studies using longer HIF polypeptides have given lower
values, in the region of 100 μM, which are similar to those
reported for other 2-OG dioxygenases (Koivunen et al.
2006; Ehrismann et al. 2007). In any case, physiological
tissue PO2 levels are generally found to be substantially
below even the lower K mO2 values (Vaupel et al. 1991),
and intracellular gradients probably create even lower
values in the intracellular microenvironment. Therefore,
even enzymes with a much lower K mO2 would have the
potential to act as oxygen sensors if their catalytic action
was rate limiting for the overall physiological function of
the pathway. Thus, it appears unlikely that the unusually
high K mO2 values are relevant to the function of the HIF
hydroxylases as oxygen sensors.

A different characteristic that has attracted considerable
interest is the possibility that the multiple cofactor
requirements that are common to this class of enzyme
provide additional means of regulating activity that assist
the complex task of maintaining oxygen homeostasis
(Schofield & Ratcliffe, 2004; Kaelin & Ratcliffe, 2008).
For instance, 2-oxoglutarate is a Krebs cycle intermediate
which (via transamination and deamidation reactions)
also occupies a pivotal position in amino acid metabolism.

Figure 2. The catalytic iron centre of a
typical 2-oxoglutarate
(2-OG)-dependent dioxygenase
Of six co-ordinate positions, three are used
to bind the 2-histidine-1-carboxylate ‘facial
triad’ of the apo-enzyme, two are used to
bind the cosubstrate 2-oxoglutarate and the
sixth is occupied by a water molecule or
(upon activation of the enzyme) molecular
oxygen. Potentially, these interactions
provide signalling interfaces with molecular
oxygen, redox stresses and metabolism.
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Thus, the use of both molecular oxygen and 2-oxoglutarate
in the hydroxylation reaction might provide a link between
hypoxic and metabolic signals (Isaacs et al. 2005; Hewitson
et al. 2007; Koivunen et al. 2007). To date, however, it is
unclear whether and in what circumstances 2-oxoglutarate
levels are limiting for HIF hydroxylase activity. Perhaps
of greater interest to oxygen sensing is the requirement
for Fe(II) as cofactor. The binding of Fe(II) by the
2-histidine-1-carboxylate facial triad of the apo-enzyme
is relatively labile. For instance, in contrast with haem
enzymes, the catalytic Fe(II) can readily be chelated, thus
inactivating the enzyme (Hirsilä et al. 2005). This lability
(and the need for ascorbate to maintain the iron centre
in a reduced and active form) could provide an inter-
face both with cellular iron availability and with cellular
redox signals. Redox signals are linked to the availability
of oxygen. Thus, the possibility that such processes
could provide a second oxygen-sensitive signal inter-
acting with regulation by molecular oxygen availability, or
even dominate the regulation of HIF hydroxylase activity,
has attracted considerable interest. Substantial evidence
indicates that the HIF hydroxylases can indeed be inhibited
by oxidant stress.

In cultured cells, supplementation with both iron and
ascorbate reduces the levels of HIF-α that are observed
in standard (oxygenated) conditions (Knowles et al. 2003,
2006; Kuiper et al. 2010), implying that the availability of
these cofactors can be limiting for full enzyme activity
even in the presence of oxygen. Exogenous sources of
reactive oxygen species inhibit HIF hydroxylases both
in vitro and in cells (Gerald et al. 2004; Pan et al. 2007).
Taken together, these findings strongly suggest that ‘oxygen
sensing’ hydroxylase activity is modulated by redox signals,
at least in pathophysiological conditions. What is less clear
is how this relates to the physiological signalling of hypo-
xia. While excess oxygen (hyperoxia) can cause cell injury
through the excess production of reactive oxygen species,
and some investigators have reported that hypoxia reduces
the production of reactive oxygen species (Hoffman et al.
2007), other investigators have assembled considerable
evidence that inhibition of electron transport in hypoxia
leads to increased production of reactive oxygen species
and have proposed that this, rather than lack of molecular
oxygen itself, is responsible for the reduction in HIF hydro-
xylase activity that signals hypoxia (Chandel et al. 1998;
Bell et al. 2007). Of relevance to this, researchers in my
laboratory recently performed comparative analyses of
HIF prolyl and asparaginyl hydroxylation in cells. These
studies revealed that whilst HIF prolyl hydroxylation is
more sensitive to hypoxia than HIF asparaginyl hydro-
xylation, the reverse was true when cells were exposed to
hydrogen peroxide to mimic oxidant stress (Tian, 2011;
Masson et al. 2012). Hypoxia-inducible factor asparaginyl
hydroxylation was found to be strongly inhibited at
very low concentrations of hydrogen peroxide that had

little, if any, effect on HIF prolyl hydroxylation (Masson
et al. 2012). Furthermore, reoxygenation of hypoxic cells
promotes immediate hydroxylation and degradation of
HIF, whereas recovery from oxidant inactivation, at least
for the HIF asparaginyl hydroxylase FIH, was found to be
delayed (Tian, 2011; Masson et al. 2012). These findings
suggest that hypoxia and oxidant stress represent separate
regulatory inputs to the HIF hydroxylase pathways.

What is not currently clear is whether differential
sensitivity of HIF prolyl and asparaginyl hydroxylation
to peroxide represents unusual sensitivity of FIH or
unusual resistance of PHD2 (among the 2-oxoglutarate
dioxygenase enzyme family). Interestingly, biophysical
analyses have revealed two unusual properties of PHD2
(the major HIF prolyl hydroxylase) that could be relevant;
firstly, the enzyme binds to Fe(II) unusually tightly
(McNeill et al. 2005); and secondly, in the absence of HIF
substrate, the enzyme complex is unusually stable, even in
the presence of oxygen (Flashman et al. 2010; Loenarz et al.
2011). Furthermore, structural studies of the HIF prolyl
hydroxylase PHD2 and the HIF asparaginyl hydroxylase
FIH complexed to their respective HIF peptide substrates
show major differences that might relate to the functional
findings. Whilst FIH binds its substrate in an open cleft
(Elkins et al. 2003), the binding of target HIF-α peptides
to PHD2 is more closed and results in a conformational
change in which a loop of PHD2 shifts to form a clamp-like
structure over the substrate (Chowdhury et al. 2009). Both
the tight binding of Fe(II) and the stability of the PHD2
enzyme complex in the absence of substrate (reduced
susceptibility to uncoupled turnover) may be predicted to
reduce sensitivity to inactivation by oxidant stress. It is thus
tempting to speculate that these properties are important
for the function of PHD2 as a sensor that responds most
specifically to molecular oxygen.

Nevertheless, it is clear that all HIF hydroxylases are,
to different degrees, sensitive to oxidant injury (Pan et al.
2007; Diebold et al. 2010). Moreover, given that hypoxia
does not suppress the sensitivity to peroxide, it is likely that
the two stimuli interact (Masson et al. 2012). This raises the
intriguing possibility that oxidant stress, by inactivating a
proportion of the expressed HIF hydroxylase enzyme, acts
as a ‘range finding’ mechanism that alters the effective
oxygen sensing ‘set point’. In this model, the rate of hydro-
xylation at any particular oxygen tension is reduced by
oxidant stress, making the system more sensitive to hypo-
xia and switching on HIF pathways that may defend against
the stress.

Range finding mechanisms; linking biochemistry
to physiology

Such ‘range finding’ effects are likely to be of funda-
mental importance in linking the biochemistry of HIF
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hydroxylases to integrated physiology. Thus, a key
principle for operation as ‘oxygen sensors’ is that
oxygen-dependent rates of hydroxylation are matched to
the rates of other processes involved in the regulation
of HIF (Fig. 3). For instance, if rates of HIF-α trans-
lation and/or rates of HIF-α degradation downstream of
the hydroxylation step were low, then hydroxylation of
HIF-α might readily run to completion even in very severe
hypoxia. The system would then not be oxygen regulated.
Therefore the biochemical process of oxygen-dependent
hydroxylation must be ‘on range’ to convey oxygen
sensitivity on the physiological pathway.

The need for ‘range finding’ mechanisms is
emphasized by the diversity of the integrated physio-
logy that is connected to HIF. This includes not only
well-characterized aspects of oxygen homeostasis, such
as cardiopulmonary and ventilatory control (Smith et al.
2008; Prabhakar & Semenza, 2012), but also diverse
aspects of cell physiology, such as lymphocyte, neutrophil
and macrophage functions that are not classically
associated with hypoxia signalling but are dysregulated
in animals bearing inactivating alleles of HIF-α isoforms
(Cramer et al. 2003; Walmsley et al. 2005; Takeda et al.
2010; Dang et al. 2011). Although the exact role of
tissue hypoxia in many of this processes is not known,

it is clear that in the intact organism oxygen-dependent
regulation of HIF can be observed in diverse tissues
operating at strikingly different ‘set points’. This is well
illustrated by studies in the kidney, which harbours
particularly large oxygen gradients (Leichtweiss et al.
1969). Immunohistochemical studies of the induction of
HIF-α protein in rodents subjected to anaemic/hypoxic
stimulation reveal similar regulatory characteristics for
HIF in tubular segments that are operating at tissue PO2

levels that differ by an order of magnitude (Leichtweiss
et al. 1969; Rosenberger et al. 2002). Although the
integrative mechanisms that define tissue/cell-specific
‘range finding’ are not yet understood, many analyses
have defined properties (both of the hydroxylases and
connected pathways) that could contribute to such ‘range
finding’ processes.

Abundance and location of the HIF hydroxylases. Any
process that alters the effective activity of the hydro-
xylase enzyme has the potential to change the oxygen
sensing ‘set point’. Thus, it is of interest that transcriptional
induction of the HIF prolyl hydroxylases by HIF itself
is a highly conserved feature of the pathway, observed
for at least one PHD enzyme in all species examined
to date, from the ‘basal’ animal Trichoplax adherens to

Figure 3. The principle of ‘range finding’ processes that match HIF prolyl hydroxylation to the rate of
synthesis of HIF and to the capacity of HIF degradation pathways downstream of hydroxylation.
NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; mTOR, mammalian target of rapamycin.
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man (Epstein et al. 2001; Stiehl et al. 2006; Loenarz
et al. 2011). Although, experimentally, these responses
are usually analysed with respect to time (hence, they are
described as a dynamic feedback response, which limits
HIF activation over a period of time), they would be
equally well fitted for a physiological role, perhaps in ‘range
finding’ across cells operating at different oxygen tensions;
i.e. in tissues operating at low oxygen levels, induction
of PHD expression would lower the operating range for
regulation by hydroxylation and match this range more
closely to tissue oxygen tension.

Other controls over effective hydroxylase activity are
likely to be exerted by intracellular processes that
affect the subcellular location of the enzyme and/or
its access to HIF substrate. For instance, binding of
the principal HIF prolyl hydroxylase enzyme PHD2
to the peptidyl-prolyl cis-trans isomerase FKBP38 is
proposed to limit PHD2 activity by a process that involves
membrane anchoring and proteasomal degradation but
is independent of the isomerase activity (Barth et al.
2009). It has also been proposed that PHD enzymes
operate in a spatially restricted context through association
with scaffold proteins (Foxler et al. 2012). Cellular
compartmentalization may provide another control. For
instance, it has been shown that PHD2 undergoes
nuclear–cytoplasmic shuttling and that the deletion of
PHD2 sequences required for nuclear entry is associated
with a greatly impaired capacity to downregulate HIF
(Pientka et al. 2012). Whether and how such processes
are used to tune the PHD/pVHL/HIF system physio-
logically is unclear, but biological control at this level
is supported by the observation of associations between
nuclear localization of PHD2 and aggressive cancer
phenotypes (Jokilehto et al. 2010).

Yet another possible means of regulating enzyme
activity has been raised by recent studies of the HIF
asparaginyl hydroxylase, FIH. This enzyme catalyses the
hydroxylation of many other substrates, in particular
asparaginyl residues that form part of the consensus
‘ankyrin repeat’ in the family of ‘ankyrin repeat domain’
containing proteins (Cockman et al. 2006). These proteins
show a high affinity for FIH and are abundant in cells, so
that they might be predicted to compete with HIF for
hydroxylation (Coleman et al. 2007; Wilkins et al. 2009).
Given that competition from ankyrin substrates will be
dependent on the hydroxylation status of those substrates
(itself determined by oxygen availability), this type of ‘end-
ogenous competition’ could increase the complexity of
the interface with oxygen levels and contribute to ‘range
finding’.

Components of the VHL/HIF system. In addition to
control of the ‘oxygen sensing’ hydroxylase enzymes,
the integrated function of the PHD/pVHL/HIF pathway

could potentially be tuned by multiple feedback controls
operating at other steps in the pathway, which effectively
downregulate the pathway after a period of HIF activation.
Although these processes have generally been viewed as
temporal feedback responses, they also have the potential
to act as range finding mechanisms. They include the
upregulation of an antisense HIF-1α transcript, which
downregulates the HIF-1α coding mRNA (Rossignol et al.
2002; Uchida et al. 2004), induction of HIF-3α, an iso-
form that can antagonize HIF transcription by forming
transcriptionally inactive complexes with other HIF-α
proteins (Makino et al. 2001, 2007), and the induction
of Rbx-2 (Tan et al. 2008), a component of the pVHL
ubiquitin E3 ligase that promotes more rapid destruction
of HIF-α proteins. In all of these processes, the upregulated
‘antagonist’ is a direct transcriptional target of HIF
itself. Interestingly, given that they impinge differently on
different HIF-α isoforms (HIF-1α and HIF-2α), which
have different spectra of transcriptional targets, these
mechanisms also have the potential to alter the character
of the transcriptional output.

Finally, one crucial property of the PHD/pVHL/HIF
system is that bidirectional signalling is achieved by the
rapid resynthesis of HIF protein. Although the signalling
pathways that regulate HIF protein synthesis have not
been studied as intensively as pathways of degradation,
it is clear that steady-state levels will reflect a balance
between degradation and synthesis. Thus, at any given
oxygen concentration (and rate of hydroxylation) the
steady-state level of HIF (hence, the ‘oxygen sensing poise’
of the system) will be affected by the synthetic rate (Fig. 3).
In this context, many growth promoting stimuli enhance
HIF translation, presumably reflecting the need to entrain
mechanisms for modulating basal oxygen homeostasis as
demand is increased (Zundel et al. 2000; Laughner et al.
2001; Brugarolas & Kaelin, 2004).

Overall, whilst many mechanisms have been defined
that could potentially provided ‘range finding’ controls
for the oxygen sensing HIF hydroxylases, understanding
whether and precisely how these operate to maintain
oxygen homeostasis in large animals remains far from
being completely understood. Nevertheless, genetic data
clearly indicate that genes and physiological processes
operating with different dynamics and at different oxygen
tensions are regulated by the same HIF hydroxylase
oxygen sensing system. This has some general implications
for understanding interfaces between molecular and
integrative physiology. In particular, it implies that
inferring the existence of distinct molecular mechanisms
from the quantitative properties of individual integrated
physiological responses may be misleading (as witnessed
by the erroneous view that erythropoietin was regulated
by a ‘private’ oxygen sensing system in kidney cells). As
a corollary, it suggests that precise predictions of effects
on integrated physiology from a simple understanding

C© 2013 The Author. The Journal of Physiology C© 2013 The Physiological Society
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of the molecular process of signal generation will also
be difficult. This is now of fundamental importance in
assessing the therapeutic potential of HIF hydroxylase
inhibitors (Hewitson & Schofield, 2004; Fraisl et al. 2009);
careful empirical analysis through experimental medicine
and integrated physiological approaches will probably be
required for this to succeed.

Hypoxia and cancer

Molecular analysis of the HIF hydroxylase system and
hypoxia signalling pathways has revealed enormous
complexity. In addition to the challenge of understanding
the operation of these pathways in integrated physio-
logy, this has major implications for the understanding
of disease. In this final section, the importance of these
physiological considerations is illustrated by reference to
hypoxia and cancer.

It has long been recognized that solid tumours
frequently contain regions of profound hypoxia and that
tumour hypoxia is associated with adverse prognosis.
This association has been reported to be independent
of treatment modality (surgery, radiotherapy or chemo-
therapy) and to be observed in many different types
of tumours (Höckel et al. 1993; Brizel et al. 1996).
In keeping with these early observations, numerous
studies have reported that activation of HIF is associated
with aggressive tumour behaviour and adverse prognosis
(Chi et al. 2006; Winter et al. 2007; for review see
Semenza, 2003, 2012). These associations are extremely
robust and, indeed, enhanced glucose uptake (in
part, a consequence of transcriptional upregulation of
specific glucose transporters and glycolytic enzymes by
HIF; Semenza, 2010) underpins 18-fluorodeoxyglucose
positron emission tomographic scanning in the diagnosis
of cancer. Therefore, a central question has emerged
concerning the role played by the activation of HIF
signalling pathways in cancer and whether this drives the
malignant phenotype.

Two classes of observation have lent support to
this possibility. Firstly, as successive HIF targets have
emerged from investigation of the molecular physio-
logy of the system, it has become clear that many
classical ‘cancer-associated’ properties (such as invasion
and angiogenesis) involve the activation of HIF target
genes (for review see Semenza, 2003). Secondly, many
oncogenic pathways have been found to be mechanistically
linked to the activation of HIF (Maxwell et al. 1999; Zundel
et al. 2000; Laughner et al. 2001; Brugarolas & Kaelin, 2004;
Bernardi et al. 2006). Most strikingly, mutation of the
von Hippel-Lindau tumour suppressor (pVHL) disables
the key ubiquitin E3 ligase complex that is necessary for
degradation of HIF, leading to constitutive stabilization of
HIF-α proteins and activation of the pathway (Maxwell
et al. 1999). Other tumour suppressor and oncogenic

pathways are linked to HIF activation through different
mechanisms. For instance, classical tumour suppressor
mutations in PTEN, promyelocytic leukaemia gene (PML)
and TSC activate HIF by promoting translation of HIF-α
proteins (Zundel et al. 2000; Brugarolas & Kaelin, 2004;
Bernardi et al. 2006). Even unusual and poorly under-
stood oncogenic pathways, such as those activated by
mutations in the Krebs cycle enzymes fumarate hydratase
and succinate dehydrogenase activate HIF (Isaacs et al.
2005; Pollard et al. 2005; Selak et al. 2005). In these
conditions, HIF activation is a consequence of inhibition
of the HIF prolyl hydroxylases by accumulated fumarate
and/or succinate, which act as 2-oxoglutarate analogues
(Hewitson et al. 2007; O’Flaherty et al. 2010). If oncogenic
mutations activate HIF, HIF activation is associated with
aggressive cancer, and HIF target genes include many with
established oncogenic associations, it is therefore tempting
to infer the existence of a simple connection whereby
general activation of HIF causes cancer or at least causes
cancer progression.

Oddly, however, despite the mechanistic links between
oncogenic mutation and upregulation of HIF, activating
mutations of HIF itself (for instance deletions or
mutations in the degradation domain) have not been
described in cancer genome sequencing programmes.
Moreover, although in experimental systems genetic
inactivation of HIF usually has a negative effect on
tumour growth (reviewed by Semenza, 2003), this is not
always the case. For instance, HIF activation is clearly
observed in fumarate hydratase-associated human kidney
cysts and cancer (Isaacs et al. 2005; Pollard et al. 2005).
However, in a mouse model of the disease caused by
kidney-specific inactivation of fumarate hydratase and
characterized by hyperplastic renal cyst development,
combined inactivation of HIF-1α in association with
inactivation of fumarate hydratase exacerbates rather
than suppresses disease (Adam et al.). The effect of
inactivating a particular component of the HIF system
also appears to be highly context specific. For instance,
genetic inactivation of HIF-1α in transformed murine
astrocytes has positive or negative effects on tumour
growth depending on the microenvironment in which the
cells are grown (Blouw et al. 2003).

In other situations, inactivation of different
components of the HIF pathway has different or
even opposing effects on tumour growth. This has been
most clearly established in pVHL-defective clear cell renal
cancer (CCRC). Inactivation of the pVHL ubiquitin E3
ligase leads to constitutive activation of the entire HIF
pathway (Maxwell et al. 1999). However, genetic studies on
CCRC cell lines grown as xenografts have clearly indicated
that oncogenic drive is restricted to specific components
of the HIF pathway. Thus, whilst HIF-2α overexpression
promotes tumour growth, HIF-1α overexpression has
the reverse effect (Maranchie et al. 2002; Kondo et al.
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2003; Raval et al. 2005; Shen et al. 2011). Interestingly,
in support of an antitumourigenic action of HIF-1α in
this context, human VHL-defective CCRC is associated
with a high prevalence of copy number reduction for a
region of chromosome 14q containing HIF-1α, amongst
other genes (Shen et al. 2011). Furthermore, cancer DNA
sequencing has revealed a small but significant number
of inactivating mutations in HIF-1α in VHL-defective
CCRC (Morris et al. 2009; Dalgliesh et al. 2010).
Large-scale studies of human CCRC predisposition have
revealed polymorphisms at the HIF-2α locus and a
HIF-2α-dependent transcriptional enhancer of cyclin D1
as CCRC susceptibility determinants (Purdue et al. 2010;
Schödel et al.). Although it has been argued that HIF-2α is
generally more protumourigenic than HIF-1α (Keith et al.
2012), and this is strongly supported by data in CCRC,
protumourigenic effects of HIF-2α are again inconsistent,
with inactivation of HIF-2α promoting tumour growth in
other contexts (Acker et al. 2005; Majmundar et al. 2010).

Thus, despite extraordinarily strong and consistent
associations between hypoxia, general activation of the
HIF system and aggressive cancer, a simple causal
association is not consistently supported by genetic
evidence. Rather, these studies suggest that specific
components (as opposed to general activation of the HIF
system) are responsible for protumourigenic actions, that
some components of the HIF system are antitumourigenic,
and that pro- versus antitumourigenic actions of HIF are
highly context specific. This review concludes with an
outline of how consideration of the massive complexity of
physiological hypoxic signalling may explain this paradox
and consideration of the implications for the under-
standing of cancer and its treatment.

Figure 4. Coselection of extensive hard-wired physiological
pathways in cancer
Oncogenic mutations (A) and (B) provide a cell with autonomous
advantage, hence oncogenic drive, but are physiologically linked to
pathways whose activation is supportive, neutral, restrictive or even
lethal.

Given that increases in tissue mass create a demand
for oxygen, growth pathways (which are dysregulated in
cancer) are physiologically linked to the activation of
HIF pathways in order to maintain oxygen homeostasis.
However, physiological homeostatic responses to hypo-
xia may achieve their purpose by diverse mechanisms,
encompassing both enhancement of oxygen delivery (e.g.
angiogenesis, erythropoiesis) and restriction of oxygen
demand (e.g. cytostasis, altered energy metabolism).
As outlined above, recent analyses of HIF hydroxylase
pathways have revealed that they are extraordinarily
complex. When activated by oncogenic mutations or even
by microenvironmental hypoxia in cancer, these massive
pathways, which evolved to be fit for a physiological (not
oncogenic) purpose, will be activated in their entirety.
Whether they are promoting oncogenesis, neutral or even
restricting the oncogenic process, all components of the
pathway will be activated in the cancer as a consequence
of the physiological ‘hard wiring’ of the network (Fig. 4).
What are the implications of this?

The first implication is simple; that tight associations
may arise simply because of physiological ‘hard wiring’
and do not necessarily imply causation, explaining the
discrepancies between the robust association of HIF
activation with cancer and the variable findings in genetic
intervention studies. Other implications are less obvious.
For instance, coselection provides a potential explanation
for the appearance in cancer of properties that are difficult
to rationalize on the basis of the standard genetic model
of cancer, which is classically considered to be a multistep
process involving clonal selection of cells on the basis of cell
autonomous advantage (Vogelstein & Kinzler, 1993). For
instance, it is difficult to understand how such selection
could operate to generate an ‘angiogenic switch’ (Hanahan
& Folkman, 1996) to improve the blood supply to the
tumour, because the advantage would be equally available
to neighbouring cells in clonal competition. Coselection of
physiologically hard-wired pathways connecting growth
to oxygen supply (angiogenesis) would provide a more
credible explanation (Fig. 5).

However, the most profound implications arise from
consideration of the penalty that is entrained by the
switching of massive physiological pathways, such as
the hypoxia response, where not all components of
the pathway are protumourigenic (Fig. 5). The balance
between penalty and oncogenic advantage of dysregulating
a physiological pathway is likely to be specific to the
cellular context; in the case of hypoxia signalling pathways,
reflecting cell-specific strategies for restoration of oxygen
homeostasis. Such mechanisms would explain the
contextual specificity of genetic interventions on the HIF
system and (more generally) the striking tissue specificity
of cancer predisposition that is often manifested by
ubiquitously expressed tumour suppressors. For instance,
the PHD/pVHL/HIF system is ubiquitous in animal cells,
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but VHL-associated cancer is highly tissue specific, being
largely confined to renal cancer, phaeochromocytoma
and ocular/CNS haemangioblastoma (reviewed by Kaelin,
2008). Moreover, across the mutational spectrum of
VHL disease there is a strong correlation between the
quantitative level of HIF dysregulation and the type of
tumour predisposition (Clifford et al. 2001; Hoffman
et al. 2001; Li et al. 2007; Shen et al. 2011). High-level
HIF dysregulation appears to be inconsistent with the
development of phaeochromocytoma but consistent (or
even required) for renal clear cell carcinoma development.
Thus, it appears that whether the HIF pathway is driving
cancer or simply needing to be compatible with cancer
development, the extent of activation needs to be ‘just
right’, reflecting the need to balance the penalty incurred
by coselection of ‘hard-wired’ physiological pathways
against the oncogenic drive. Assuming this, one might
expect alterations in the physiological pathway to become
apparent during the course of cancer development. This
is clearly illustrated in VHL-associated CCRC. Following
VHL inactivation in kidney tubules, the HIF system
shifts from being dominantly represented by HIF-1α
(the normal renal tubular epithelial isoform) to being
dominantly represented by HIF-2α (Mandriota et al. 2002;
Rosenberger et al. 2002). The mechanisms behind the
switch are largely unclear, but the shift appears to be
associated with an alteration in the balance of activated
HIF targets towards a more oncogenic profile (Raval et al.
2005; Keith & Simon, 2007).

I would like to conclude with two further speculations
on the implications of these arguments for cancer therapy.
Firstly, the need to avoid or limit the coselection penalty
entrained by the activation of physiological pathways
provides strong selective pressures for plasticity and
heterogeneity. Given that multiple microenvironmental
stresses (not limited to hypoxia) will be entrained as
a solid tumour grows, it seems likely that the need to
evade the penalty of the dysregulated activation of massive
physiological pathways will select for the plasticity and
heterogeneity that are characteristic of solid tumours and
are considered to underlie escape from targeted chemo-
therapeutics. Secondly, the penalty of coselecting massive
physiological pathways, such as the hypoxia response,
makes cancer cells intrinsically vulnerable. For this reason
alone, they may therefore manifest enhanced susceptibility
to further stress, such as chemotherapeutic agents; i.e. the
chemotherapeutic selectivity of many agents may be due
(at least in part) to general cellular sensitivity of cancer
cells, as much as to intrinsic selectivity of drug action.
Thus, the penalty (and means of escape) from the anti-
tumourigenic components of activating massive physio-
logical pathways in cancer might account for much of
the recent positive and negative experience in targeted
cancer therapeutics; useful chemotherapeutic selectivity
from agents that might otherwise be predicted to affect
both neoplastic and non-neoplastic cells, and rapid escape
from control in tumours that initially appear very sensitive
to such agents.

Figure 5. Implications of the physiological ‘coselection penalty’ in cancer
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