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Abstract

In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying
sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzis
amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus
(heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse
strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice
immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2.
Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was
observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being
challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we
observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the
immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-a and IFN-c and a higher
mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+
T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols
using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in
immunization protocols against Chagas Disease.
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Introduction

Over a hundred years after its first description, Chagas Disease

remains as an important public health problem, mostly in Latin

America. Nonetheless, the infection rate is increasing in other

continents, mostly by blood transfusion [1,2]. Accordingly to

WHO, there are currently over 10 million people infected in Latin

America and more than 100 million people live at risk areas in

endemic countries. Moreover, this disease kills approximately 13

thousand people every year, due to the clinical complications and

to the poor efficacy of the pharmacological treatment which is

highly toxic and effective mostly during the acute phase of disease

[3,4]. In addition, the resistance of parasites to chemotherapy is

another major drawback to the pharmacological treatment [5,6,7].

Thus, the development of vaccines is an important approach to be

used in therapy and prophylaxis of Chagas disease [3,8].

Many vaccination studies against Chagas’ disease already

provided evidence that CD8+ T cells play pivotal role on the

development of protective immunity [9,10,11,12]. Mechanisms

used by these cells to eliminate the parasite include directly killing

of infected cell or secretion of cytokines such as IFN-c [13,14].

Among the antigens that have been studied as potential candidates

for vaccine development, the surface amastigote protein 2 (ASP2)

has been found as one of the most promising [15,16]. In addition,

different strategies have already been tested to deliver this antigen

in mice, including the use of recombinant protein, plasmid DNA
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and recombinant viruses [17,18,19,20]. For instance, our group

demonstrated that two sequential immunizations with recombi-

nant HuA5 adenovirus encoding ASP2 were able to significantly

reduce the parasitemia and improve the survival of vaccinated

mice, when they were challenged with Y strain of T. cruzi [18].

However, in spite of these very promising results, a drawback in

use the same viral vector in sequential immunizations rely on the

risk that anti-vector antibodies generated after the priming could

neutralize the vector when it is used in further immunizations and,

consequently, hurdle the boost of heterospecific immune response

[21,22]. The limitation of anti-vector response elicited by

homologous prime-boost immunization could be surpassed by

different strategies, such as the use of two different recombinant

viruses on prime and boost immunizations [23,24].

Live recombinant influenza viruses have some features that

make them attractive to be used in vaccination protocols against

protozoan infections, as we can mention: They are well known

inductors of Cytotoxic T Lymphocytes (CTLs) by direct infection

of immature dendritic cells (DCs) and monocytes, facilitating

antigen (Ag) presentation both local and systemically [25,26,27]; It

is feasible to generate recombinant influenza viruses by reverse

genetics techniques [28]; There are different influenza A strains

and subtypes, which could be used in sequential immunizations to

overcome previous immune responses directed to the vector [29].

Therefore, in the present study we exploited the use of

recombinant influenza viruses carrying truncated sequences of

ASP2 in sequential immunization with adenovirus encoding

ASP2. This immunization protocol elicited potent anti-ASP2

cellular immune response, reduced the parasite burden and

improved the survival of vaccinated mice when they were

challenged with T. cruzi.

Materials and Methods

Mice and Ethics
Male of eight- to ten-weeks-old C57BL/6 and C3H/He mice

were obtained from René Rachou Research Institute’s (CPqRR)

animal facility center (Fiocruz, Belo Horizonte, Brazil) and housed

according to institutional standard guidelines. All animal studies

were approved by the Ethical Commission on Animals’ Use

(CEUA) at Oswaldo Cruz Foundation (Fiocruz), license LW-9-09,

and performed following institutional Guide for the Care and Use

of Laboratory Animals.

Cells and Parasites
MDCK and 293T cells (obtained from Pasteur Institut, FR)

were grown at 37uC under 5% CO2 in complete Dulbeccos

modified Eagle Medium (DMEM; SIGMA) with 1 mM sodium

pyruvate, 4.5 mg/ml L-glucose, 100 U/ml penicillin and 100 mg/

ml streptomycin (herein called complete DMEM medium) and

respectively supplemented with 5% or 10% heat inactivated fetal

calf serum (FCS; CULTILAB) [30]. Trypomastigotes from T. cruzi

Y Strain were maintained as previously described [17] and

challenge infections were performed by inoculating the mice with

1000 (C57BL/6) or 500 (C3H/He) bloodstream trypomastigotes

by intraperitoneal route. Mice survival was monitored daily and

parasite development was monitored by counting the number of

bloodstream trypomastigotes in 5 ml of fresh blood collected from

the tail vein [31].

Plasmids for Influenza Reverse Genetics
Wild type (pPRNA) and dicistronic (pPRNA38) plasmids from

neuraminidase (NA) segments of A/WSN/33 virus (H1N1) were

constructed as previously described [30,32,33]. Due the size

constraints, we constructed plasmids encoding 660 nucleotides

corresponding respectively to medial (M-ASP2) and carboxi-

terminal (C-ASP2) segments of ASP2 (figure 1A). These sequences

were obtained by PCR using the plasmid pAdCMV-ASP2 as

template [18] and specific primers for each ASP2 portion. The

amplicons were cloned into KpnI and NheI digested pIgSP plasmid

in frame to the sequence coding for k chain of mice immuno-

globulin that allows the secretion of the foreign sequence [17].

Those constructs were used as PCR templates to generate IgSP-M

or C-ASP2 segments which were site directed cloned into XhoI and

NheI digested pPRNA38 vector (Figure 1B). All primers sequences

are available under request and the respective presenting

haplotype were referenced within the correspondent portion

(Figure 1A) [34,35]. The generated plasmids (pPRNA38-M-

ASP2 and pPRNA38-C-ASP2) were analyzed using Dynamic

ET Dye Terminator Cycle Sequencing KITH (AMERSHAM) and

a Megabace 1000 automatic sequencer (AMERSHAM).

Influenza segments transfer plasmids pPOLI-HA, M, NS, PB2,

PB1, PA and NP and the expression plasmids pcDNA-PA, NP,

PB1 and PB2 were kindly provided by Dr George Brownlee (Sir

William Dunn School of Pathology, University of Oxford, Oxford,

United Kingdom) [36].

Generation of Recombinant Viruses
Recombinant adenovirus harboring the entire ASP2 coding

region (Ad-ASP2), recombinant adenovirus (Ad-CT) and influenza

(Flu-CT) virus, which encode unrelated sequences were generated

as previously described [18,30,37]. Recombinant influenza viruses

carrying dicistronic NA38-ASP2 segments were generated by the

twelve plasmid-driven genetic reverse technique, as described by

Fodor and co-workers with modifications [30,36]. Briefly, co-

cultures of HEK 293T and MDCK cells were simultaneously

transfected with plasmid coding the dicistronic NA segment

(pPRNA38-M-ASP2 or pPRNA38-C-ASP2; 0.5 mg), the expres-

sion plasmids (pcDNA-PB1, pcDNA-PB2, pcDNA-NP and

pcDNA-PA; 0.5 mg of each plasmid) and the other seven transfer

plasmids of influenza A/WSN/33 segments (0.5 mg of each

plasmid) using Fugene 6 ReagentH (ROCHE). Three days after

incubation, infectious viral particles of recombinant vNA38-M-

ASP2, vNA38-C-ASP2 (herein named respectively Flu-M-ASP2,

Flu-C-ASP2) were recovered, amplified, plaque purified and

titrated on MDCK as previously described [30].

Viral RNA Extraction, RT-PCR Analysis
Viral RNA (vRNA) extraction from cell-free supernatants of

infected MDCK cultures and RT-PCR analysis were performed as

previously described [33]. Amplicons were analyzed on 1%

agarose gel and visualized by ethidium bromide staining. RT-

PCR products were purified and presence of mutations was

determined by sequencing using Dynamic ET Dye Terminator

Cycle Sequencing KITH (AMERSHAM) and a Megabace 1000

automatic sequencer (AMERSHAM).

Peptides
Peptides VNHRFTLV and TEWETGQI were purchased from

Genscript (Piscataway, NJ). Peptide purity was in higher than

90%. Their identities were confirmed by Q-TOF Micro equipped

with an electrospray ionization source (Micromass, United

Kingdom).

ELISPOT and Intracellular Cytokine Staining
ELISPOT assay was performed essentially as previously

described [37]. Spleens cells of immunized mice were obtained

Recombinant Flu and Adenoviruses against T.Cruzi
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three weeks after boost immunization. They were treated with

ACK buffer for erythrocytes lysis and washed twice in RPMI

containing 5% FBS before to be resuspended in cell culture

medium consisting of RPMI 1640 medium (pH 7.4) supplemented

with 10 mM HEPES, 0.2% sodium bicarbonate, 59 mg of

penicillin/liter, 133 mg of streptomycin/liter, and 10% fetal

bovine serum (CULTILAB) containing recombinant IL-2

(100 U/ml). The viability of the cells was evaluated by using

0.2% trypan blue exclusion dye to discriminate between live and

dead cells. The number of spleen cells was adjusted to 16106 cells

per well in cell culture medium and stimulated with specific

peptides at final concentration of 10 mg/ml of VNHRFTLV (aa

553–560; for C57BL/6 splenocytes) or TEWETGQI (aa 320–327;

for C3H/He splenocytes). The spots were counted on a S5 Core

ELISPOT Analyser (CTL).

For Intracellular Cytokine Staining, the cell concentration was

adjusted to 16106 cells per well in cell culture medium containing

GolgiStop TM and GolgiPlugTM (according to manufacturer

instructions; BD Pharmingen) and -phycoerythrin (PE) anti-

CD107a (BD Pharmigen). In half of the cultures, a final

concentration of 10 mg/ml of VNHRFTLV (for C57BL/6

splenocytes) or TEWETGQI (for C3H/He splenocytes) peptide

was added. The cells were cultivated in U-bottom 96-well plates

(Corning) in a final volume of 200 ml at 37uC in a 5% CO2 humid

atmosphere. After 12 hour-incubation, cells were stained for

surface markers fluorescein isothiocyanate (FITC)-labeled dextra-

mer TEWETGQI (Immudex), after 10 minutes incubation, cells

were also stained with peridinin chlorophyll protein complex

(PerCP) anti-CD8, avidin-phycoerythrin (PeCy7) anti-CD8, or

FITC-labeled anti-CD3 (in samples without dextramer) antibodies

(BD Pharmigen). The cells were fixed and permeabilized using

Cytofix/Cytoperm kit (BD, Biosciences) according to manufac-

turer’s recommendations. Cells were then stained for intracellular

markers allophycocyanin (APC) anti-IFN-c, APC-Cy7 anti-TNF-

a, or PE Cy7 anti-TNF-a (BD Pharmigen). Finally, the cells were

fixed in 2% PBS-paraformaldehyde and at least 100,000 cells were

acquired on a FacsCanto, LSRFortessa or FacsAria II (BD,

Biosciences) flow cytometers and then analyzed with FlowJo

software (ThreeStar). The ancestry gates are represented in Figure

S1.

ELISA and Western Blot
Recombinant ASP2 (rASP2) protein was produced in Escherichia

coli as previously described [17]. The presence of sera specific anti-

ASP2 antibodies were assessed by enzyme-linked immunosorbent

assay (ELISA) on immunized mice sera obtained fourteen days

after the boost immunization. Briefly, plates (Maxisorb, NUNC)

were coated with 4 mg/mL (His65KDa, rASP2) and incubated at

4uC overnight. Mice sera were diluted 1:100 in blocking buffer

and incubated for 2 hours at 37uC. Plates were incubated with

peroxidase-conjugated goat anti-mouse IgG (SIGMA) one hour at

room temperature, and reactions were developed with 3,395,59-

tetrametylbenzidine (TMB) reagent (SIGMA) and read at 450 nm.

Alternatively, 0.5 mg of His65KDa, rASP2 were loaded on 12%

polyacrylamide gels and transferred to nitrocellulose membranes.

Membranes were then blocked and incubated with individual sera

of mice immunized with recombinant viruses. After extensive

washes, membranes were incubated with peroxidase-conjugated

Figure 1. Construction and characterization of recombinant influenza viruses. Schematic representation of primary sequence of
Amastigote Surface Protein 2 and its corresponding moieties, highlighting the mapped CD8 T cells epitopes (A). Schematic representation of the
neuraminidase dicistronic segment. NA38 segment contains an A/WSN/33 (WSN) derived recombinant neuraminidase (NA) segment followed by a
duplicated 39non coding (NC) sequence, XhoI and NheI cloning sites, a duplication of the last 42 nucleotides of NA (dark box) and the original 59NC
sequence (28 nucleotides). The foreign sequences (open boxes) were cloned between XhoI and NheI cloning sites (B).The plaque phenotype of the
wild type WSN and recombinant influenza viruses were assessed by standard agarose plaque assay in MDCK cells after 3 days of incubation at 35uC
and 5% CO2 (C).The NA segments of recombinant influenza viruses were analyzed by RT-PCR, using a set of primers that allows the amplification of
the region containing the inserted foreign sequence. Corresponding plasmids DNAs were amplified in parallel as positive control. The amplified
products were analyzes on a 1% agarose and visualized by ethidium bromide staining. The values depicted at the weight marker lane ar (D). W.M:
weight marker; M: medial moiety of ASP2, C: carboxi-terminal moiety of ASP2; b.p.: base pairs.
doi:10.1371/journal.pone.0061795.g001

Recombinant Flu and Adenoviruses against T.Cruzi
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goat anti-mouse IgG (SIGMA) and detection was performed by

membrane exposure to X-ray films after a standard chemolumi-

niscent reaction (ECL Detection System, Amersham Biosciences).

To measure IFN-c production, spleen cells were obtained as

described above and incubated for 72 hours at 37uC, 5% CO2.

The IFN-c concentration was determined in cell culture superna-

tant with DuoSet ELISA Development System mouse IFN-c kit

(R&D Systems) according to manufacturer’s recommendations.

Immunizations
Heterologous prime-boost immunizations were performed as

previously described [30]. Briefly, the animals were lightly

anesthetized with a mixture of ketamine and xylazine and

inoculated by intranasal route (IN) with 103 plaque-forming unit

(pfu) of recombinant influenza viruses (Flu-CT or Flu-nASP2)

diluted in 25 ml of PBS. Four weeks later, the animals were

boosted with 56107 pfu of recombinant Ad-ASP2 or Ad-CT in

100 ml of PBS by subcutaneous route (SC). Alternatively, some

animals received two immunizations with 56107 pfu of recombi-

nant Ad-ASP2 or AdCT by SC route four weeks apart

(homologous prime-boost immunization protocol). Finally some

mice received only one immunization with 56107 pfu of

recombinant Ad-ASP2 by SC route.

Statistical Analysis
Data are expressed as 6 SEM and analyzed using GraphPad

Prism ver.5 Software. Statistic significance for ELISA, ELISPOT

and cytokine staining assays were evaluated using One-Way

ANOVA and non-parametric test followed by Bonferroni post-

test. Statistical significance for parasitemia was evaluated by 2-way

ANOVA with Bonferroni post-test. The Gehan-Breslow-Wilcoxon

test was performed to compare mouse survival curves.

Results

Generation and Characterization of Recombinant
Influenza Viruses

Recombinant influenza viruses harboring the medial or the

carboxi-terminal sequence of ASP-2 protein were recovered using

the 12 plasmid driven reverse genetics as previously described

[30]. These recombinant viruses, which were respectively named

Flu-M-ASP2 and Flu-C-ASP2, displayed lysis plaques in MDCK

cells similar in size than those found in cells infected with the

recombinant Flu-CT. In contrast, those viruses displayed lysis

plaques that were slightly smaller than those of the wild type WSN

virus (Figure 1C). In addition, their infectious titers (1.46106 pfu/

ml Flu-M-ASP2 and 2.86106 pfu/ml Flu-C-ASP2) were signifi-

cantly lower than those of WSN virus(16108 pfu/ml).

As shown in figure 1D, amplifications products of expected size

(,1000 bp) were found for each recombinant influenza virus

assayed. Moreover, when these amplicons were analyzed by

sequencing, we found no mutations, demonstrating that those

recombinant influenza viruses were genetically stable in cell

culture (data not shown).

Evaluation of Humoral Immune Response
Immunization protocols were carried out according to the

schedule depicted at figure 2A. Two weeks after the boost

immunization, specific anti-ASP2 IgG serum antibodies were

measured by ELISA and western blot, using the recombinant

ASP2 (His65KDa) protein as capture antigen. Western blot results

showed that specific anti-ASP2 IgG antibodies could be found in

sera of all C57BL/6 mice primed with Flu-C-ASP2 and boosted

with Ad-ASP2 (figure 2B), whereas only one animal that received a

single immunization with Ad-ASP2 displayed detectable levels of

specific anti-ASP2 antibodies. In addition, we detected higher

levels of specific anti-ASP2 antibodies in the sera of mice primed

with recombinant influenza than those found in animals that

received only one immunization with Ad-ASP2 (Figure 2C).

Interesting, neither by Western blot (data not shown) nor ELISA

(figure 2D), we were able to detect specific anti-ASP2 antibodies in

sera of C3H/He mice immunized with recombinant viruses,

irrespective the immunization protocol used in vaccination. It is

noteworthy that previous studies demonstrated that B epitopes are

located in C-terminal moiety of ASP-2 protein and humoral

immune response against intra-cellular amastigote proteins is not

essential for protection [34,38].

Specific Cellular Immune Response Against Protective
Epitopes

The activation of specific anti-ASP2 CD8+ T cell response was

evaluated in spleen of immunized mice by stimulating their

splenocytes with VNHRFTLV (H-2Kb-restricted, C57BL/6) or

TEWETGQI (H-2Kk
-restricted, C3H) peptides, three weeks after

the boost immunization. As depicted in figure 3, specific IFN-c
producing CD8+ T cells could be found in spleen cells of mice

primed with Flu-C-ASP2 or Flu-M-ASP2 and boosted with Ad-

ASP2 (figure 3A and C). In addition, high amounts of IFN-c could

be measured in spleen cell culture supernatants stimulated ex-vivo

with their respective peptides (Figure 3B and D). Interesting, in

both cases, there was a clear improvement in the prime-boost

immunization, as we could find a significant increase in IFN-c
production on prime-boosted groups compared to single Ad-ASP2

immunized mice (Figure 3).

Protection Against Experimental Infection
The protection afforded by the vaccination protocols was

evaluated by challenging the vaccinated mice with 500 (C3H/He)

or 1000 (C57BL/6) bloodstream Y strain trypomastigotes.

Regarding the resistant mice strain, C57BL/6, a single immuni-

zation with Ad-ASP2 sufficed to reduce the parasitemia and to

completely protect the animals comparing to control immunized

groups (Figure 4A, p,0.05; and 4B, p,0.001).

Regarding the C3H/He mice, which display remarkable

susceptibility to T. cruzi, infection groups that received at least a

single immunization with recombinant adenovirus-ASP2 were

able to reduce the peak of parasitemia (Figure 4C, p,0.001),

control tissue pathology (Figure S2) and prolong survival

compared to the groups immunized with control recombinant

viruses (Figure 4D p,0.0005). Remarkably, a higher survival rate

was found in mice that were primed with Flu-M-ASP2 and

boosted with Ad-ASP2 as close to 80% of vaccinated mice

survived, comparing to mice that were primed with Flu-C-ASP2

and boosted with Ad-ASP2 (p = 0.0019). They also showed

significant improvement of survival when compared to single or

prime-boosted Ad-ASP2 immunized mice (p = 0.05, single and

0.08 homologous groups; Figure 4D).

In order to verify if the improvement of survival rate induced by

the Flu-Ad protocol could be due to recombinant influenza

properties, we tested the usefulness of a homologous intranasal

prime subcutaneous-boost immunization using Flu-M-ASP2 virus

in C3H/He mice strain. As demonstrated in Figure S3, we could

not observe the production of specific immune response under

stimulation neither by ELISPOT (Figure S3) nor intracellular

staining for IFN-c and TNF-a (data not shown) in splenocytes

derived from homologous immunized mice. This could be

expected since a single immunization with recombinant influenza

Recombinant Flu and Adenoviruses against T.Cruzi
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is known to elicit neutralizing antibodies that can prevent a proper

boost against the heterologous M-ASP2 polypeptide [30,32].

Cellular Immune Response Profile Elicited by Different
Immunization Protocols

The survival results found in C3H/He mice prompted us to

study more deeply the cellular immune profile elicited by the

immunization protocols. To this aim, C3H/He mice were

immunized as previously described and three weeks after the

boost immunization, spleen CD8+ T cells were evaluated for

intracellular staining of IFN-c and TNF-a cytokines and for the

surface mobilization of CD107a upon ex vivo stimulation with

peptide TEWETGQI, as described in Material and Methods

section. As depicted in figure 5A, the percentage of CD8+T cells

positive for at least one of the parameters evaluated were similar in

mice that received two immunizations with recombinant viruses,

irrespective the immunization strategy employed.

Regarding the phenotype of subpopulations of CD8+ T cells

found in vaccinated mice, triple (IFN-c, TNF-a, CD107a) and

double (IFN-c+CD107a+, and IFN-c+TNF-a) positive cells are

the major populations that were found after immunization with

recombinant viruses encoding ASP2 (Figure 5B). Interestingly,

mice immunized with recombinant viruses encoding ASP2

displayed similar percentage of CD8+ T cell subpopulations,

irrespective if they were immunized according to heterologous or

homologous immunization protocols, and similar to IFN-c
production seen by ELISPOT and ELISA, there was a clear

impact of boost immunization in the frequency of specific effector

CD8+ T cells comparing prime-boosted groups with Ad-ASP2

single immunized group (Figure 5A and 5B).

In order to perform a more accurate analysis on CD8+ T cells

elicited by immunization, we used a specific H-2Kd/TEWETGQI

dextramer. Mice were immunized as previously described and the

phenotype of specific CD8+ T cells was assessed in TEWETGQI

stimulated pooled spleen cells of vaccinated mice three weeks after

the last immunization. As depicted in figure 5C, mice vaccinated

with Flu-ASP2/Ad-ASP2 displayed the highest number of total

dextramer positive CD8+ T cells. The main subpopulation of

dextramer positive CD8+ T cells that were found in mice

immunized irrespective the tested protocols were triple positives

(IFN-c, TNF-a, CD107), followed by single (CD107+) positives

CD8+ T cells (Figure 5D). On the other hand, we could observe a

higher frequency of single IFN-c+TEWETGQI+ CD8+ T cells

(CD107a- TNF-a-) in heterologous (19%) and Ad-ASP2 single

(12.5%) immunized groups compared to Ad-ASP2/Ad-ASP2

group (2,9%).

Accordingly, Table 1 shows that besides heterologous Flu-Ad

immunization elicited higher numbers of CD8+TEWETGQI+ T

cells, also the frequency of CD8+TEWETGQI+ CD107a and/or

IFN-c and/or TNF-a positive cells increase above two fold

compared to homologous or single immunized groups. We could

also find a significant increase of perforin production under

stimulation only in the heterologous vaccinated group (Figure S4).

This results suggest the importance of those effector factors on

protection and could also indicate that the improvement of

survival by heterologous could be due to a higher number of

effector specific CD8+ T cells.

Figure 2. Immunization Schedule and Induction of specific anti-ASP2 humoral immune response in mice vaccinated with
recombinant viruses. Timeline representation of immunization schedule and experimental procedures (A). C57BL/6 mice were immunized as
described in Material and Methods. Two weeks after the boost immunization, the animals were bled and the presence of specific anti-ASP2 total IgG
antibodies in mice sera was evaluated by western by incubating individual (lanes 1–9) or pooled (lanes 10 and 11) sera of C57BL/6 mice with
nitrocellulose membranes loaded with recombinant ASP2 protein (His65KDa) as capture antigen blot (B). Alternatively, the antibodies levels were
measured by ELISA using individual sera of C5BL/6 (C) or C3H/He (D) mice sera diluted 1:100 and recombinant ASP2 protein as capture antigen.
Optical Density (OD) was measured at 450 nm.
doi:10.1371/journal.pone.0061795.g002

Recombinant Flu and Adenoviruses against T.Cruzi
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Discussion

Recombinant viruses carrying foreign sequences have been

proven to be useful tools as vaccines against many pathogens,

including those which require the induction of potent type I T

cell immune responses, such as Leishmania s.p., Toxoplasma gondii

and Trypanosoma cruzi [39]. Studies carried out by our group

demonstrated that two immunizations with recombinant adeno-

virus carrying T. gondii or T. cruzi antigens were able to elicit

specific humoral and cellular immune response and to protect

different mouse lineages after challenge with those protozoan

parasites [18,37]. In spite of these very promising results, two

immunizations with recombinant adenovirus (homologous im-

munization protocol) raises some concerns, mostly due to the

elicited anti-vector immune response, which could hurdle the

immune response directed against the foreign sequence in

subsequent vaccinations. This problem could be surpassed by

using two different vectors for each immunization [24].

Therefore, we evaluated the use of recombinant influenza

viruses encoding ASP2 derived polypeptides as a tool for

priming the specific anti-ASP2 immune response, followed by

sequential immunization with a recombinant adenovirus encod-

ing ASP2. Regarding the naturally resistant C57BL/6 mice, the

prime with recombinant influenza virus encoding the carboxi-

terminal portion of ASP2 was as useful as recombinant

adenovirus in priming specific anti-ASP2 immune response.

Indeed, antibodies levels and the number IFN-c producers

CD8+ T cells specific for ASP2 were similar in mice primed

with recombinant influenza or adenovirus. Interesting, regarding

C57BL/6 mice strain, a single immunization with recombinant

adenovirus suffice to control parasitemia and to completely

protect the animals after challenge. Similar findings were

obtained by Duan and collaborators using recombinant Sendai

virus encoding ASP2, which was able to significantly reduce the

parasitemia and to completely protect C57BL/6 mice after the

challenge with Tulahuen strain [19].

Regarding the susceptible strain C3H/He, all immunizations

protocols employing Ad-ASP2 in our study were able to

significantly reduce the parasitemia, control at certain extent

tissue pathology and prolong survival of challenged animals.

Considering Y strain of Trypanosoma cruzi, there is a variable

correlation between blood parasitemia and survival rate, as

demonstrated in different mice strains [40,41]. However, we

could observe a correlation of parasitemia control with

prolonged survival in our model. Notwithstanding, an improve-

ment on the survival rate was observed in mice primed with

Figure 3. Cellular responses to immunodominant epitopes from ASP2 in mice immunized with recombinant viruses. C57BL/6 and
C3H/He mice were immunized as described in Material and Methods. Three weeks after the boost immunization, the presence of ASP-2 specific IFN-c
producing T cells in spleen cells of C57BL/6 (A) or C3H/He (B) mice were assessed by ELISPOT and culture supernatant ELISA (n = 8). To this aim, the
spleen cells of individual mice were stimulated 18 hours (ELISPOT) or 72 hours (ELISA) ex vivo with VNHRFTLV (aa 553–560; for C57BL/6) or TEWETGQI
(aa 320–327; for C3H/He) specific ASP2 peptides. Optical Density (OD) was measured at 450 nm.
doi:10.1371/journal.pone.0061795.g003
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recombinant influenza-M-ASP2 and boosted with recombinant

adenovirus even when compared to the survival of the animals

that were immunized once or twice with recombinant adeno-

virus, or primed using Flu-C-ASP2 which does not contain an

immunodominant epitope to C3H/He MHC-I haplotype.

These results seemed quite surprising because the specific anti-

ASP2 cellular immune response, measured by the number of

specific CD8+ T as well as by production of IFN-c was similar

in mice that were submitted either to the homologous or

heterologous prime and boost immunization protocols.

Phenotype analyses performed on total CD8+ T cells

obtained from vaccinated C3H/He showed that most effector

CD8+ T cells were polyfunctional and mostly triple (IFN-c,

TNF-a and CD107a) and double (IFN-c, CD107a) positives.

These results were similar to those obtained previously in

C57BL/6 mice that were immunized with naked DNA and

adenovirus encoding ASP2 [42]. Our results also showed that

mice that received one immunization with Ad-ASP2 displayed

similar CD8+ T cells phenotype than those observed in mice

that received two immunizations with recombinant viruses

encoding ASP2, suggesting that just one immunization with

Ad-ASP2 suffice for shaping the CD8+ T cells phenotype. Thus,

our observations indicate that a single immunization using Ad-

ASP2 suffice to stimulate a significant production of effector

cytokines IFN-c, TNF-a and mobilize CD107a, elicit an

immunodominant effector population which can control para-

sitemia, reduce tissue pathology and prolong survival when

compared to control immunized mice even in a susceptible

model. This is particularly important because often, studies

using different recombinant viruses or other vaccine vectors,

mice models and Trypanosoma cruzi strains without the single

immunized group could be overestimating their protection using

prime-boost protocols.

Remarkably, C3H/He mice that were primed with Flu-M-

ASP2 displayed higher number of dextramer positives CD8+ T

cells than mice that were immunized with Ad-ASP2. Moreover,

our results showed that a boost immunization with Ad-ASP2

did not augment the number of TEWETGQI dextramer

positive CD8+ T cells in mice primed with Ad-ASP2. To

discuss the reason by which the heterologous prime-boost

protocol could improve protection and enhance the frequency

of TEWETGQI CD8+ T cells we hypothesized that immuni-

zation with Flu-M-ASP2, which encodes only the medial moiety

of ASP2, primed the immunodominant CD8+ response towards

TEWETGQI epitope resulting in the expansion of this

population after boosting with Ad-ASP2. In contrast, priming

with Ad-ASP2, which carries the entire sequence of ASP2,

could possibly elicit immune response also against subdominant

epitopes of ASP2, resulting in a lower secondary response

against TEWETGQI immunodominant epitope after boost

[34,38,42,43,44]. Accordingly, previous results of our group

suggest that immunization with plasmids or adenovirus encoding

Figure 4. Parasitemia and survival curves of immunized mice challenged with T. cruzi. B6 and C3H/He mice were immunized as described
in Material and Methods. Four weeks after boost immunization, they were challenged intraperitoneally with 1000 and 500, respectively, T. cruzi Y
strain bloodstream trypomastigotes. Parasitemia was monitored on blood and depicted as the number of bloodstream trypomastigotes per milliliter
of blood (A, n = 4; C, n = 8). The survival of vaccinated C57BL/6 (B, n = 7) and C3H/He (D, n = 7–9) mice was followed during 50 days and showed as
Kaplan-Meier curves. * p,0.05, *** p,0.001.
doi:10.1371/journal.pone.0061795.g004
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Figure 5. Phenotype of anti-ASP2 specific CD8+ T cells elicited by vaccination with recombinant viruses. C3H/He mice were immunized
with recombinant viruses as described in Material and Methods. Two weeks after the last immunization, the spleen cells were harvested and
cultivated ex vivo with specific TEWETGQI CD8+ T peptide and incubated with anti-CD3, anti-CD8, permeabilized and fixed and stained with anti-
CD107a, anti-IFN-c and anti-TNF-a antibodies and assessed by flow cytometry. Percentage of effector CD8+ T cells reacting to the presence of
TEWETGQI peptide obtained from spleen cells of mice immunized with recombinant viruses (A). Percentage of CD8 T cells which produces IFN-c or/
and TNF-a or/and mobilizes the degranulation marker CD107a after stimulation with TEWETGQI (B), the statistics depicted are compared to groups of
mice immunized with control recombinant viruses. The number and frequency of dextramer positive CD8+ T found in 36104 CD8+ T (C). Functional
profile of CD8+ T cells subpopulations obtained from mice immunized with recombinant viruses (D). Response were depicted with different color
patterns according to the number of assessed functions (IFN-c, TNF-a and CD107a) displayed by each dextramer negative or dextramer positive CD8+
T cells subpopulations.
doi:10.1371/journal.pone.0061795.g005
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ASP2 subdominants epitopes afforded lower degree of protec-

tion when compared to that observed in animals immunized

with vectors encoding the immunodominant epitope [42]. A

reinforcement to this hypothesis could be found in the low

number of proteins encoded by influenza when compared to

adenovirus, which potentially reduces the number of viral

antigens that could compete with the heterologous antigen for

presentation by antigen-presenting cells [45,46]. The correlation

between TEWETGQI (present in medial portion of ASP2, M-

ASP2) immunodominant frequency and protection is reinforced

by the result of C3H/He mice that were immunized using

recombinant influenza encoding the C-terminus portion of

ASP2 as prime and Ad-ASP2 as boost presented a survival

curve similar to single immunized or homologous prime-boost

using Ad-ASP2 after infection (p = 0.46).

Another finding of our study was that the number of

dextramer stained CD8+ T cells producing IFN-c, TNF-a or

the surface marker CD107a found in animals primed with Flu-

M-ASP2 were approximately three times higher than those

observed in other vaccinated groups. However, while the role of

different T cell subpopulation to control the infection with some

viruses, bacteria and Plasmodium was already well documented

[47,48,49,50], the biological relevance of CD8+ T cells

subpopulations phenotypes to control the infection with T. cruzi

remains elusive [51]. The IFN-c production itself is known to

be important for protection against Trypanosoma cruzi infection in

many previous work of our and other groups [14,52,53,54,55].

On the other hand, other factors as the effector phenotype of

specific CD8+ T cells, the production of perforin, the re-

circulation of those cells out of spleen [56], their presence in the

heart [57,58], apoptosis of specific immunodominant anti-ASP2

CD8+ T cells [59], and the type of memory cells involved are

important to be considered [51]. Recently a group has elegantly

shown that multiple redundant effector CD8+ T cells factors

deriving from transferred Tc1 and Tc17 populations are

capable of protecting mice against viral infection [60], and as

CD8+ T cells have a major role in protection against

Trypanosoma cruzi infection, this statement is an interesting

subject of research. Thus, if the improvement of protection

observed in mice primed with recombinant influenza-M-ASP2

virus was only due to the higher number of CD8+T specific for

the immunodominant epitope or could also be due to other

factors remains to be solved.

In summary, we demonstrated that recombinant influenza

viruses encoding an ASP2 derived polypeptide would be useful

in heterologous prime-boost studies aiming the development of

vaccines against Chagas Disease. The priming with recombinant

influenza virus followed by boost with recombinant adenovirus

could properly augment the number of effector CD8+ T cells

specific for ASP2 immunodominant epitope, whose displayed

unique phenotype and resulted in increased survival of

vaccinated C3H/He mice challenged with T. cruzi.

Supporting Information

Figure S1 Representative of ancestry gates for flow
cytometry experiments. Correspondent ancestry gates for the

figure 5 analysis.

(TIF)

Figure S2 Histopathological analyses of liver, spleen
and heart derived from infected mice. Male C3H/He mice

were primed and boosted according different immunization

protocols and infected with 500 bloodstream trypomastigotes of

Y strain of T. cruzi. Fifteen days after the infection, mice were

euthanized and spleen, liver and heart were harvested, fixed and

processed for histopathology. The organ sections were stained

using hematoxilin-eosin and the degree of tissue inflammation was

evaluated (scale bar - 100 mm).

(TIF)

Figure S3 Cellular responses to immunodominant
epitope from ASP2 in mice immunized twice using Flu-
M-ASP2. ELISPOT of stimulated splenocytes taken from C3H/

He mice immunized with the depicted protocols. The prime-boost

was performed within an interval of 28 days and the experiment

was performed 21 days post boost. The splenocytes were

incubated 18 h in the presence of 10 mg of TEWETGQI peptide

(n = 5 for all groups except non-immunized group NI/NI, n = 3).

(TIF)

Figure S4 Perforin production in splenocytes derived
from C3H/He immunized mice. Splenocytes derived from

immunized C3H/He mice were ex vivo stimulated or not in the

presence of Brefeldin A and Monesin A and the immunodominant

peptide TEWETGQI for 12 hours, prepared, labeled and

submitted to flow cytometry (n = 4). N.I. Non-immunized/Non-

infected. Their staining profiles were analyzed using FlowJo and

statistical analysis performed was 2-Way ANOVA with Bonferroni

post-test using GraphPad Prism 5.0 Software.

(TIF)
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Table 1. Percentage of effector CD8+ T cells in splenocytes of immunized mice.

% of effector CD8+ T cells in mice immunized with recombinant viruses

%Total % CD8+ T cell Dex. Neg. %Total % CD8+ T cell Dex. Pos.

Immun. Protocol CD8+ T cell Dex. Neg. CD107+ IFNc TNFa CD8+ T cell Dex. Pos. CD107+ IFNc TNFa

Flu-ASP2+ Ad-ASP2 89.5 9.9 9.0 6.1 10.5 2.1 1.8 1.3

-----+Ad-ASP2 97.7 5.1 4.1 3.2 2.3 0.5 0.4 0.3

Ad-ASP2+ Ad-ASP2 98.5 11.5 10.3 8.7 1.5 0.6 0.4 0.3

Non infected 99.3 1.1 0.3 0.2 0.7 0.2 0.0 0.0
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