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Background	 Mammographic breast density is a strong breast cancer risk factor but is not used in the clinical setting, partly 
because of a lack of standardization and automation. We developed an automated and objective measurement of 
the grayscale value variation within a mammogram, evaluated its association with breast cancer, and compared 
its performance with that of percent density (PD).	

	 Methods	 Three clinic-based studies were included: a case–cohort study of 217 breast cancer case subjects and 2094 non-
case subjects and two case–control studies comprising 928 case subjects and 1039 control subjects and 246 
case subjects and 516 control subjects, respectively. Percent density was estimated from digitized mammograms 
using the computer-assisted Cumulus thresholding program, and variation was estimated from an automated 
algorithm. We estimated hazards ratios (HRs), odds ratios (ORs), the area under the receiver operating charac-
teristic curve (AUC), and 95% confidence intervals (CIs) using Cox proportional hazards models for the cohort 
and logistic regression for case–control studies, with adjustment for age and body mass index. We performed a 
meta-analysis using random study effects to obtain pooled estimates of the associations between the two mam-
mographic measures and breast cancer. All statistical tests were two-sided.

	 Results	 The variation measure was statistically significantly associated with the risk of breast cancer in all three studies 
(highest vs lowest quartile: HR = 7.0 [95% CI = 4.6 to 10.4]; OR = 10.7 [95% CI = 7.5 to 15.3]; OR = 2.6 [95% CI = 1.6 
to 4.2]; all Ptrend < .001). In two studies, the risk estimates and AUCs for the variation measure were greater than 
those for percent density (AUCs for variation = 0.71 and 0.76; AUCs for percent density = 0.65 and 0.65), whereas 
in the third study, these estimates were similar (AUC for variation = 0.60 and AUC for percent density = 0.61). 
A meta-analysis of the three studies demonstrated a stronger association between variation and breast cancer 
(highest vs lowest quartile: RR = 3.6, 95% CI = 1.9 to 7.0) than between percent density and breast cancer (highest 
vs lowest quartile: RR = 2.3, 95% CI = 1.9 to 2.9).

	 Conclusion	 The association between the automated variation measure and the risk of breast cancer is at least as strong as 
that for percent density. Efforts to further evaluate and translate the variation measure to the clinical setting are 
warranted.

		  J Natl Cancer Inst 2012;104:1028–1037

Mammographic breast density—the proportion of fibroglandular 
tissue pictured on the mammogram—is an established risk factor 
for breast cancer (1,2). Women who have high mammographic 
breast density have approximately 3–4 times the risk of breast can-
cer compared with women who have low mammographic breast 
density (1,3). The consistent association seen in epidemiological 
studies and the magnitude of risk associated with high breast den-
sity support the use of mammographic breast density in the clinical 
management of women at risk of breast cancer. Such translation of 
mammographic density to the clinic is most likely to occur in the 
breast cancer screening environment. For example, baseline and 
serial breast cancer risk estimates that incorporate mammographic 

density measures could be used to inform the frequency and type 
of screening or specific interventions. However, mammographic 
density is not currently used in clinical practice for these purposes, 
partly because of the lack of measurement standardization and 
automation from mammographic images (4,5).

The successful incorporation of mammographic density into 
the clinical setting relies on an algorithm to accurately and reliably 
quantify density independent of a reader and in a manner that does 
not disrupt clinic flow or patient management. The ideal density 
measure would apply across mammography screening centers and 
imaging platforms, preferably in an automated and standardized 
manner. Operator-assisted (ie, nonautomated) percent density 
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measures have shown associations with the risk of breast cancer 
(1). However, automated measures of mammographic density 
developed to date are not widely used or known to be validated (5). 
These measures include methods that compensate for (ie, calibrate) 
interpatient differences in the image acquisition technique (6–9) 
that have produced mixed findings regarding their associations 
with breast cancer. In many studies, calibrated density measures 
have not proven to be stronger, or even equivalent, risk factors for 
breast cancer compared with percent density (10,11).

We recently developed an automated method to estimate mam-
mographic density using full-field digital mammography; the 
method assesses the variation in the grayscale values underlying 
the image in a calibrated mammogram (12–17). This variation 
measure is the standard deviation of the calibrated pixel values (12). 
In a study of 160 case subjects and matched control subjects, the 
associations between the variation measure and the risk of breast 
cancer were similar to those between percent density and the risk 
of breast cancer (18). The goals of this study were to examine asso-
ciations between the variation measure and the risk of breast cancer 
in three independent epidemiological studies and to compare the 
magnitude of the associations with breast cancer for the variation 
measure and the well-established percent density measure.

Methods
Data from three studies conducted at the Mayo Clinic (Rochester, 
MN) were used in this analysis. All three studies were approved by 
the Mayo Clinic Institutional Review Board.

The Mayo Mammography Health Study (MMHS)
The MMHS is an ongoing cohort study of women living in 
Minnesota, Wisconsin, or Iowa who are older than 35 years, had 
screening mammography at the Mayo Clinic between 2003 and 
2006, and have no personal history of breast cancer. Participants 
completed a questionnaire and provided written informed consent 
to use their mammograms, medical records, and blood samples 
and to link their data to state cancer registries. The 19 924 subjects 
who participated (51% of the 38 883 subjects who were eligible) 
were followed up for incident cancer events through the tri-state 
cancer and Mayo Clinic tumor registries. Through December 31, 
2008, a total of 290 incident and histologically confirmed primary 
breast cancers were identified; we excluded 59 women who were 
diagnosed breast cancers within 60 days of the enrollment mam-
mogram and 14 women with a digital mammogram, leaving 217 
case subjects eligible for analyses. We used a case–cohort design 
to efficiently target our mammogram collection efforts to a ran-
dom sample (or subcohort) of 2300 women from the entire MMHS 
cohort (control subjects) and all women with incident breast can-
cer. A total of 217 case subjects (155 of whom were diagnosed with 
invasive breast cancer) and 2094 subcohort members were available 
for these analyses.

The Mayo Clinic Breast Cancer Study (MCBCS)
The MCBCS is an ongoing clinic-based breast cancer case–control 
study initiated in February 2001 at the Mayo Clinic as described 
previously (19,20). Case subjects were recruited within 6 months of 
their date of breast cancer diagnosis from a six-state region in the 

Midwestern United States (Minnesota, Iowa, Wisconsin, North 
Dakota, South Dakota, and Illinois). Women with no history of 
cancer other than nonmelanoma skin cancer (control subjects) 
were recruited from the internal medicine practices at Mayo Clinic 
and frequency matched to case subjects on age (5-year age cate-
gory), race, and state of residence. Case and control subjects pro-
vided written informed consent. Analyses are based on 1870 case 
subjects and 1628 control subjects enrolled in MCBCS through 
October 1, 2008; participation rates were 69% and 71% among 
case and control subjects, respectively. Mammograms were avail-
able and digitized for 940 (50%) case subjects (748 with invasive 
breast cancer) and 1087 (65%) control subjects.

The Mayo Clinic Mammography (MCMAM) Study
The MCMAM study is a matched breast cancer case–control study 
nested within the Mayo Clinic mammography screening practice 
in Rochester, Minnesota, as described previously (21). Written 
informed consent was not provided for this study; however, all 
subjects had provided written permission for their Mayo Clinic 
medical records to be used for research purposes as provided for 
in the Minnesota Statutes (Minnesota State Privacy Law, Statute 
144.335, 1997). Case subjects (n = 373) and control subjects (n = 
713) had a screening mammogram between 1997 and 2001, were 
aged 50 years or older, lived within a 120-mile radius of Rochester, 
and were required to have had at least two screening mammograms 
before their breast cancer diagnosis (case subjects) or screening 
examination (control subjects). Thus, the case and control subjects 
represented a regularly screened population. Control subjects (ie, 
women without breast cancer) were matched to each case subject 
on age (within 5 years), date of screening examination (within 4 
months), menopausal status, interval between first and last mam-
mograms (within 8 months), number of previous screening mam-
mograms (within one mammogram), and county of residence. 
Mammograms were available for 246 case subjects (193 with inva-
sive breast cancer) and 522 control subjects for this study.

Mammogram Retrieval, Digitization, and Percent Density 
Estimation
We used the earliest available mammogram before diagnosis for 
case subjects (or before enrollment or screening date for control 
subjects) for the primary analyses. The mean time between that 
mammogram and the dates of diagnosis (or screening or enroll-
ment) were 4.7 years for the MMHS and 3.7 years for the MCMAM 
study. This interval was considerably shorter (mean time = 22 days) 
in the MCBCS because the majority of the case subjects only had 
mammograms available at the time of diagnosis. The craniocaudal 
mammogram view for the contralateral breast was digitized and 
analyzed for case subjects across all studies. For control subjects, 
we digitized and analyzed the left craniocaudal view (MCBCS and 
MMHS) or the craniocaudal view for the same side as the case sub-
ject (MCMAM).

For secondary analyses that evaluated the influence of 
acquisition parameters on the associations between percent density 
and the variation measures and the risk of breast cancer, we used 
the enrollment mammograms in the MMHS case–cohort study, 
because the earlier mammograms used for the primary analyses did 
not have information about the acquisition technique printed on 
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the image. All mammograms from the MMHS and the majority 
of those from the MCBCS (80%) were digitized on an Array 
2905 laser digitizer (Array Corporation, Hampton, NH) that had 
50-μm (limiting) pixel spacing with a 12-bit grayscale depth. All 
mammograms from the MCMAM study and the remaining 20% 
of those from the MCBCS were digitized on a Kodak Lumiscan 
85 scanner (Eastman Kodak Co, Rochester, NY) that had 50-μm 
(limiting) resolution with 12-bit grayscale depth.

Percent Mammographic Density Measure
Percent density (calculated as the dense area divided by the total 
area, multiplied by 100%) was estimated from the craniocaudal 
mammogram view in all three studies by one expert reader (F. F. 
Wu) using the Cumulus program (21,22). Briefly, two thresholds 
are set: the first separates the breast tissue from the background 
and the second separates dense from nondense tissue. Operator 
reliability across all three studies was high: The intraclass correla-
tion was greater than 0.93 for more than 1500 duplicate images 
read across the different study time frames.

The Variation Measure
The automated algorithm for estimating the variation measure 
includes three steps. First, the breast area on the craniocaudal 
mammogram view is automatically segmented from the back-
ground using a method we developed previously (J. J. Heine, E. 
E. Fowler [H. Lee Moffitt Cancer Center & Research Institute], 
C. M Vachon, unpublished observation) to remove image arti-
facts and detect the breast area. This method detects the breast 
orientation in craniocaudal view images and removes extraneous 
information from the off-breast portion of the image, resulting in a 
half-hemispherical shaped binary mask. Before estimating the vari-
ation measure, we visually inspected all segmented images from the 
three studies (more than 5000 images) and found that less than 
0.08% were unacceptable (ie, too much breast area was removed). 
These incorrectly segmented images were segmented manually 
and included in the analysis. Examples of four segmented mam-
mograms are shown in Figure 1. As shown in this figure, the dark 
area exterior to the visible breast region for a given breast image 
shows the pixel values that were set to zero in the automated seg-
mentation process. This segmentation step constrains the image 
processing to the breast region used in the second step. Because the 
breast was not compressed uniformly during the image acquisition, 
the second step reduces the breast area to approximate the portion 
of the breast that coincides with the uniformly compressed breast 
region. In the outer region, the breast thickness changes rapidly 
from the fully compressed breast thickness to close to zero thick-
ness. Thus, the second step reduces unwanted spatial variation by 
eliminating the portion of the projected breast area corresponding 
to large variations in compressed breast thickness during imaging 
and retaining that which is approximately of uniform thickness. For 
craniocaudal view mammograms, the breast area is well approxi-
mated as a semicircle (or half-moon). This binary half-moon sil-
houette image is eroded by 25% along a radial direction using an 
algorithm described previously (23). This process removes those 
regions that could potentially interfere with the variation measure 
(18). The erosion border is marked on each of the images shown 
in Figure 1. In the third step, the variation measure is calculated as 

the standard deviation of the pixel values within the eroded breast 
region for each study image. All mammograms were processed with 
the same algorithm.

The variation measure and percent density have different 
properties. The variation measure cannot be zero, and unlike 
PD, which ranges from 0% to 100%, it has no upper bound. 
We have also shown that these two measures have a nonlinear 
relationship (12).

Acquisition Technique Parameters
The image acquisition technique varies from one mammogram to 
the next, and variation due to these differences has the potential to 
interfere with mammographic density measures. To evaluate the 
influence of these differences on associations between the varia-
tion measure and percent density and the risk of breast cancer, we 
abstracted the values of the important acquisition technique param-
eters from mammograms digitized from the MMHS case–cohort. 
Abstracted parameters included the compressed breast thickness 
in millimeters, compression force in pounds, x-ray tube voltage in 

Figure 1.  Image processing examples of the variation measure (V) rep-
resenting four combinations of the first (lowest) and fourth (highest) 
quartiles of variation and percent density (PD) distributions. Top left: 
first quartile V (V = 205) and first quartile PD (PD = 7%); top right: first 
quartile V (V = 208) and fourth quartile PD (PD = 44%); bottom left: fourth 
quartile V (V = 394) and first quartile PD (PD = 0%); bottom right: fourth 
quartile V (V = 571) and fourth quartile PD (PD = 42%). The breast is seg-
mented from the background of the mammogram image. The curved 
black line indicates erosion of the breast by 25%. The variation measure 
is calculated using the pixels bound by this curved black line and the 
image border on the left.
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kilovoltage peak, and beam current–time in milliampere-seconds (a 
surrogate for x-ray generation).

Statistical Methods
We summarized the data for each study by case and control (or 
subcohort) subject status, including presenting mean values and 
standard deviations for mammographic measures by categories of 
age, body mass index (BMI), and menopausal status at mammogram. 
Age (per 10 years) and BMI (per 5 kg/m2) categories were chosen 
for convenience as well as to ensure that a sufficient number of 
case and control subjects were within each category for comparison 
purposes. Associations between the variation measure and 
percent density were visualized using scatter plots, and Spearman 
correlation coefficients with 95% confidence intervals (CIs) were 
used to summarize the strength of the linear association between 
the two measures. The magnitude of the associations between the 
variation measure or percent density and the risk of breast cancer 
was estimated using odds ratios (ORs) or hazard ratios (HRs). For 
the quantitatively scaled density measures, the odds ratios and 
hazard ratios reflect the relative risk (RR) of breast cancer for a 
woman whose measurement was one standard deviation higher 
than that of another woman; for quartiles of the density measures, 
the odds ratios and hazard ratios reflect the risk of breast cancer 
for women in the second, third and fourth quartiles relative to the 
risk for women in the first (lowest) quartile. For the case–cohort 
study (MMHS), hazard ratios were estimated by Cox proportional 
hazards regression using sampling weights to account for the 
subsampling that was performed in this case–cohort design (24). In 
the Cox regression, age at study enrollment was used as the starting 
age and age at breast cancer diagnosis or at the last follow-up was 
used as the stopping age. The proportional hazards assumption 
was evaluated by examination of Schoenfeld residuals over age; no 
violations of the proportional hazards assumption were noted. For 
the case–control studies (MCBCS and MCMAM), odds ratios were 
estimated using logistic regression. Ordinal tests of trend were 
performed to assess the association between each density measure 
and the risk of breast cancer.

Analyses of data from all three studies were adjusted for age at 
mammogram alone, as well as for age, BMI (in kg/m2), and meno-
pausal status (pre- vs postmenopausal) at mammogram. Both age 
and BMI were included in all models as continuous covariates. A 
transformed version of BMI (inverse BMI = 1/BMI) was used in the 
regression models because it provided a better fit compared with 
the untransformed version. All tests of statistical significance were 
two-sided, and all analyses were performed using SAS statistical 
software (version 9.2; SAS Institute, Cary, NC). Statistical signifi-
cance was defined as P less than .05.

We also performed a meta-analysis to obtain pooled estimates 
across the three studies. Before combining the study-specific esti-
mates, we used Poisson regression models to analyze the data from 
the case–control studies and estimate approximations of the log-
relative risks and their standard errors (25). The pooled estimates 
were then obtained using a meta-analysis with a random study 
effect (26). We used the Cochran Q test to test for heterogeneity of 
study effects in the meta-analysis (27).

To compare the ability of the two density measures to identify 
women at increased risk of breast cancer, we estimated the area 

under the receiver operating characteristic curve (AUC), that is, the 
concordance statistic (28,29). This statistic can be estimated as the 
proportion of case–control pairs for which a risk factor predicts a 
higher risk for the case subject than for the control subject. A con-
cordance statistic value of 0.5 indicates that the risk factor(s) can-
not discriminate between case and control subjects, whereas a value 
of 1.0 indicates that the model provides perfect discrimination 
between case subjects and control subjects. We used a bootstrap 
resampling approach (with 5000 bootstrap samples) to obtain 95% 
confidence intervals for these AUC estimates and to test the statis-
tical significance of their differences between models that included 
percent density and the variation measure. In addition, we used the 
bootstrap samples to obtain tests of statistical significance for the 
comparisons of quartile-specific hazard ratio estimates between the 
percent density and variation measures.

We assessed the extent to which the variation measure might 
improve clinical breast cancer risk assessment over what might be 
achieved with the clinical use of percent density for risk assessment 
in a simulation study. We based this simulation study on the MMHS 
study, by using the baseline breast cancer incidence rates, the joint 
distribution of the quartiles of the percent density and variation 
measures, and the hazard ratio estimates that were observed in the 
MMHS cohort to simulate breast cancer incidence in a hypotheti-
cal collection of 19 924 women (ie, the same size as the MMHS 
cohort). We estimated the 5-year absolute risk of breast cancer and 
the numbers of observed breast cancers, overall and in quartiles 
defined by the percent density and variation measures. Differences 
in these quantities were compared across quartiles within each of 
the measures and between percent density and the variation meas-
ure in each of the quartiles to quantify the potential improvements 
in risk prediction that might be made through the use of the varia-
tion measure in place of percent density.

Finally, we examined the potential influence of acquisition tech-
nique (ie, the machine settings unique to each individual when her 
mammogram was acquired) on the associations of percent density 
and the variation measure with the risk of breast cancer within 
the MMHS study. To do so, we assessed the degree to which the 
relative risk and AUC estimates were affected when the acquisition 
parameters were included as covariates in the proportional hazards 
regression models.

Results
The characteristics of the study subjects are summarized, by 
study population, in Table 1. The MCMAM study subjects were 
mostly postmenopausal (91%) and had the oldest mean ages at 
mammogram (64.9 years for case subjects and 64.1 years for control 
subjects), whereas the MMHS study had the largest number of 
premenopausal case and control (ie, subcohort) subjects (43% and 
54%, respectively), which was reflected in their younger mean 
ages at mammogram (55.3 and 51.6 years, respectively). BMI was 
comparable across all study populations. The mean percent density 
and the mean variation were higher in case subjects compared with 
control subjects (Table 1).

A scatter plot of the variation measure vs percent density for 
case and control subjects illustrates that these measures were 
moderately correlated (R2 = .64 for all three studies combined 



Vol. 104, Issue 13  |  July 4, 20121032  Articles  |  JNCI

[range = .64–.66]) (Figure 2). The nonlinear relationship between 
percent density and the variation measure (Figure 2) is consistent 
with our previous findings (12). There was also large variation in 
the variation measure at low values of percent density, which is 
partly a function of the greater potential for operator error at low 
values of percent density and also reflects the fact that the variation 
measure can never be zero in practice.

Supplementary Table 1 (available online) presents the mean 
percent density and mean variation for case and control subjects by 
categories of age, BMI, and menopausal status at mammogram. In 
all three studies, premenopausal women, women younger than 50 
years, and women with a BMI less than 25 kg/m2 had the highest 
mean values for both percent density and the variation measure.

In all three studies, the variation measure was positively 
associated with the risk of breast cancer both in a model adjusted 
for age alone and in a model adjusted for age, BMI, and menopausal 
status (Table 2). The associations and discrimination (AUC) were 
slightly stronger with the fully adjusted model, and these results are 
presented below. Among the 217 case subjects and 2094 subcohort 
subjects from the MMHS, the variation measure was associated with 
the risk of developing breast cancer (HRs for increasing quartiles 
of variation: 1.0 [referent], 0.92 [95% CI = 0.5 to 1.6], 2.1 [95% 

CI = 1.3 to 3.3], and 7.0 [95% CI = 4.6 to 10.4]; Ptrend < .001). The 
corresponding findings for percent density were, by comparison, 
attenuated in the top two quartiles (HRs for increasing quartiles of 
percent density: 1.0 [referent], 1.5 [95% CI = 1.0 to 2.2], 1.6 [95% 
CI = 1.1 to 2.5], and 3.1 [95% CI = 2.0 to 4.8]; Ptrend < .001), and the 
risk estimate for the top quartile of percent density was statistically 
significantly different from that of the top quartile of variation (P 
< .001). The variation measure was also positively associated with 
the risk of breast cancer among the 928 case subjects and 1039 
control subjects from the MCBCS (ORs for increasing quartiles of 
variation: 1.0 [referent], 1.3 [95% CI = 0.92 to 1.9], 3.0 [95% CI = 
2.1 to 4.3], and 10.7 [95% CI = 7.5 to 15.3]; Ptrend < .001). Again, the 
corresponding findings for percent density were, by comparison, 
attenuated in the top two quartiles (ORs for increasing quartiles 
of percent density: 1.0 [referent], 1.6 [95% CI = 1.2 to 2.2], 2.1 
[95% CI = 1.5 to 2.8], and 4.4 [95% CI = 3.1 to 6.1]; Ptrend < .001), 
and there was a statistically significant difference between the risk 
estimates for the top quartiles of percent density and variation 
(P < .001). Importantly, in these two studies, the estimates of 
discriminatory accuracy for the variation–breast cancer association 
were greater than the estimates of discriminatory accuracy for the 
percent density–breast cancer association (MMHS, AUC variation 
vs AUC percent density: 0.71 [95% CI = 0.68 to 0.75] vs 0.65 [95% 
CI = 0.62 to 0.69], P < .001; MCBCS, AUC variation vs AUC 
percent density: 0.76 [95% CI = 0.74 to 0.79] vs 0.65 [95% CI 
= 0.63 to 0.67], P < .001). The receiver operating characteristic 
curves for the percent density–breast cancer and variation–breast 
cancer associations in the MCBCS illustrate the distinct contrast 
in the ability of these measures to distinguish between the breast 
cancer case subjects and the control subjects (Figure 3). Among 
the 246 case subjects and 515 control subjects in the MCMAM 
study, increasing quartiles of percent density and of the variation 
measure showed similar associations with the risk of breast cancer 
(OR for highest quartile of percent density: 3.1 [95% CI = 1.9 to 
5.1] and OR for highest quartile of variation: 2.6 [95% CI = 1.6 
to 4.2]) and similar AUCs (0.61 [95% CI = 0.58 to 0.66] and 0.60 
[95% CI = 0.58 to 0.66], respectively), and the differences were not 
statistically significant (all P > .20) (Table 2). We obtained similar 
results when the analyses were restricted to the case subjects with 
invasive breast cancer and when analyses were stratified by age 

Table 1.  Characteristics of subjects by study and case–control status*

Variable

MMHS MCBCS MCMAM study

Case  
subjects

Subcohort  
(Control subjects)

Case  
subjects

Control  
subjects

Case  
subjects

Control  
subjects

Number of women 217 2094 928 1039 246 515
Mean age at mammogram, y (SD) 55.3 (10.7) 51.6 (11.0) 59.3 (11.8) 61.4 (11.0) 64.9 (10.1) 64.1 (10.2)
Mean BMI at mammogram, kg/m2 (SD) 28.2 (5.7) 27.7 (6.7) 27.6 (5.6) 27.0 (5.3) 27.9 (5.0) 27.5 (5.2)
Menopausal status at mammogram, No. (%)

Premenopausal 93 (43) 1121 (54) 238 (25) 201 (19) 21 (8) 40 (8)
Postmenopausal 124 (57) 973 (46) 676 (73) 831 (80) 223 (91) 471 (91)
Unknown 0 (0) 0 (0) 14 (2) 7 (1) 2 (1) 4 (1)

Invasive cancer, No. (%) 155 (71) – 748 (81) – 193 (78) –
Mean density, % (SD) 21.6 (15.3) 19.7 (15.1) 27.4 (15.1) 21.4 (14.0) 22.5 (15.0) 18.3 (13.6)
Mean variation† (SD) 383.3 (145.1) 305.33 (125.1) 435.3 (146.5) 311.5 (109.3) 320.4 (126.3) 285.0 (115.8)

*	 MMHS = Mayo Mammography Health Study; MCBCS = Mayo Clinic Breast Cancer Study; MCMAM = Mayo Clinic Mammography; BMI = body mass index; – = 
not applicable.

†	 In grayscale units.

Figure 2.   Scatter plot of variation (V) vs percent density (PD) for each 
case and control subject from all three studies. Lines represent fit of 
cubic spline applied separately to case (dashed line) and control (solid 
line) subjects to show overall trend of association between V and PD.
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groups using cut points that provided sufficient case and control 
subjects in each stratum (<50 years, 50–59 years, or ≥60 years) (data 
not shown).

In a meta-analysis of the three studies, both the variation 
measure and percent density were positively associated with the 
risk of breast cancer (approximate RRs for increasing quartiles of 
variation: 1.0 [referent], 1.2 [95% CI = 0.98 to 1.5], 1.9 [95% CI 
= 1.5 to 2.3], and 3.6 [95% CI = 1.9 to 7.0]; approximate RRs for 
increasing quartiles of percent density: 1.0 [referent], 1.3 [95% CI 
= 1.1 to 1.6], 1.5 [95% CI = 1.3 to 1.8], and 2.3 [95% CI = 1.9 
to 2.9]) (Table 3). Even though all three studies showed a positive 
trend for the association between increasing quartiles of the vari-
ation measure and the risk of breast cancer, there was evidence of 
heterogeneity among the studies for the association between the 
top quartile of variation and the risk of breast cancer (Pheterogeneity 
< .001), which was likely driven by the high risk estimate for the 

MCBCS. We examined the influence of several factors, including 
age, menopausal status, mammogram time period, type of digitizer, 
and type of cancer (invasive vs all), on the association between the 
variation measure and the risk of breast cancer across all studies, 
but we found no explanation for the heterogeneity between studies 
(data not shown).

We next examined whether the association between the varia-
tion measure and the risk of breast cancer persisted when exam-
ining mammograms taken years before the diagnosis of breast 
cancer. Only the MMHS and the MCMAM study were used for 
these analyses because the participants in these studies had mam-
mograms that were taken years before a breast cancer diagnosis (or 
index date). In this analysis, we stratified the subjects by the median 
time between the dates of the earliest mammogram and the breast 
cancer diagnosis or last follow-up (4 years for MCMAM and 8 
years for MMHS). In the MCMAM study, there were essentially no 
differences in the associations between percent density or the varia-
tion measure and the risk of breast cancer with regard to the timing 
of the mammogram (<4 vs ≥4 years). However, in the MMHS, the 
risk estimates for the percent density and variation measures were 
somewhat attenuated when assessed from mammograms taken 8 or 
more years before diagnosis vs mammograms taken within 8 years 
of diagnosis (Supplementary Table 2, available online). Importantly, 
the positive associations between the variation measure and the risk 
of breast cancer remained statistically significant even for mammo-
grams taken 8 or more years before diagnosis.

We also assessed the influence of interpatient differences in 
mammographic acquisition parameters on the associations between 
the density measures and the risk of breast cancer in the MMHS. 
Adjustment for these factors had little effect on the association 
between either percent density or variation and the risk of breast 
cancer (Supplementary Table 3, available online).

We next assessed the extent to which the variation measure 
might improve clinical breast cancer risk assessment compared 
with percent density by performing a simulation based on data 
from the MMHS cohort. In this study, the AUC for the variation 
measure was 0.71 and the AUC for percent density was 0.65 
(Table 2). Overall, the average absolute 5-year risk of breast cancer 

Figure 3.  Receiver operating characteristic curves and area under the 
curve (AUC) for unadjusted associations between percent density (PD) 
and variation (V) and the risk of breast cancer in the Mayo Clinic Breast 
Cancer Study. The diagonal line represents a model with no predictive 
value (AUC = 0.5).

Table 3.  Estimated relative risk of breast cancer by quartiles of percent density and variation in each of the three studies and from a meta-
analysis of the three studies*

Variable

MMHS MCBCS MCMAM study Meta-analysis

HR (95% CI) OR (95% CI) RR† (95% CI) OR (95% CI) RR† (95% CI) RR (95% CI) Pheterogeneity‡

Percent density (%)
  Quartile 1 (0–8.3) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)  
  Quartile 2 (8.4–17.6) 1.5 (1.0 to 2.2) 1.6 (1.2 to 2.2) 1.3 (1.0 to 1.7) 1.2 (0.73 to 1.8) 1.1 (0.7 to 1.6) 1.3 (1.1 to 1.6) .57
  Quartile 3 (17.7–28.3) 1.6 (1.1 to 2.5) 2.1 (1.5 to 2.8) 1.5 (1.2 to 1.9) 1.8 (1.1 to 2.8) 1.5 (1.0 to 2.1) 1.5 (1.3 to 1.8) .93
  Quartile 4 (28.4–79.4) 3.1 (2.0 to 4.8) 4.4 (3.1 to 6.1) 2.2 (1.7 to 2.8) 3.1 (1.9 to 5.1) 2.1 (1.4 to 3.1) 2.3 (1.9 to 2.9) .28
Variation measure§
  Quartile 1 (0–212) 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.00 (referent) 1.0 (referent) 1.00 (referent)  
  Quartile 2 (213–280) 0.92 (0.5 to 1.6) 1.3 (0.9 to 1.9) 1.2 (0.9 to 1.7) 1.7 (1.1 to 2.6) 1.4 (0.99 to 2.1) 1.2 (0.98 to 1.5) .49
  Quartile 3 (281–380) 2.1 (1.3 to 3.3) 3.0 (2.1 to 4.3) 2.0 (1.5 to 2.8) 1.9 (1.2 to 3.0) 1.6 (1.1 to 2.3) 1.9 (1.5 to 2.3) .75
  Quartile 4 (381–809) 7.0 (4.6 to 10.4) 10.7 (7.5 to 15.3) 3.5 (2.7 to 4.7) 2.6 (1.6 to 4.2) 1.9 (1.3 to 2.8) 3.6 (1.9 to 7.0) <.001

*	 Estimates adjusted for age, body mass index, and menopausal status at mammogram. MMHS = Mayo Mammography Health Study; MCBCS = Mayo Clinic Breast 
Cancer Study; MCMAM = Mayo Clinic Mammography; HR = hazard ratio; CI = confidence interval; OR = odds ratio; RR = relative risk.

†	 RR approximation using Poisson regression models.
‡	 Pheterogeneity calculated from the Cochran Q statistic.
§	 In grayscale units.
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in this cohort was 1.1%. For women in the lowest and highest 
quartiles of percent density, the average absolute 5-year risks of 
breast cancer were 0.7% and 1.6%, respectively. For women in 
the lowest and highest quartiles of variation, the average absolute 
5-year risks were 0.4% and 2.6%, respectively. When using these 
estimates in 1000 simulations, we found that the median number of 
breast cancers after 5 years among those in the highest quartile of 
percent density was 84 (95% CI = 67 to 103), whereas the median 
number of breast cancers after 5 years among those in the highest 
quartile of variation was 136 (95% CI = 113 to 159). The number 
of breast cancers observed in the highest quartile of the variation 
measure was 1.6 times higher (95% CI = 1.4 to 1.9 times ) than the 
number observed in the highest quartile of percent density. Thus, 
the improved risk prediction provided by the variation measure 
when compared with percent density, as reflected in the difference 
between the values of their AUCs, results in a large difference in 
expected number of breast cancers among women in the highest 
quartiles of these mammographic measures.

Discussion
We found that an automated estimate of mammographic den-
sity—the variation measure—was associated with the risk of breast 
cancer in three epidemiological studies. The association between 
the variation measure and breast cancer was at least as strong as 
the association between percent density and breast cancer in all 
three studies, as reflected by estimates of risk and discriminatory 
accuracy. The variation measure–breast cancer association was not 
materially influenced by mammographic acquisition parameters, 
and this association was similar to that seen in a recent study of a 
calibrated variation measure and breast cancer that used full-field 
digital mammography (18). Taken together, these results suggest 
that the variation measure is a viable automated mammographic 
density measure that is consistent across film and digital imag-
ing platforms and may be useful in the clinical setting for risk 
assessment.

Several of our findings support incorporation of the variation 
measure into future breast cancer risk models. First, the association 
between variation and the risk of breast cancer remained strong 
when it was assessed on mammograms taken at least 4 years before 
diagnosis. Second, the associations reported here between varia-
tion measured on film mammograms and the risk of breast can-
cer are similar to our previously published results using full-field 
digital mammography (18). Thus, the variation measure appears to 
be an important risk factor across the imaging platforms evaluated 
to date. Third, the variation measure provided better discrimina-
tion between breast cancer case subjects and control subjects rela-
tive to percent density in two of the three studies we examined. In 
addition, the magnitude of the AUC for these two studies (which 
was calculated from models that included age, BMI, and menopau-
sal status together with the density measure) was 0.70 or higher; 
by contrast, the concordance statistic for the current Gail model 
(30) is 0.596, and the breast cancer risk models to date that incor-
porate percent density estimates have concordance statistics that 
range from 0.62 to 0.68 (31–34). Finally, we used a simulation study 
to quantify the likely differences in breast cancer risk associated 
with either percent density or the variation measure and found 

substantially different absolute risks of breast cancer for women in 
the highest quartiles of percent density and variation. The 5-year 
absolute risk of breast cancer for women in the highest quartile 
of percent density was less than the Gail model cut-off of 1.66% 
that is often used to classify women as being at high risk, whereas 
the 5-year absolute risk of breast cancer for women in the highest 
quartile of the variation measure exceeded this threshold.

Although the variation measure performed at least as well as 
percent density for risk discrimination in the three studies included 
in this analysis, there was heterogeneity in the results. Two stud-
ies—MCBCS and MMHS—showed better discrimination of risk 
and higher risk estimates for the variation measure relative to per-
cent density, whereas the MCMAM study showed similar perfor-
mance for both measures. Formal tests of heterogeneity showed 
differences in the risk estimates for the variation measure across 
the three studies, but only for the top quartile of variation. We also 
examined the influence of several factors, including age, menopau-
sal status, mammogram time period, type of digitizer, and type of 
cancer (invasive vs all), on the association between the variation 
measure and the risk of breast cancer across all studies, but none 
of these factors explained the differences seen between studies. 
Study design might have contributed to heterogeneity given that 
MCMAM was a closely matched case–control study; there is the 
potential that we overmatched on some factors related to the vari-
ation measure. Also, subjects in the MCMAM study were sampled 
from a regularly screened population of women who were required 
to have had at least two mammograms at least 2 years before breast 
cancer diagnosis. Thus, although the variation measure performed 
as well as percent density in all three studies, additional research is 
required to determine whether the variation measure is superior to 
percent density.

If we assume that percent density and variation show similar 
associations with risk, the fact that the variation measure is auto-
mated may make it preferable to percent density for use in the clin-
ical setting. Methods of automating breast density measurements 
are not widely used or have not been well validated (5,35). These 
automated methods range from calibrated approaches, including 
both planar and volumetric measures (6,7,36), to texture features of 
the underlying mammogram images (37). As noted above, the pro-
cess for measuring variation is not analogous to that for measuring 
percent density and thus is not directly related to methods that 
are intended to capture percent density or volumetric breast den-
sity in an automated fashion. The variation measure is most closely 
related to automated texture measures (37), which can be alterna-
tively described as Fourier measures. Importantly, initial evidence 
from full-field digital mammography shows that variation can be 
measured with or without calibration (18), which will simplify the 
use of this measure in the clinical setting.

Even though mammographic density has consistently been 
assessed as the amount or proportion of bright tissue in an image 
(1,5), we found that a measure of variation of dense tissue is also 
relevant to breast cancer. These findings are consistent with recent 
calibration work (18) and texture analyses (37). First, the calibrated 
variation measure in full-field digital mammography was found to 
be a function of the percent density measure as well as of the other 
relevant calibrated tissue parameters (12). Thus, the variation meas-
ure and percent density have been shown to be related. Second, the 
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variation measure includes both the low-frequency features and 
fractal texture measures that were previously found to be associated 
with the risk of breast cancer (37). Thus, the variation measure is 
indirectly associated with existing mammographic density measures.

The strengths of this study include the evaluation and valida-
tion of a novel breast density measure across three well-designed 
epidemiological studies. We were able to compare this novel meas-
ure with an established percent density measure that was also avail-
able for all studies. The magnitude of the association between the 
variation measure and the risk of breast cancer was comparable to 
the magnitude of the association between percent density and the 
risk of breast cancer and in two of three studies, the variation meas-
ure resulted in improved risk discrimination, with AUCs of 0.70 or 
higher. Furthermore, two of the included studies had mammograms 
available that were taken years before diagnosis, which allowed us to 
show that the variation–breast cancer association was present at least 
4 years, and even more than 8 years, before breast cancer diagnosis.

Weaknesses of this study include limited risk factor data for the 
MCMAM study and limited follow-up in the MCBCS between 
mammograms and cancer diagnosis. Even though we did not have 
prediagnostic mammograms for the MCBCS, we did evaluate the 
variation measure in the noncancerous breast to ensure that the 
cancer abnormalities were not responsible for the associations we 
observed. In addition, estimation of the variation measure requires 
a consistent breast segmentation preprocessing stage. The segmen-
tation processing may have removed too much or too little breast 
area in some images. The degree of breast erosion was set as a static 
parameter (25%), which may not be optimal (ie, may not be the 
optimal breast region to examine) and will require further investi-
gation. A larger degree of erosion produced stronger associations 
in a recent study (18). Our analysis was restricted to craniocaudal 
view images because of processing concerns related to the inclu-
sion of the chest wall or pectoral muscle in the mediolateral oblique 
mammogram views limiting the evaluation of the variation measure 
from these views. Finally, pixel dynamic range, digital resolution, 
and varying digital detector technologies may influence the estima-
tion of the variation measure. Reducing the allowable pixel dynamic 
range (ie, the bit rate or bit depth used for film digitization) below 
some critical value can interfere with the image information and 
display and, therefore, the variation measure. However, in this 
study, we used an accepted pixel value dynamic range for mammog-
raphy (38), thereby limiting the influence on the variation measure.

The variation measure will require further evaluation with data 
collected under varying conditions to ensure its consistency across 
diverse settings. The robustness of this measure across a variety 
of imaging platforms, equipment, and technicians remains to be 
determined. In addition, alternative metrics for the variation meas-
ure, such as total variation within a given mammogram or region 
of interest, will also need to be examined as they may prove to be 
equivalent or stronger risk factors for breast cancer.

The variation measure holds promise for use as a mammo-
graphic density measure in the clinical setting because of its sim-
plicity and the ability to standardize and automate this measure 
across sites. The variation measure is automated and is generated 
without subjective thresholds or other detection-related parame-
ters. Variation can be measured in film as well as in full-field digital 
mammography, and the corresponding associations have now been 

shown to be similar. Evidence that the variation measure is associ-
ated with breast cancer in different study populations and across 
imaging conditions would support incorporation of this measure 
into clinical risk assessment practices.
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