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Summary
Power for time-to-event analyses is usually assessed under continuous time models. Often,
however, times are discrete or grouped, as when the event is only observed when a procedure is
performed. Wallenstein and Wittes (Biometrics, 1993) describe the power of the Mantel-Haenszel
test for discrete life-tables under their chained binomial model for specified vectors of event
probabilities over intervals of time. Herein the expressions for these probabilities are derived
under a piecewise exponential model allowing for staggered entry and losses to follow-up.

Radhakrishna (Biometrics, 1965) showed that the Mantel-Haenszel test is maximally efficient
under the alternative of a constant odds ratio and derived the optimal weighted test under other
alternatives. Lachin (Biostatistical Methods: The Assessment of Relative Risks, 2011) describes
the power function of this family of weighted Mantel-Haenszel tests. Prentice and Gloeckler
(Biometrics, 1978) describe a generalization of the proportional hazards model for grouped time
data, and the corresponding maximally efficient score test. Their test is also shown to be a
weighted Mantel-Haenszel test and its power function is likewise obtained.

There is trivial loss in power under the discrete chained binomial model relative to the continuous-
time case provided that there is a modest number of periodic evaluations. Relative to the case of
homogeneity of odds ratios, there can be substantial loss in power when there is substantial
heterogeneity of odds ratios, especially when heterogeneity occurs early in a study when most
subjects are at risk, but little loss in power when there is heterogeneity late in a study.
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1. INTRODUCTION
Wittes and Wallenstein [1] describe the power function of the Mantel-Haenszel test [2] for
stratified 2 × 2 tables; and Wallenstein and Wittes [3] describe the power function of the
Mantel-Haenszel test for lifetables [4] where the events are observed in discrete or grouped
time. They distinguish two cases. Under their multinomial model, all event times are
observed exactly (continuously) but the event times are grouped, and during an interval
subjects may be lost to follow-up, all of whom are known to be event free at the time lost.
This would apply to a standard actuarial lifetable. However, under their chained binomial
model it is assumed that a subject’s status is only known when an evaluation is performed at
the close of an interval, at which time it can be determined whether a subject experienced an
event since the last evaluation. This type of data structure is common. Under this model a
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subject who has the event during the interval, but is not evaluated at the end of the interval,
is not observed to have had the event.

An example of a chained binomial data structure is provided by the analysis of onset of
nephropathy (kidney disease) observed on a renal function evaluation performed annually in
the Diabetes Control and Complications Trial [5]. If a subject developed nephropathy
between baseline and the 1 year evaluation, for example, it was only observable if the renal
evaluation was performed at 1 year. Likewise, a subject who was lost to follow-up between
baseline and 1 year was last known to be "event free" at baseline, not at the time of loss.
Wallenstein and Wittes [3] describe such losses as obliterating any information about
whether the subject experienced the event. In such cases, the analysis employs a Mantel-
Haenszel, or similar, test exaiminig the numbers of subjects observed to have the event
among those evaluated, as described by Koch, McCanless and Ward [6] and by Peto [7],
among others. Lachin [8] describes the corresponding survival function estimate as a
modified Kaplan-Meier estimate.

The Mantel-Haenszel test for lifetables is simply an application of the Mantel-Haenszel test
for stratified 2×2 tables, and it is well known that the latter test is maximally efficient under
the alternative hypothesis that there is a common odds ratio. However, some other
alternative hypothesis might apply, such as a common reltaive risk (risk ratio) among strata,
in which case the original unweighted Mantel-Haenszel test will not be optimal. Thus,
Radhakrishna [9] derived a family of weighted Mantel-Haenszel tests for stratified 2 × 2
tables that employs a specific set of weights that are optimal, or provide a fully efficient test,
under a specific alternative with a constant difference in risks on some scale.

With continuous event-time data (i.e. ungrouped and untied event times), the unweighted
Mantel-Haenszel test is equivalent to the logrank test [10] and is optimal under a
proportional hazards (PH) model, as demonstrated by Cox [11], among others. The Tarone-
Ware [12] and Gρ [13] families of weighted Mantel-Haenszel (or weighted logrank) tests
then provide tests that are optimal over a range of alternatives that includes proportional
hazards or proportional odds, among others. However, with grouped or discrete time data,
these tests are no longer optimal for the corresponding continuous time alternative, so that
the unweighted Mantel-Haenszel test is not fully efficient under the popular proportional
hazards model. Prentice and Gloeckler [14], however, present a score test for discrete time
data that yields a fully efficient weighted Mantel-Haenszel test under this model.

Wallenstein and Wittes [3] describe the power function of the unweighted Mantel-Haenszel
test in general terms for a set of specified probabilities of the event and loss to follow-up in
each interval over time, and specified numbers of subjects evaluated in each interval. They
also presented examples demonstrating a loss in power due to the heterogeneity of odds
ratios that can result from the interval observations. Herein the expressions for these
probabilities in the chained binomial model are derived under a piecewise exponential
model for the event of interest and for loss to follow-up. The power of the Mantel-logrank
test under this model is then derived. We then generalize the expression of Wallenstein and
Wittes to the family of weighted Mantel-Haenszel tests for lifetables that includes the
Prentice-Gloeckler test.

Under a PH model with time-varying hazard rates it is well-known that there will be
heterogeneity of survival odds and likewise heterogeneity of the odds ratio of events within
intervals over time, thus reducing the power of the unweighted Mantel-Haenszel test. Power
can also be reduced, relative to continuous-time observations, owing to the reduced numbers
of subjects observed to experience the event when evaluated periodically. Examples explore
the effects of each of these factors on the power of the unweighted Mantel-Haenszel test.
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2. Chained Binomial Piecewise Exponential Model
Assume the staggered entry of subjects over an interval of (0, R] units of calendar time and
that the total study duration is T > R units. For now consider a single group of N subjects
and let j = 1, ..., N designate the individual subjects in the order entered over the interval (0,
R]. Assume that the entry or accrual times within the cohort, say {aj}, are distributed with
density g(a) and distribution function G(a), a ∈ (0, R], where G(0) = 0 and G(R) = 1.
Subjects entered by time a will have a possible administrative censoring or maximal follow-
up time of e = (T − a) ∈ [T − R, T), where e = T − R for the last subject entered (a = R), and
e = (T − ε) for the first subject entered (for some ε close to zero). The pattern of
administrative censoring, measured in study time since randomization, is then a reflection of
the pattern of recruitment in calendar time. Under the simplest case of uniform entry, g(a) =
1/R, and G(a) = a/R.

Let τ1, ..., τI designate a sequence of fixed follow-up "visit" times after entry (i.e. study
times) at which subjects are evaluated to determine whether the event has occured in the
preceding interval (τi−1 − τi], where τ0 = 0 and it is assumed that the last time τI ≤ T.
Assume that all subjects are evaluated at the exact specified visit times following entry. Let
ni denote the number entering the ith interval at time τi−1. Of these, let ℓi denote the number
of subjects who were lost to follow-up (i.e. right censored) during the ith interval, all of
whom were evaluated at the end of the prior interval and known to be event free at that time.
These subjects are not evaluated at the end of the interval and thus ri = ni − ℓi is the number
at risk (evaluated) at the end of the interval at time τi. Then let di designate the number
among the ri who are observed to have the outcome event when evaluated at time τi, where
E(di) = riπi, πi being the probability of the event occuring during the ith interval. Note that
di is not the actual number of subjects who may have the event during the interval, since
some may not be observed at the end of the interval.

For a given subject, let t denote the event time and u the loss-to-followup time, the two
being statistically independent. For the event times, assume a piecewise exponential model
with an underlying continuous time hazard of the event λi that is assumed constant over the
ith interval. A special case is the exponential assumption of a constant hazard λ over all
intervals. Then the probability that an event occurs during the ith interval among those who
remain at risk at the end of the prior interval is obtained as

(1)

where the survival function at time τi−1 is provided by

(2)

For the jth subject, the administrative censoring time is T − aj. Under an entry distribution
g(.), the probability of administrative censoring in the ith interval is provided by

(3)

In the simple case of uniform entry over the interval (0, R], then g(a) = 1/R and G(a) = a/R
in which case
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(4)

Lachin and Foulkes [15] also consider the truncated exponential entry distribution that
allows either a concave recruitment pattern where enrollment lags initially but then catches
up over time, or a convex pattern, where

(5)

Also assume that the loss to follow-up time u has cumulative distribution function H(u).
Then the probability of being lost in the ith interval is provided by

(6)

Under a piecewise exponential model with hazard rate ηi over the ith interval, this yields

(7)

where

(8)

The probability of exiting the study during an interval due to loss-to-follow-up or
administrative censoring, i.e. not being followed and evaluated at the end of the interval, is

(9)

Thus, the probability that a subject enters the ith interval of follow-up is

(10)

the probability that a subject is evaluated at the end of the interval is 1 − γi, and the
probability that an event is observed at the end of the interval is πi(1 − γi). Thus, E(n1) = N
and

(11)

3. Weighted Tests
Now consider a study with two groups (k = 1, 2) and let nik, ℓik, and rik refer to the numbers
in the two groups to enter, exit from, and be evaluated at the end of the ith interval, of whom
dik are observed to have had the event. Let ni, ℓi, ri and di denote the corresponding quantities
in the combined cohort.

Using the conditional hypergeometric variance, the Mantel-Haenszel (1959) test can be
expressed as
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(12)

that is distributed as standard normal under the compound null hypothesis H0: πi1 = πi2 for i
= 1, ..., I.

The sample proportions are simply pik = dik/rik where E(pik) = πik in the kth group, and pi =
di/ri where E(pi) = πi(0) in the combined cohort under the null hypothesis. Cochran [16]
presents an alternate test in terms of the differences in proportions within the two groups (pi1
− pi2) using the unconditional product-binomial variance. His test is equivalent to (12)

except that it employs  in lieu of  in the denominator of the variance. This test is
commonly referred to as the Cochran-Mantel-Haenszel (CMH) test. Radhakrishna [9]
generalized this test to allow for different weights {wi} over the set of 2 × 2 tables. The
weighted Mantel-Haenszel test using the unconditional variance is

(13)

where the estimate of the unconditional variance under the null hypothesis is

(14)

For some function f(π) with associated parameter θi = [f(πi1) − f(πi2)], using a Taylor’s
expansion, it follows that θi ≅ g′(πi(0))[πi1 − πi2]. Then assuming that this quantity is
constant over all tables, θi = θ ∀i, the optimal weights {ωi} that provide maximum
efficiency are obtained [9]; cf. [8]. The test employs weights {wi} based on the estimated
probabilities. The optimal test under the assumption of a common odds ratio is based on f(π)
= logit(π), θi being the log odds ratio, in which case wi = ri1ri2/ri and ZWMH ≅ ZMH.

Prentice and Gloeckler [14] present a generalization of the Cox Proportional Hazards model
to the case of interval or grouped survival time. For two groups with constant hazard ratio θ
over time, the hazard functions are λ1(t) = θλ2(t), and cumulative hazard functions Λ1(t) =
θΛ2(t), with survival functions S1(t) = exp(−θΛ2(t)) = S2(t)θ. Thus, the model coefficient β
= ln(θ) or the log hazard ratio. Under a piecewise exponential model for each interval, from
(1), the probabilities of the event in the two groups (πi1, πi2) are related as

(15)

Thus, under the discrete PH model the event probabilities are not proportional and do not
provide constant odds ratios over time, even under a simple exponential model.

The Prentice-Gloeckler model assumes a "background" probability of the event within each
successive interval that is modified as a function of a linear function of covariates. With a
single binary covariate representing treatment group, the model parameters consist of I
background probabilities and the covariate coefficient (β). The efficient score test for H0: β
= 0 then is a Cα test that is also a weighted Mantel-Haenszel test as in (13) using weights
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(16)

Note, however, that as pi → 0, then ln [1 − pi]−1 → pi and the weights of this test are
indistinguishable from those of the weighted Mantel-Haenszel test for a common odds ratio.

4. Power and Sample Size
Let ρk denote the group sample fractions on entry with initial sample sizes Nk = ρkN. Within
each group, the accrual distribution Gk(a), with the corresponding distribution of
administrative censoring over time, and the distribution of losses to follow-up with the
hazard rates of loss-to-follow-up {ηik} over time, yield the probabilities of a subject exiting
each interval {γik} in the two groups over all I intervals as in Section 2. In a randomized
study, the accrual distributions will be the same for the two groups but not necessarily the
loss hazard rates and the associated exit probabilities. Under the alternative hypothesis, the
groups will differ with respect to the hazard rates of the event {λik} that generate the
probabilities of the event {πik} over all I intervals. Then, the probability that a subject in the
kth group is at risk at τi is:

(17)

The expected number at risk at the end of the ith interval in the kth group, and the expected
number of events, are provided by

(18)

The corresponding totals in each interval are

(19)

Under the null hypothesis, λi1 = λi2 = λi1(0), or equivalently, πi1 = πi2 = πi(0), i = 1, ..., I.
From the specification under the alternative, the assumed common hazard in each interval is
obtained as λi(0) = αi1λi1 + αi2λi2. For a computation with constant hazards and hazard
ratios over time then this common hazard can be obtained as λi(0) = ρ1λi1 + ρ2λi2. Then the
assumed common event probability πi(0) is obtained from (1) using the λi1(0). These
probabilities are employed in (17) to obtain the expected fractions at risk in each group,
{αi1(0)} and {αi2(0)}, and overall ({αi(0)}). Substituting into (18) for each group yields the
expected frequencies within each group, E(rik(0)) and E(dik(0)), and in total, E(ri(0)), and
E(di(0)). This approach differs slightly from that used by Wallenstein and Wittes [3] who

obtained the null event probability,  in their notation, as the weighted average of the pre-
specified probabilities πi1 and πi2 (equation 8 therein).

The power of a Mantel-logrank test under a chained binomial model can then be evaluated
using the resulting non-centrality parameter of the test that is simply the expectation of the
test statistic under this model. This is provided by

(20)

The power and sample size for a one-sided test at level α with a given non-centrality
parameter then satisfy the relationship
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(21)

where one would use Z1−α/2 for a two-sided test. Then the power of the test for given N and
values of the other parameters is provided by Φ(Z1−β) where

(22)

Owing to the denominator for the variance, a closed form solution for the required N is not
possible, although N can be readily obtained from a recursive procedure such as the secant
method [17]. Alternately, E(ri)3 may be substituted for E(ri)2E(ri − 1) to yield an expression

of the form  where φ is then a function of the corresponding parameters {αi1, αi2,
αi, πi1, πi2, πi} from (18) and (19). Then the required N is provided by N = (Z1−α + Z1−β)2/
φ2.

A generalization of the Wallenstein-Wittes equation may also be employed. Lachin [8]
presents equations to determine the power (or sample size) for a weighted Mantel-Haenszel
test. The test in (13) is a function of the difference in proportions pi1 − pi2 for the ith interval
and weights that are also a function of the sample sizes and possibly the proportions. From
Slutsky’s theorem [8], the distribution of this test converges to that of

(23)

where E(wi) = Nωi, and ωi(0) is the corresponding quantity evaluated under H0.

Let

(24)

Thus, under H1,

(25)

The relationship between sample size and power is expressed as

(26)

Since , then approximately

(27)

The Mantel-Haenszel test is known to be maximally efficient against the alternative that
there is a constant odds ratio over all 2 × 2 tables. The test uses weights with expectation

(28)

so that
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(29)

The power of this test is then obtained by solving for Z1−β in (27) to yield

(30)

This is equivalent to the Wallenstein-Wittes equation except for the manner in which the
null probability πi(0) is computed.

The power function of the Prentice-Gloeckler test can likewise be obtained from these
expressions. The test uses weights in (16) so that

(31)

The expectation under the PH alternative is

(32)

and the null variance is

(33)

Then the basic equation relating sample size and power is

(34)

which yields power as a function of

(35)

As πi(0) → 0, such as when the number of intervals increases, then ln [1-πi(0)]−1→πi(0) and
the above equation simplifies to the expression in (30) that provides the power of the
weighted Mantel-Haenszel test for a common odds ratio. Also, if πi(0) = π(0) is constant
over all intervals, such as under an exponential model, then the power of the Prentice-
Gloeckler test is identical to that of Mantel-Haenszel test.

6. Examples
Consider a study with uniform enrollment of N = 100 patients over R = 3 years and a total
duration of T = 5 years with constant hazards λ = 0.30 and η = 0.05 for all visits and with 2
visits per year. Using the expressions in Lachin and Foulkes [15], 59.4 subjects with the
event would be expected with continuous time observations (e.g. the day of the event).
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However, for semi-annual outcome assessments, Table 1 provides the expected numbers of
subjects to enter each interval (ni), to exit during the interval (ℓi), to be evaluated at the end
of the interval (ri) and to have the event present at the end of the interval (di). Summing the
last column, the total expected number of subjects observed with the event is 56.3. For any
other sample size, the values above provide the expected percentages.

Note that no subjects are evaluated beyond 4.5 years of follow-up because all subjects
entered during the first 6 months of recruitment are followed for [4.5, 5) years, none
evaluated at 5 years of follow-up. Thus all of these are administratively censored during the
last interval. Likewise, the 1/6 of subjects recruited in the second half of the third year are
followed for [2, 2.5) years and last evaluated at 2 years. This results in a reduction in the
numbers of observed events and the pursuant power. This can be addressed by shortening
the duration of the evaluation intervals, or extending the study. For example, if the study
were extended by 3 months to 5.25 years, then half the subjects whose last visit occurs
within an interval would be available for evaluation at the next interval. In this case the total
expected number of observed subjects with the event is 60. Alternately, keeping the study at
5 years and increasing the frequency of visits to 4 per year, with 20 intervals, the total
expected number of subjects with the event is 57.8.

Also, the probability of new cases among those at risk {πi} under an exponential model is
constant over time. With constant hazard λ, the probability of an event in an interval of
length I is simply 1 − exp(−λI). Thus for the above example with half-yearly intervals, πi =
1 − exp(−0.3/2) = 0.139. Therefore, under an exponential model, there is a constant relative
risk and constant odds ratio over time within each of the 2 × 2 tables over time.

Now consider the potential loss in power compared to the continuous-time test power under
an exponential model. Lachin and Foulkes [15] describe the power of the test of the
difference between two hazard rates under an exponential model for observations observed
continuously over time. In their Table 3.B, using this test, they show that N = 406, equally
divided between two groups, provides 90% power to detect a relative hazard of 2/3 with a
control hazard λ2 = 0.3 per year and losses to follow-up at hazard rate η = 0.05 per year in
each group in a study with R = 3 years of uniform recruitment and total duration T = 5 years
using a test at the α = 0.05 level (one-sided). Under the alternative, the expected numbers of
events in the control and treated groups are 120.5 and 93.1, respectively, and the expected
numbers lost to follow-up (not administratively censored) are 20 and 23, respectively.
Asymptotically, the continuous time Mantel-Haenszel (logrank) test should have equivalent
power under this model.

Table 2 presents the expected numbers of events within each group and the resulting levels
of power of the Mantel-Haenszel test and the Prentice-Gloeckler test under the chained
binomial model with varying numbers of visits (intervals) per year. With only one
evaluation per year, even though the number of subjects observed to have the event is
reduced by 11%, there is a small reduction in power. As expected, as the number of intervals
(assessment visits) increases, the numbers of events observed increases and likewise power.
The power obtained from the non-centrality parameter (22) is trivially less than that from the
weighted test expression (30). With frequent intervals, the power estimates exceed the 0.90
estimated from the continuous-time expressions of Lachin and Foulkes for the exponential
model-based test.

Additional computations were performed for the above Lachin-Foulkes design with N = 406
under a piecewise exponential model with 2 intervals per year, but where the control group
hazards {λi2} and the hazard ratios either increased or decreased over time. As would be
expected from similar computations performed for continuous time observations using the
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Lakatos [18] model, power is greater when the hazard function decreases rather than
increases over time, and when the hazard ratio is further from 1 earler rather than later in the
study. The power was virtually identical using either the expressions for the Mantel-
Haenszel test or the Prentice-Gloeckler test.

7. Discussion
Other than the work of Wallenstein and Wittes [3] there has been little assessment of the
impact of grouping of event times on the resulting power of a weighted Mantel-Haenszel
test. Virtually all existing methods for assessment of sample size or power are based on the
observation of event times continuously, some under a simple exponential model such as
Lachin and Foulkes [15], or a piecewise exponential model such as Lakatos [18]. While the
Lakatos procedure, as herein, is based on specified hazard rates over discrete intervals of
time, it actually assesses the power of the continuous time logrank test, not that of a discrete
time test, under the piecwise exponential model assumptions.

The Mantel-Haenszel test for a stratified analysis of 2 × 2 tables is known to be fully
efficient under the alternative of a constant odds ratio over all 2×2 tables and thus
Wallenstein and Wittes [3] describe the power of the test for grouped-time survival analysis
under this alternative. Their expression allows for variation in the odds ratios over intervals
of time, and they showed that heterogeneity of odds ratios over time leads to a loss of power
relative to the case of a constant odds ratio over time, as is well known for the original
Mantel-Haenszel test for stratified 2 × 2 tables. However, they did not explore the properties
of the test under the popular proportional hazards model, or the simplest special case of an
exponential model. Under an exponential model with evenly spaced evaluations, the
conditional probability of the event is constant within each interval, and thus also the odds
ratio, so that there is little loss in power relative to the continuous time case, and that loss is
attributable to the reduction in observed events owing to the periodic outcome assessments
(Table 2). Under the PH model with time-varying hazard rates, it is readily shown that a
constant odds ratio can not apply, and thus there is some loss in power relative to the
continuous time case. However, depending on the pattern of recruitment, follow-up and the
extent of losses to follow-up, the impact of this heterogeneity can be slight, especially when
the event probabilities are small in which case the relative risk (risk ratio) is approximately
equal to the odds ratio.

Prentice and Gloeckler [14] generalized the PH model to grouped or interval time data and
under a PH alternative with grouped time data their score test will always be more powerful
than the Mantel-Haenszel test considered by Wallenstein and Wittes, provided that the
hazard rates vary over time. If not, and the exponential model applies, then the Prentice and
Gloeckler test and the Mantel-Haenszel test are both fully efficient. Further, there are other
patterns over time that depart from the proportional hazards model, and also from a constant
odds ratio model, for which the Mantel-Haenszel and Prentice-Gloeckler tests will yield
similar results, and will thus have similar power.
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Table 1

Expected numbers to enter an interval (ni), exit during an interval (ℓi), to be observed and at risk at the end of
the interval (ri), and the events to be observed (di) in study with uniform enrollment over R = 3 years, a total
duration of T = 5 years with 2 visits per year and constant hazards λ = 0.30 and η = 0.05 for all visits, and an
initial sample size of N = 100. For all intervals the probability of the event is π= 0.139.

Interval E(ni) E(ℓi) E(ri) E(di)

(0,0.5] 100.0 2.5 97.5 13.6

(0.5,1.0] 83.9 2.1 81.9 11.4

(1.0,1.5] 70.5 1.7 68.7 9.6

(1.5,2.0] 59.2 1.5 57.7 8.0

(2.0,2.5] 49.7 9.3 40.4 5.6

(2.5,3.0] 34.7 7.6 27.1 3.8

(3.0,3.5] 23.3 6.3 17.1 2.4

(3.5,4.0] 14.7 5.1 9.6 1.3

(4.0,4.5] 8.2 4.2 4.0 0.6

(4.5,5.0] 3.5 3.5 0.0000 0.0000
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