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Summary

Inflammasomes in innate immune cells mediate the induction of inflam-

mation by sensing microbes and pathogen-associated/damage-associated

molecular patterns. Inflammasomes are also known to be involved in the

development of some human and animal autoimmune diseases. The Nod-

like receptor family pyrin domain containing 3 (NLRP3) inflammasome is

currently the most fully characterized inflammasome, although a limited

number of studies have demonstrated its role in demyelinating autoim-

mune diseases in the central nervous system of humans and animals. Cur-

rently, the development of experimental autoimmune encephalomyelitis

(EAE), an animal model of multiple sclerosis (MS), is known to be

induced by the NLRP3 inflammasome through enhanced recruitment of

inflammatory immune cells in the central nervous system. On the other

hand, interferon-b (IFNb), a first-line drug to treat MS, inhibits NLRP3

inflammasome activation, and ameliorates EAE. The NLRP3 inflamma-

some is indeed a factor capable of inducing EAE, but it is dispensable

when EAE is induced by aggressive disease induction regimens. In such

NLRP3 inflammasome-independent EAE, IFN-b treatment is generally not

effective. This might therefore be one mechanism that leads to occasional

failures of IFN-b treatment in EAE, and possibly, in MS as well. In

the current review, we discuss inflammasomes and autoimmunity; in

particular, the impact of the NLRP3 inflammasome on MS/EAE, and on

IFN-b therapy.
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CNS autoimmune demyelination and
inflammasomes

Inflammation induced by innate immune cells plays a

critical role in eliciting autoimmunity. Our understanding

of the relation between inflammation in the innate

immune system and autoimmunity has significantly

increased in the past decade as a result of extraordinary

progress in analysing pattern-recognition receptors. At

the same time, the role of inflammasomes in autoimmu-

nity remains largely unclear; with this being particularly

true for autoimmunity in the central nervous system

(CNS). Autoimmune responses trigger demyelination in

the CNS. Important examples of this phenomenon

include multiple sclerosis (MS), neuromyelitis optica

(NMO) and acute disseminated encephalomyelitis

(ADEM). Although the direct role of inflammasomes in

those diseases remains largely unknown, the use of exper-

imental autoimmune encephalomyelitis (EAE), an animal

model of MS, has made the impact of inflammasomes on

CNS autoimmune demyelinating diseases more apparent.

Inflammasomes process interleukin-1b (IL-1b) and IL-

18 maturation in myeloid cells, such as macrophages and

dendritic cells (DCs); and, the basic biological function of

inflammasomes is shared between humans and mice. In-

flammasome is a multi-protein complex. Formation of

the complex leads to pro-caspase-1 self-cleavage and gen-

erates active caspase-1, which processes pro-IL-1b and

pro-IL-18 to mature IL-1b and IL-18, respectively, and

induces cell death termed “pyroptosis”. Pyroptosis is
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distinguished from apoptosis and necrosis by cytoplasmic

swelling and activation of caspase-1. Early plasma mem-

brane rupture by pyroptosis1–3 leads to the release of

mature IL-1b and IL-18 and other cytoplasmic contents

to the extracellular space.4 Inflammasomes are known to

sense and are activated by pathogen-associated molecular

patterns (PAMPs), as well as damage-associated molecular

patterns (DAMPs). The Nod-like receptor (NLR) family

pyrin domain containing 3 (NLRP3, also known as

NALP3 or CIAS1) inflammasome, is currently the most

fully characterized inflammasome. It is known to sense

bacteria, fungi, extracellular ATP, amyloid b and uric

acid,5–8 as well as various environmental irritants, such as

silica, asbestos and alum.7,9–11 In addition to NLRP3,

other NLR family members, including NLRP1, NLRC4

(IPAF) and AIM2, are known to have clear physiological

functions in vivo upon inflammasome formation;12 how-

ever, their involvement in CNS autoimmunity is not

clear.

Many excellent reviews are available in the literature

that provide information on the detailed functions and

structure of inflammasomes. Further discussion on in-

flammasomes themselves is therefore spared here. Rather,

we look to briefly mention several basic features of in-

flammasomes below to provide a foundation for later dis-

cussions in this review, and to highlight selected recent

findings considered crucial to the further study of inflam-

masomes in CNS autoimmune demyelinating diseases.

The multi-protein complex of the NLRP3 inflamma-

some is comprised of three different proteins; NLRP3,

ASC (apoptosis-associated speck like protein containing a

caspase recruitment domain), and pro-caspase-1. Other

types of inflammasomes have different compositions of

proteins, but all have pro-caspase-1; therefore, the release

of IL-1b and IL-18 from cells is a major common out-

come by all inflammasomes. Pro-caspase-1 must be self-

cleaved to become activated caspase-1; it then exerts cyto-

kine maturation and pyroptosis by inflammasomes. (We

refer to this stage of inflammasomes as ‘active inflamma-

somes’ in this review.) In the human NLRP3 inflamma-

some, a molecule termed CARDINAL (CARD8, TUCAN)

is known to be involved.13 However, there is no mouse

homologue of human CARDINAL, and CARDINAL is

dispensable for IL-1b production in human cells.14 Recent

reports showed that there are NLRP proteins that inhibit

inflammation. For example, NLRP12 attenuates a non-

canonical nuclear factor-jB (NFjB) pathway by interact-

ing with NF-jB-inducing kinase, and the tumour necrosis

factor receptor-associated factor (TRAF) 3 in innate

immune cells without inflammasome formation.15–17

Importantly, caspase-1 knockout mice, used in early pub-

lished studies, appear to have been a double-knockout of

both caspase-1 and caspase-11 due to the failure to segre-

gate close genetic loci of Casp1 and Casp11 by gene

recombination.18 Caspase-1 is still required by ATP-

mediated maturation of IL-1b and IL-18 and induction

of pyroptosis, but caspase-11 plays a key role when cells

are stimulated by cholera toxin B or Escherichia coli, but

not ATP stimulation.18

Inflammasomes and autoimmune/
autoinflammatory diseases

Before limiting our discussion on inflammasomes to CNS

demyelinating diseases, we look to briefly discuss what is

generally known about inflammasomes in autoimmune/

autoinflammatory diseases. Of the four types of inflamma-

somes (NLRP1, NLRP3, NLRC4, AIM2), most of the

earlier studies were carried out on NLRP3 within the

context of autoimmunity. Mutations in the human Nlrp3

locus were found to be associated with rare, inherited

cryopyrin-associated periodic syndromes (CAPS); such as

Muckle–Wells syndrome (MWS), familial cold-induced

autoinflammatory syndrome (FCAS), and chronic infan-

tile neurological cutaneous and articular (CINCA)

syndrome.19–22

Involvement of NLRP3 in autoinflammation was dem-

onstrated by using mice expressing the Nlrp3 gene

mutation, which corresponds to the MWS-associated

Nlrp3 mutation.23 Such mice showed hyperactivation of

the NLRP3 inflammasome, as well as increased produc-

tion of IL-1b and IL-18. Further, they developed skin

inflammation characterized by induced IL-17-producing

T helper cell (Th17) responses.23 NLRP3 inflammasome

also appears to correlate with various human autoim-

mune diseases. Single nucleotide polymorphisms within

the Nlrp3 locus are predisposed to systemic lupus erythe-

matosus (SLE), type 1 diabetes, coeliac disease, Crohn’s

disease and ulcerative colitis.24–26 In addition, NLRP1

inflammasome is associated with other autoimmune

diseases, such as vitiligo, type 1 diabetes and rheumatoid

arthritis.25,27,28 On the other hand, involvement of AIM2

and NLRC4 in autoimmune/autoinflammatory diseases

remains unclear. Nevertheless, involvement of the AIM2

inflammasome in SLE, for example, may be possible

because AIM2 senses DNA, which is a major autoimmune

target.29

NLRP3 inflammasome in MS and EAE

A number of reports suggest involvement of the NLRP3

inflammasome in the development of both MS and EAE

(Table 1). Increased levels of caspase-1, IL-1b, IL-18 and

activators of the NLRP3 inflammasome (ATP, uric acid,

cathepsin B) have been reported in MS patients (Table 1).

For example, Casp-1 mRNA levels correlate with disease

severity in MS patients,30 and caspase-1 protein is highly

abundant in MS plaques.31 Further, expression of cas-

pase-1 and IL-18 in peripheral mononuclear cells from

MS patients has been found at increased levels compared
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with those in cells from healthy controls.32 High IL-1b
and low IL-1 receptor antagonist (IL-1RA) production

has been hypothesized as a predisposition of increased

susceptibility and disease progression of MS.33 Patients

with MS are also known to express high levels of purine

compounds and uric acid in cerebrospinal fluid,34 as well

as high serum uric acid levels.35 Increased activity of

cathepsin B, which is known to induce NLRP3 inflamma-

some activation by leaking out from lysozomes,10 was also

reported in peripheral blood mononuclear cells, as well as

brain cells of MS patients.36,37 The NLRP3 inflammasome

is activated by triggering the P2X7 receptor (P2X7R) sig-

nalling by extracellular ATP. Sustained activation of

P2X7R during EAE appears to cause MS plaque-like

lesions, and treatment with P2X7R antagonists amelio-

rates EAE.38 The same study also suggested that P2X7R

signalling is enhanced in normal-appearing axonal tracts

of the CNS in MS patients.38 Further, expression of the

P2x7r gene is increased in the optic nerve region of MS

patients.39 Single nucleotide polymorphisms in the P2x7r

locus were found more frequently in MS patients com-

pared with healthy controls.40 Because MS is a multi-

factorial and heterogeneous disease, the NLRP3

inflammasome may not be involved in the development

of all forms of MS. However, these studies strongly sug-

gest the general involvement of the NLRP3 inflammasome

in MS progression.

The critical role of the NLRP3 inflammasome in EAE

has recently become clear.41–44 NLRP3 inflammasome

induces demyelination as indicated using the chemically

induced demyelinating disease and EAE models.42 A sub-

sequent study showed that the NLRP3 inflammasome

induces EAE progression by enhancing chemotactic

migration of T helper cells, and antigen-presenting cells

(APCs) into the CNS.43 Nlrp3�/� mice were characterized

by being resistant to EAE and to reduction in both Th1

and Th17 cells in the peripheral lymphoid tissues, as well

as in the spinal cord.41,43 It appears that the NLRP3 in-

flammasome has the most critical impact on EAE among

all inflammasomes, because of a similar phenotype

between Nlrp3�/� and Asc�/� mice in their resistance to

EAE.43 Caspase-1-deficient mice (which may have also

been lacking caspase-1118) are resistant to EAE, support-

ing the involvement of inflammasomes (most probably,

NLRP3 inflammasome) in EAE pathogenicity.45,46

Correlation between the NLRP3 inflammasome and

EAE development was also suggested by a number of

other studies demonstrating enhanced levels of caspase-1,

IL-1b, IL-18 and ATP during EAE development

(Table 1). Other than NLRP3, NLRP1 is the only inflam-

masome NLR protein reported in the context of EAE for

its intra-axonal accumulation,47 but involvement of the

NLRP1 inflammasome in EAE is not yet known.

Mechanism of NLRP3 inflammasome-mediated
EAE progression

A major function of the NLRP3 inflammasome is the

maturation and secretion of IL-1b and IL-18. It is known

that IL-1b plays a role in demyelination,48 breakdown of

Table 1. Involvement of Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in the development of multiple sclerosis

and experimental autoimmune encephalomyelitis

Classification

Multiple sclerosis Experimental autoimmune encephalomyelitis

Phenotype Ref. Phenotype Ref.

NLRP3 inflammasome

component

Increase of Casp1 mRNA in peripheral

blood mononuclear cells

30 Increase of caspase 1 in peripheral

blood mononuclear cells

45

Increase of caspase 1 in MS plaques and

peripheral mononuclear cells

31,32 Mild EAE in Casp1�/� mice 45,46

Caspase 1 inhibitor attenuates EAE 45

Mild EAE in Nlrp3�/� mice 41–44

Mild EAE in Asc�/� mice 43

NLRP3 inflammasome-

mediated cytokine

Increase of IL-1b in CSF 33,82 Increase of IL-1b in serum and splenocyte 41,44

Increase of IL-18 in peripheral

mononuclear cells

32 IL1R antagonist attenuates EAE 83

Increase of IL-18 in serum 41,44

Mild EAE in Il18�/� mice 41,84

NLRP3 inflammasome

activator

Increase of P2X7R in optic nerve 38 Increase of P2X7R in brain 38

Increase of P2x7r mRNA in optic nerve 39 P2X7R antagonist attenuates EAE 38

Relationship of P2x7r gene by SNP analysis 40

Increase of purine compounds in CSF 34

Increase of uric acid in CSF and serum 34,35

Increase of cathepsin B activity in

peripheral mononuclear cells and brain

36,37

CSF, cerebrospinal fluid; EAE, experimental autoimmune encephalomyelitis IL-1b, interleukin-1b; MS, multiple sclerosis; SNP, single nucleotide

polymorphism.
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blood–brain barrier (BBB),48,49 microglia activation49 and

promotion of IL-17 expression both by CD4+ T and cdT
cells.50,51 The outcome from these responses is the enhance-

ment of EAE progression. Interleukin-18 is also known to

promote IL-17 production by CD4 T+ cells, as well as cdT
cells,52 and exacerbates demyelination.42 Attenuated Th17

(and Th1) responses were originally considered to be a

major underlying mechanism for the resistance of NLRP3

inflammasome-deficient mice against EAE.41,52 However, it

now appears that the lack of the NLRP3 inflammasome (in

APCs) disables T helper cells and APCs in migrating to the

CNS. This inability to migrate cells to the CNS is a major

cause of resistance against EAE in Asc�/� and Nlrp3�/�

mice.43 Interestingly, T cells primed by NLRP3 inflamma-

some-deficient APCs do not migrate into the CNS, but are

encephalitogenic, only lacking chemotactic ability.43 There-

fore, when directly transferred into the CNS, transfer of T

cells primed by NLRP3 inflammasome-deficient APCs is

able to induce EAE.43 This result strongly suggests that cell

migration is one of the most critical factors for the NLRP3

inflammasome in exerting an effect on EAE progression.

The cell migration mechanism was explained with IL-1b
and IL-18, which are processed by the NLRP3 inflamma-

some and up-regulate expression of chemokines and their

receptors both in T helper cells and APCs. Total T helper

cells (as well as Th17 and Th1 cells) from immunized Asc�/�

and Nlrp3�/� mice express low levels of CCR2, CXCR6 and

osteopontin, which are critical to MS and EAE progres-

sion.53–62 Without the NLRP3 inflammasome, APCs also

reduce expression of chemokines and their receptors, such

as CCL7/MCP3 (CCR2 ligand), CCL8/MCP2 (CCR2

ligand), CXCL16 (CXCR6 ligand) and a4b1 integrin (osteo-

pontin receptor).43 The NLRP3 inflammasome induces

expression of molecules that enhance cell migration by pro-

viding IL-1b and IL-18. Intriguingly, those molecules are

matching pairs of chemokines and their receptors between T

cells and APCs (Fig. 1).

Type 1 interferons and the NLRP3 inflammasome

Type 1 interferons (IFN-I), such as IFN-a and IFN-b, are
involved in various aspects of immune responses. IFN-b
has been used for more than 15 years as a first-line treat-

ment for MS, and also markedly attenuates EAE develop-

ment. Previous studies have shown that IFN-b suppresses

the production of IL-1b through reduction of pro-IL-1b
via the autocrine effect of IL-10.63 More recent reports

showed involvement of nitric oxide and the degradation

of active Rac1 in IFN-I-mediated suppression of NLRP3

inflammasome activity.44,64 In the latter mechanism, liga-

tion of the IFN-I receptor (IFNAR) by IFN-I induces

association of Suppressor Of Cytokine Signalling-1

(SOCS1) with active Rac1, leading to ubiquitination and

degradation of active Rac1.44 Consequently, the reduction

of active Rac1 decreases generation of reactive oxygen

species (ROS) by mitochondria, and NLRP3 inflamma-

some activity is down-regulated accordingly (Fig. 1).44

The NLRP3 inflammasome itself does not exert a feed-

back effect on upstream effector molecules in the IFNAR–
NLRP3 axis, such as SOCS1, Vav1, activated Rac1 and

CNS

IL-18

NLRP3
Inflammasome

IntergrinOPN
CD4+

T CCL7, 8
Mφ/DCCXCL16

CCR2
CXCR6

IL-1β
IL-18

Pro-IL-18

IL-1β

Pro-IL-1β

IFNβ

IFNAR

Socs-1

SOCS-1
Rac1-GTP

ROS

DAMPs/PAMPs

DC/Mφ

α4β1

Figure 1. Schematic diagram: Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome induces experimental autoimmune

encephalomyelitis (EAE) development by cell recruitment to the central nervous system (CNS), but interferon-b (IFN-b) inhibits NLRP3 inflam-

masome activity. Active NLRP3 inflammasome in antigen-presenting cells [APCs; macrophages (M/) and dendritic cells (DC)] processes matura-

tion of IL-1b and IL-18, which are detected by CD4+ and APCs, in paracrine and autocrine fashions, respectively. The cytokines induce

expression of genes encoding migration-related proteins in T cells and APCs in the peripheral lymphoid organs, resulting in enhancement of cell

migration into the CNS; and this causes development of EAE. On the other hand, IFN-b inhibits activation of the NLRP3 inflammasome in

APCs through IFN-I receptor (IFNAR) signalling induction of Suppressor Of Cytokine Signalling-1 (SOCS1). SOCS1 down-regulates Rac1-GTP

(active Rac1) and reactive oxygen species (ROS) generation, resulting in inhibition of NLRP3 inflammasome activation. DAMP, damage-associ-

ated molecular patterns; OPN, osteopontin; PAMP, pathogen-associated molecular patterns.
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ROS.44 Signalling by IFNAR also does not affect expres-

sion of Nlrp3, Asc, Casp-1, Txnip, or the abundance of

P2X7R. Hence, IFNAR signalling appears to have a direct

impact on suppression of the NLRP3 inflammasome

through SOCS1, Rac1 and ROS.44 The mechanism by

which IFNAR signalling suppresses NLRP3 inflammasome

is connected to reduced expression of cellular chemotaxis,

which was described in the previous section, eventually to

ameliorate EAE (Fig. 1).

Mechanisms that ameliorate MS and EAE by
IFN-b

In addition to targeting the NLRP3 inflammasome, IFN-b
has multiple functions to ameliorate MS and EAE. For

example, IFN-b suppresses the Th17 cell response in both

MS and EAE by regulating the expression of cytokines,

such as IL-4, IL-10 and IL-27.62,65–69 In particular, expres-

sion of IL-27, which negatively regulates Th17 responses,

is induced by IFNAR signalling.62,65,70 How IL-27 expres-

sion is induced upon IFNAR stimulation is not entirely

clear, but intracellular osteopontin (iOPN) appears to

mediate IL-27 induction upon IFNAR stimulation.62

Interferon-b is also known to inhibit T-cell activation via

down-regulation of the MHC II co-stimulatory molecules

as well as cell adhesion molecules in APCs.66,71 At the

same time, IFN-b induces T cell death by down-regulat-

ing the anti-apoptosis protein FLIP (FLICE-inhibitory

protein),72 and by up-regulating TRAIL (tumour necrosis

factor-related apoptosis inducing ligand) in MS.73 Inter-

feron-b treatment expands regulatory T cells by induction

of glucocorticoid-induced tumour necrosis factor receptor

ligand (GITRL) expression in MS patients,74 in addition

to down-regulating very late antigen-4 (VLA4) expression

on effector T cells so as to limit T cell trafficking to the

CNS.75 Other studies showed that IFN-b treatment

decreases expression of matrix metalloprotease-9 (MMP-

9), which plays a key role in the disruption of BBB by

destabilizing tight junctions and increases expression of

MMP-9 inhibitor, tissue inhibitor of matrix metallopro-

teinase-1 (TIMP-1), in MS patients.76,77 In summary,

IFNAR signalling has impacts on various biological

responses to ameliorate both EAE and MS. Importantly,

however, a cell-specific IFNAR deletion model using the

Cre-lox system showed that IFNAR on myeloid cells, and

not on CD4+ T cells, exerts the functional outcomes of

EAE amelioration.66

A subtype of EAE that develops without the
NLRP3 inflammasome

EAE can be induced both actively and passively. Active

EAE is induced by autoantigen immunization, whereas

passive EAE is induced by the adoptive transfer of enceph-

alitogenic T cells. Although the NLRP3 inflammasome is

activated in both active and passive EAE,44 Asc�/� and

Nlrp3�/� mice can develop severe EAE if the active EAE

induction regimen is aggressive.44 In active EAE induction,

autoantigen emulsified in complete Freund’s adjuvant

(CFA) plus injections of pertussis toxin is used. To induce

EAE in Asc�/� and Nlrp3�/� mice, increased dosages of

heat-killed Mycobacterium tuberculosis (Mtb) in CFA alone

are sufficient.44 A similar observation was reported in a

study using Casp1�/� mice, in which disease susceptibility

is associated with repeated immunization, and high

dosages or high MHC-binding affinity of antigen pep-

tides.45 These studies suggest the presence of an NLRP3

inflammasome-independent pathway in progression of

EAE. In addition, the studies cited herein suggest that dos-

ages of adjuvant and/or the abundance of high-affinity

antigen shift EAE to an NLRP3 inflammasome-indepen-

dent disease.

Two earlier reports on NLRP3 inflammasome in EAE

showed important but contrasting results. One showed

susceptibility of Nlrp3�/� mice to EAE,78 while the

other showed resistance of Nlrp3�/� mice.41 As a result,

the requirement of NLRP3 inflammasome in EAE was

considered to be controversial, wherein the “basis for

these conflicting data” was said to be unknown.79 Here,

we assume that the two distinct results reflect two

different subtypes of EAE: NLRP3 inflammasome-

dependent and -independent. The EAE induced in

Asc�/� and Nlrp3�/� mice are clearly NLRP3 inflamma-

some-independent. However, in wild-type mice, two

subtypes of EAE, NLRP3 inflammasome-dependent and

-independent, may be occasionally occurring at the

same time, particularly when disease induction is not

aggressive enough. In other words, the two subtypes are

not mutually exclusive during EAE development.

Depending on the triggers of the disease, and the

genetic environment at hand, it is possible that the bal-

ance between the two subtypes may be altered. We have

therefore shown that aggressive immunization induces

NLRP3 inflammasome-independent EAE.44 We must

then ask: What is the equivalent to such NLRP3 in-

flammasome-independent EAE in human disease? If

there is NLRP3 inflammasome-independent MS, it

might be caused by intensive stimulation on innate

immune cells, or by other factors that provide strong

autoantigen affinity to T cells. This, we believe, is an

important and intriguing possibility.

NLRP3 inflammasome and efficacy of IFN-b

Although IFN-b is a first-line drug to treat MS, it has

been found that one-third of patients do not respond

to IFN-b treatment.80 Is IFN-b still effective without

activated NLRP3 inflammasome, which is a target of
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IFN-b? This question was addressed in NLRP3 inflam-

masome-independent EAE.44 Results suggest that IFN-b
was not effective in treating EAE in Asc�/� and

Nlrp3�/� mice.44 When EAE is induced in wild-type

mice by a moderately aggressive regimen, the efficacy

of IFN-b is partial.44 On the other hand, very aggres-

sive EAE induction (for example, repeated immuniza-

tion with high dosages of heat-killed Mtb) completely

abrogates IFN-b efficacy in wild-type mice (Inoue et al.,

unpublished data). Hence, EAE induced by moderately

aggressive immunization may develop as a mixture of

two EAE subtypes; NLRP3 inflammasome-dependent

and -independent. When two subtypes of EAE are

ongoing, it may be possible that IFN-b efficacy corre-

lates with levels of NLRP3 inflammasome dependency

in EAE development. Although two subtypes of EAE

may be occurring simultaneously within some of the

disease in WT mice, the findings are summarized as

follows: NLRP3 inflammasome-dependent EAE is a dis-

ease that responds to IFN-b treatment, whereas NLRP3

inflammasome-independent EAE is a disease that is

resistant to IFN-b (Fig. 2).

Previous studies have shown that passive EAE induced

by Th17 cell transfer is resistant to IFN-b treatment,

whereas the disease induced by Th1 cells responds to

IFN-b treatment.81 The result is counterintuitive because

IFN-b inhibits Th17 responses;62,65 and it will be of great

interest to understand why Th17-mediated EAE cannot

be treated by IFN-b. Activation status of the NLRP3 in-

flammasome is not known in the Th17-mediated EAE

model, but the result (resistance of Th17-mediated pas-

sive EAE to IFN-b) does not conflict with IFN-b resis-

tance in NLRP3 inflammasome-independent EAE. This is

because the Th17 response itself is not the reason for

NLRP3 inflammasome-dependent EAE progression.44

Further studies will be necessary to determine whether or

not these two types of IFN-b-resistant EAE (Th17-type

EAE and NLRP3 inflammasome-independent EAE) share

the same mechanism.

Clinical implication of the NLRP3 inflammasome
and its inhibition by IFN-b

It is currently unknown whether NLRP3 inflammasome-

independent MS exists. It is also not known what type of

event is an equivalent of ‘aggressive immunization’ in

MS. However, if the current findings on the correlation

between NLRP3 inflammasome activation and response

to IFN-b in EAE can be applied to MS, it might be possi-

ble to predict MS patients who do not respond well to

IFN-b therapy. For example, the activation status of the

NLRP3 inflammasome might be a prediction marker. Or,

it might be possible to identify prediction markers by

screening molecules that show altered expression in

NLRP3 inflammasome-independent EAE. It is also possi-

ble to test such molecules for prognosis markers, or even

as molecular targets of selected treatment(s).
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