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Abstract
In humans, systemic heme homeostasis is achieved via coordinated regulation of heme synthesis,
transport and degradation. Although the heme biosynthesis and degradation pathways have been
well characterized, the pathways for heme trafficking and incorporation into hemoproteins
remains poorly understood. In the past few years, researchers have exploited genetic, cellular and
biochemical tools, to identify heme transporters and, in the process, reveal unexpected functions
for this elusive group of proteins. However, given the complexity of heme trafficking pathways,
current knowledge of heme transporters is fragmented and sometimes contradictory. This review
seeks to focus on recent studies on heme transporters with specific emphasis on their functions
during erythropoiesis.

Introduction
Heme homeostasis is a highly coordinated process during erythropoiesis, marked by a
dramatic increase of heme synthesis which is essential for proper hemoglobinization of red
blood cells (RBCs) [1,2]. Heme is also involved in transcriptional and translational
regulation of erythroid specific gene expression, which is critical for coupling heme
synthesis with protein production for erythroid cell differentiation [3,4]. In addition, a large
amount of heme-iron is recycled for re-packing into hemoglobins by erythrophagocytosis
(EP) in macrophages of the reticuloendothelial system (RES) [1,5,6]. Although heme
biosynthesis and its regulation have been well characterized, the mechanisms for heme
transport in eukaryotes remain poorly understood. Comprehensive reviews for generic heme
trafficking and interorganellar transfer pathways have been covered elsewhere [5–8]. In this
review we will seek to cover the following. How does newly synthesized heme exit the
mitochondria for incorporation into hemoglobins and other hemoproteins? How does heme
released from lysed RBCs cross the phagolysosomal membrane to be delivered to
downstream effectors such as heme oxygenase-1 (HO-1) for degradation? Can heme be
redistributed between different tissues through heme transporters and chaperones? Extensive
efforts to identify heme trafficking pathways have been underway for over a decade and a
number of heme transporters have been identified recently.
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Heme import
Heme is a more readily bioavailable iron source and contributes to two-third of body iron,
even though heme constitutes only a third of total dietary iron [9,10]. In mammals, dietary
heme is apparently taken up intact by enterocytes in the intestine. However, heme is a large
amphipathic porphyrin and free heme can be cytotoxic. Thus, specific molecules and
pathways are required for heme uptake and trafficking.

HRG-1
Rao et al have demonstrated that the roundworm Caenorhabditis elegans is a unique model
for heme trafficking studies because even though it is a heme auxotroph it acquires dietary
heme via the intestine and subsequently disseminates heme throughout the organism for
viability [11]. Genomic screens in C. elegans identified CeHRG-1 and CeHRG-4 as the first
bona fide eukaryotic heme importers [12]. CeHRG-1 has orthologs in vertebrates, while
CeHRG-4 is worm-specific. Transient knockdown of hrg-1 in zebrafish resulted in
hydrocephalus, yolk tube malformations and severe anemia. Worm HRG-1 fully rescued all
phenotypes observed due to knockdown of hrg-1 in zebrafish [12]. The phenotypes resulting
from knockdown of zebrafish hrg-1 were restricted specifically to the erythroid lineage and
did not impact other hematopoietic cell lineages. Additionally, significant heme-induced
inward currents were observed in Xenopus oocytes injected with cRNA for CeHRG-1,
CeHRG-4, and the human homolog, hHRG-1, indicating heme-dependent transport across
cell membranes [12].

Human HRG-1 (SLC48A1) mRNA was abundant in the brain, kidney, heart and skeletal
muscle and in cell lines derived from duodenum, kidney, bone marrow and brain [12].
hHRG-1 localized to acidic endosomal and lysosomal organelles in HEK293 cells, and its
affinity for heme decreased with increasing pH. Additionally, tyrosine (YxxxØ) and acidic-
dileucine (DxxIL) based sorting motifs were found in the C-terminus of both C. elegans and
human HRG-1 [12]. Yanatori and colleagues recently reported hHRG-1 localized to the
plasma membrane and lysosomes in non-polarized HEp2 cells. In polarized MDCK cells,
hHRG-1 was located to the basolateral membrane and a cytosolic organelle just under the
apical membrane [13]. A recent study showed that hHRG-1 interacted with the c subunit of
the vacuolar proton ATPase (V-ATPase) pump and enhanced endosomal acidification [14].
Together these studies suggest hHRG-1 plays a role in the transport of heme from the
exoplasmic space or lumen of acidic endosome–lysosome compartments into the cytoplasm.

Interestingly, in addition to lysosomal localization in HEK293 cells, hHRG-1 is also
recruited and colocalizes with Nramp1 at the erythrophagosomal membrane, surrounding
ingested RBCs in bone marrow derived macrophages (BMDMs) [15]. However, the absence
of HO-1 at this location indicates that during EP, at least a portion of heme released from
degraded hemoglobin is mobilized by hHRG-1 to the cytoplasm [15]. The cytosolic heme
can then undergo intracellular redistribution including degradation by HO-1 for iron
recycling, or be exported by heme effluxers. Indeed, a recent study shows that HRG1 is
essential for macrophage iron homeostasis and transports heme from the phagolysosome to
the cytoplasm during EP [16]. HRG1 is strongly expressed in macrophages of the
reticuloendothelial system and specifically localizes to the phagolysosomal membranes
during EP. Depletion of Hrg1 in mouse macrophages causes attenuation of heme transport
from the phagolysosomal compartment suggesting that HRG1 is the heme transporter for
heme-iron recycling in macrophages. The study proposes that genetic variation in HRG1
may be an important genetic determinant in inherited iron disorders in humans [16]. HRG-1,
as observed for HO-1, was recently identified as a target of the heme-regulated transcription
factor BACH1 in microarray expression analysis and ChIP-Seq experiments, further
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suggesting that HRG-1 may be an important player in erythropoiesis and the
phagolysosomal heme transporter [17].

HCP1
Heme carrier protein 1 (HCP1/SLC46A1) is a membrane protein expressed by enterocytes
in the duodenum implicated in the absorption of heme in the intestine [18]. Ectopically
overexpressing HCP1 in Xenopus oocytes revealed a 2–3 fold increase in heme uptake.
Subsequent studies, however, have shown that folate transport by this protein was at least
10-fold higher than that observed with heme, suggesting that folate might be the
physiological ligand for HCP1. In addition, a missense mutation in HCP1 in human that
leads to the formation of a non-functional protein has been found to be associated with
hereditary folate malabsorption. Thus, SLC46A1 is in fact a folate/proton symporter and
was renamed as the Proton Coupled Folate Transporter (PCFT) [19]. Interestingly, HCP1
knockout mice displayed severe macrocytic normochromic anemia, which could be a
secondary effect of folic acid deficiency. HCP1 deficient erythroblasts failed to differentiate
and had a higher apoptosis rate [20]. RNA interference assays of HCP1 in CaCo-2 cells
reduced both heme and folate uptake but increase HO-1 expression, suggesting HCP1 could
potentially function as a low affinity heme transporter [21].

FLVCR2
Feline leukemia virus subgroup C receptor 2 (FLVCR2), a member of the major facilitator
superfamily, was recently reported to import heme in mammalian cells [22]. Knockdown of
FLVCR2 in human cells significantly decreased uptake of the fluorescent heme analog, zinc
mesoporphyrin (ZnMP). However, unlike HRG-1, ectopically expressing FLVCR2 in yeast
did not rescue heme dependent growth or import heme under the assay conditions [23].
Given the high degree of homology between FLVCR2 and the heme effluxer FLVCR1 [24–
26], it is possible that FLVCR2 may efflux heme. FLVCR2 is expressed in a broad range of
human tissues including the fetal liver, brain and kidney [22]. Recent studies have associated
FLVCR2 with Fowler syndrome, a vascular disorder of the brain [27,28]. Currently, a direct
physiological role for FLVCR2 in erythropoiesis is unclear.

Heme export
In humans, macrophages phagocytose over 360 billion senescent RBCs and recycles more
than 25 mg of iron daily. The heme released from hemoglobin is either degraded by HO-1 to
release iron for iron recycling or potentially exported as intact heme [29]. Heme export may
serve as a potential detoxification strategy to prevent excess heme from accumulating, a
phenomenon that could lead to tissue and cellular damage. Two heme exporters, FLVCR1
and ATP-binding cassette transporter G2 (ABCG2) have been implicated in heme export in
humans.

FLVCR1
Quigley et al identified FLVCR1 as a cell surface heme exporter, belonging to the major
facilitator family of transmembrane transporters [26]. FLVCR1 is expressed in different
hematopoietic cells and showed weak expression in the fetal liver, pancreas and kidney [30].
Ectopically expressing FLVCR1 can reduce intracellular heme levels and mediate efflux of
ZnMP in rat renal epithelial and hematopoietic K562 cells [26]. FLVCR1-null mice fail to
undergo erythropoiesis and die at midgestation [31]. These mice also exhibit cranio-facial
and limb deformities reminiscent of patients with Diamond-Blackfan anemia (DBA), a
severe but rare congenital erythroid anemia that presents in infancy. The current model
postulates that FLVCR1 exports heme when macrophages phagocytose senescent RBCs.
FLVCR1 interacts with the extracellular heme-binding protein hemopexin and export heme
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at least 100-fold more efficiently in the presence of hemopexin [32]. FLVCR1 has a narrow
substrate range including heme, protoporphyrin IX and coproporphyrin, but not bilirubin,
the primary breakdown product of heme. Alves et al recently showed that in nucleated RBC
precursors (NRBC) from human bone marrow, FLVCR1 expression increased during
erythropoiesis and reached maximal level at the intermediate stage of maturation, under
condition in which the HO system was disrupted [33]. The authors suggest that FLVCR1
may export excess heme to prevent heme toxicity under conditions in which heme
degradation (HO?) is not fully induced.

Interestingly, Tolosano et al recently showed that in addition to full length FLVCR1
(FLVCR1a), there is another isoform, FLVCR1b, which is a smaller protein that localizes to
the mitochondria [34]. Overexpression of FLVCR1b increases cytosolic heme, whereas
knockdown of FLVCR1b results in mitochondria heme accumulation, indicating that
FLVCR1b is a mitochondrial heme exporter. In contrast with previous findings, targeted
deletion of FLVCR1a resulted in skeletal defects and vascular abnormalities but did not
affect erythropoiesis, whereas knockdown of FLVCR1b impaired erythroid differentiation in
vitro. These results suggest that FLVCR1a is dispensable for definitive erythropoiesis, and
the failure in erythropoiesis in FLVCR1-null mice may due to cytosolic heme deficiency
rather than toxicity associated with excess heme in the cytosol [34].

Recently, four missense mutations in FLVCR1 have been found in patients with the rare
autosomal recessive disease posterior column ataxia and retinitis pigmentosa (PCARP)
[35,36]. All of the four mutations diminish FLVCR1 heme export activity and mislocalize
FLVCR1 to intracellular structures, including lysosomes [37]. Three of the four mutations
occur in exon 1 of the gene and are FLVCR1a specific. However, none of the patients
carrying these gene variations is anemic. The physiological function of FLVCR1a therefore
remains unknown [36].

ABCG2
ABCG2, also known as breast cancer resistance protein (BCRP) has been identified as a
second heme exporter in mammals [38]. ABCG2 is expressed in a wide range of tissues
including hematopoietic stem cells and erythroid progenitors. Whereas FLVCR1 is highly
expressed during erythropoiesis, the expression level of ABCG2 is particularly high in the
early stages of hematopoiesis [39,40]. ABCG2 binds to heme directly through the
extracellular loop 3 (ECL3) which constitutes a porphyrin-binding domain [39]. Although
there is no direct evidence demonstrating that ABCG2 exports heme, ectopically expressed
ABCG2 exports ZnMP in K562 cells [39]. As observed in FLVCR1-mediated heme export,
ABCG2 possibly exports and transfers heme to extracellular heme-binding proteins, such as
albumin [41]. However, unlike FLVCR1, ABCG2 has a broad range of substrates including
porphyrin and nonporphyrin substrates, suggesting that ABCG2 may not be a functional
backup of FLVCR1. Human patients carrying null mutations in ABCG2 are defined as the
Jr(a–) blood group with no apparent defects in erythropoiesis [42,43].

Since both FLVCR1a and ABCG2 appear to be dispensable for erythropoiesis, it raises the
question of whether a third heme exporter exist that is essential during erythropoiesis.
Severance et al recently performed genome-wide analysis and identified two genes, MRP-5
and F22B5.4, that were involved in heme transport in C. elegans [44]. As opposed to the
heme importer HRG-4, knockdown of both MRP-5 and F22B5.4 resulted in ZnMP
accumulation in the worm intestine [44]. MRP-5 is the homolog of human ABC transporter
ABCC5, and could possibly be a candidate heme exporter in humans.
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Intracellular heme trafficking
Membrane proteins

ABCB6 is a mitochondrial ABC transporter that localizes to the mitochondrial outer
membrane. ABCB6 was first identified as an iron transporter but later proposed to be a
porphyrin/heme importer [45]. Recently, Polireddy et al reported ABCB6 interacts directly
with heme in hemin-agarose binding assays, and high-throughput screens identified
compounds that competed ABCB6-mediated heme transport in isolated mitochondria [46].
In mice or humans, however, loss of ABCB6 function is not associated with blood defects,
even though the expression profile of ABCB6 mimics that of other heme biosynthesis genes
[47]. Indeed, recent studies have shown that ABCB6 is dispensable for erythropoiesis and
instead of mitochondria, it is localized in the endosomal/lysosomal compartment and in the
plasma membrane of mature erythrocytes [48,49]. Two missense mutations in the ABCB6
gene in humans has been associated with Familial Pseudohyperkalemia (FP), which
increases leakage of potassium from RBCs [50]. In addition, an L811V mutation of ABCB6
causes ocular coloboma, a developmental defect in the closure of the optic fissure [47].

ABCB10 is another mitochondrial ABC transporter located in the inner mitochondrial
membrane. ABCB10 interacts with mitoferrin1 (MFRN1) and ferrochelatase (FECH) and
stabilizes the complex [51]. Hyde et al recently reported that ABCB10 is essential for
erythropoiesis in vivo. ABCB10 null mice displayed deficiency of primitive erythropoiesis
and lack of hemoglobinized cells [52]. However, it is unclear whether heme is the bona fide
substrate of ABCB10.

Cytosolic proteins
Free heme is a cytotoxic molecule that generates reactive oxygen species and disrupts lipid
bilayers and organelles. As a potent hemolytic agent, free heme can alter the conformation
of cytoskeletal proteins in RBCs. Consequently, cytosolic heme carriers or “chaperones”
that function to sequester or transport heme are an essential component of heme homeostasis
- required for heme detoxification or incorporation into hemoproteins.

Currently, several intracellular heme-binding proteins have been found, including
glutathione S-transferases (GSTs), heme-binding proteins (HBPs), and fatty acid binding
proteins (FABPs) (Table 1). GSTs are abundant cytosolic proteins that have been shown to
bind hemes and porphyrins. Although GSTs are important for heme detoxification in malaria
parasites and helminths, little is known regarding their function in mammalian heme
trafficking [53,54]. HBPs are proteins that have higher affinity to heme (p22HBP: Kd = 26
nM, HBP23: Kd = 55 nM) and tetrapyrroles than GSTs and FABPs (Kd = 100–200 nM)
[55,56]. The expression of p22HBP is induced during erythroid differentiation in mouse
erythroleukemia (MEL) cells, whereas the expression of HBP23 is induced by heme, PPIX,
and other metalloporphyrins in rat primary hepatocytes or by oxidant stress in peritoneal
macrophages [55–57]. Future studies are required to determine if HBPs act as genuine heme
carriers/chaperones or they simply scavenge tetrapyrroles. Recently, the housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was reported to bind heme and with
a preference for Fe(III) and Co(III)-protoporphyrin IX analogs, but do not bind Zn- or the
metal-free protoporphyrin IX [58]. It has been shown that GAPDH is required for heme
insertion into a soluble hemoprotein - the inducible nitric oxide synthases (iNOS) [59].
Whether GAPDH plays a role as a heme chaperone for other proteins, in addition to its
traditional function in glycolysis, needs further investigation. The molecular chaperone
HSP90 is also reported to mediate heme insertion into NOS and another hemoprotein,
soluble guanylyl cyclase (sGC) [60,61]. However, since HSP90 is a highly conserved
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molecular chaperone with a wide array of client proteins, its specific role in heme
homeostasis is unclear [62].

Intercellular heme trafficking
To date, several extracellular heme binding proteins have been identified in mammals,
including hemopexin, haptoglobin and human serum albumin (HSA). However, none of
them has been shown to directly contribute to erythropoiesis [63]. Studies have shown that a
portion of heme released from degraded RBCs in macrophage is exported as intact heme
during EP, possibly through FLVCR1 or an unknown heme exporter [29,31]. This raises the
possibility that heme maybe trafficked between cells and tissues. Mice that are mutant for
heme synthesis are viable till embryonic day 8.5, indicating potential intercellular heme
transport from a maternal source [64].

In C. elegans, maternal heme levels have a direct impact on embryonic development. Chen
et al recently demonstrated HRG-3, a secreted worm protein, is responsible for delivering
heme from maternal intestine to the developing embryo [65]. HRG-3 binds heme at a
stoichiometry of two protomers to one heme. Although, deletion of HRG-3 had no visible
effect on adult worms under low heme conditions, their progeny were either unable to hatch
or growth arrested at the first larval stage. This phenotype could be rescued by ectopic
expression of HRG-3 in maternal intestine, but not by embryonic specific expression [65].
Even though a functional homolog of HRG-3 in mammals has not been discovered, it is
reasonable to speculate that during development and erythropoiesis, a heme chaperone may
be required to facilitate the targeted delivery and redistribution of heme between certain
tissues and cell types.

Conclusion
In addition to the well characterized heme biosynthetic pathway, intra- and intercellular
heme trafficking pathways play an essential role in maintaining systemic heme homeostasis.
Emerging studies have discovered several components in heme transport, yet their
relationship with human blood disorders remains unclear and sometimes contradictory.
Many issues remain unresolved including the function of HRG-1 in intestinal heme
absorption and genetic iron disorders, the physiological function of FLVCR paralogs
(FLVCR1a, 1b and FLVCR2), and the identity of intra- and intercellular heme chaperones.
Tackling these questions will undoubtedly provide a deeper understanding of the chemical
role of heme and heme trafficking networks crucial for the genesis of RBCs.
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Highlights

▪ Heme must be transported across membranes for normal erythropoiesis.

▪ Recently discovered heme transporters fill a significant knowledge gap.

▪ Functional contradictions further complicate the biological role of this
enigmatic group of transporters.
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Figure 1. A schematic description of known heme transporters
HRG-1 is a heme importer that localizes to endosomal/lysosomal compartments, but can
traffic to the plasma membrane. HCP1 and FLVCR2 are two putative heme importers. The
cell surface FLVCR1a and the ABC transporter ABCG2 have been implicated in heme
export in erythroid cells, whereas the mitochondrial isoform FLVCR1b transport heme into
the cytosol. ABCB6 was previously proposed to be a mitochondrial porphyrin/heme
importer, but has recently been shown to localize to the plasma membrane and endosomal/
lysosomal vesicles. ABCB10 forms a complex with MFRN1 and FECH, and stabilizes
MFRN1. It is not clear whether ABCB10 transport heme. Heme carrier / chaperone that is
responsible for intra- and intercellular heme trafficking remains unknown. Question marks
represent the presumptive heme trafficking pathways. PM, plasma membrane.
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