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Abstract
To date, measurements of the activity of aldehyde dehydrogenase-2 (ALDH2), a critical
mitochondrial enzyme for eliminating certain cytotoxic aldehydes in the body and a promising
target for drug development, have been largely limited to in vitro methods. Recent advancements
in magnetic resonance spectroscopy (MRS) of hyperpolarized 13C-labeled substrates now provide
a method to detect and image in vivo metabolic pathways with signal-to-noise ratio gains greater
than 10,000 fold over conventional MRS techniques. However aldehydes, due to their toxicity and
short T1 relaxation times, are generally poor targets for such 13C-labeled studies. In this work, we
show that dynamic magnetic resonance spectroscopic imaging of hyperpolarized [1-13C]pyruvate
and its conversion to [1-13C]lactate can provide an indirect in vivo measurement of ALDH2
activity via the concentration of NADH, a co-factor common to both the reduction of pyruvate to
lactate and the oxidation of acetaldehyde to acetate. Results from a rat liver ethanol model (n = 9)
show that changes in 13C-lactate labeling following the bolus injection of hyperpolarized pyruvate
are highly correlated with changes in ALDH2 activity (R2=0.76).

Keywords
hyperpolarized 13C; ALDH2 activity; liver; ethanol; pyruvate; lactate; NADH

Introduction
The mitochondrial enzyme aldehyde dehydrogenase-2 (ALDH2), which plays a critical role
in the detoxification of reactive aldehydes, such as acetaldehyde and 4-hydroxy-2-nonenal
(4-HNE), has been identified as a promising drug development target for multiple
pathologies including alcoholism [1-6], cardiac ischemia [7-16], and cancer [17-20]. To
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date, direct measurements of ALDH2 activity have largely been limited to in vitro methods,
and the goal of this work was to investigate using dynamic magnetic resonance
spectroscopic imaging (MRSI) of hyperpolarized [1-13C]pyruvate (Pyr) and its conversion
to [1-13C]lactate (Lac) [21-24] as a method for in vivo measurement of ALDH2 activity.

Specifically, in vivo ethanol metabolism in the rat liver, which occurs via the breakdown of
ethanol to acetaldehyde and acetaldehyde to acetate as catalyzed by the enzymes alcohol
dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH2) respectively, was used as
a mechanism to generate acetaldehyde for ALDH2 activity investigation. Both steps of
ethanol metabolism also reduce the coenzyme nicotinamide adenine dinucleotide (NAD+) to
NADH, leading to the accumulation of NADH in the liver [25, 26]. Furthermore, the
conversion of pyruvate to lactate takes place via the enzyme lactate dehydrogenase (LDH)
and the concomitant oxidation of NADH to NAD+ [25]. At sufficiently high levels of
pyruvate, this reaction is limited by the lactate pool size and NADH availability [27]. Hence,
ethanol metabolism provides a mechanism by which NADH availability can be altered and
used to modulate the NADH-dependent pyruvate-to-lactate metabolic pathway. ALDH2
activity, as reflected by NADH accumulation, can thus be measured via the increased
maximum rate of [1-13C]Lac labeling following a bolus injection of hyperpolarized
[1-13C]Pyr.

Previous studies have reported MRS and MRSI measurements of hyperpolarized [1-13C]Pyr
to study rat liver metabolism modulated by ethanol [28, 29]. Changes in lactate production
in the absence vs. presence of ethanol, as moderated by NADH accumulation, were
presumed to be correlated with ALDH2 activity. Here we quantitatively measured both
pyruvate-to-lactate 13C-labeling and ALDH2 activity in the same rat liver model using the
ALDH2 inhibitor disulfiram to modulate ALDH2 activity.

Methods
Each polarized sample consisted of 40 μL of a mixture of 14-M [1-13C] pyruvic acid and
15-mM Ox063 trityl radical, to which 3 μL of a 1:50 dilution of Dotarem (Guerbet, France)
was added prior to polarization. The sample was polarized using a HyperSense system
(Oxford Instruments Molecular Biotools, Oxford, UK) to achieve approximately 20-25%
liquid-state polarization at dissolution. The polarized sample was dissolved with a solution
of 125-mM NaOH mixed with 40-mM Tris buffer, 50-mM NaCl and 0.1-g/L EDTA-Na2,
leading to a 125-mM solution of hyperpolarized pyruvate with a pH of approximately 7.5. A
volume of approximately 3.2 mL of the hyperpolarized pyruvate solution was injected into
the tail vein at a rate of about 0.25 mL/s.

Animal Model
ALDH2 activity was manipulated using the FDA-approved ALDH2 inhibitor disulfiram.
Disulfiram reduces ALDH2 activity in rat liver to approximately 60% of the normal level
with a 90 mg/kg dose, and 25% of the normal level with a 600 mg/kg dose, at 24-48 hours
after oral delivery [30]. Disulfiram was suspended in 3 mL of 5% weight/volume gum
arabicum and delivered through oral gavage approximately 36 hours before the imaging
experiments. Healthy male Wistar rats (n=9, 424±25 g body weight) were divided into three
groups (n=3 each): control group which received no treatment; disulfiram-treated group
receiving a 90-mg/kg dose; and disulfiram-treated group with a 600-mg/kg dose.

The rats were anesthetized with 1-3 % isoflurane in oxygen (~1.5 L/min) and a catheter was
inserted in a tail vein. Respiration, temperature, heart rate, and oxygen saturation were
monitored throughout the experiment session, with temperature regulated using a warm
water blanket placed underneath the animals. Each rat received two injections of the
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hyperpolarized pyruvate solution, each followed by a 13C MRSI acquisition: one baseline
measurement and another post-ethanol. Approximately 45 min before the second pyruvate
injection, a 1.0-g/kg dose of a 20% ethanol solution was injected into the tail vein at the rate
of 1 mL/min to achieve a targeted steady-state blood alcohol level (BAL) of approximately
100 mg/dL at the time of the second acquisition. The study followed the experimental design
as shown in Fig. 1. At the end of the exam, liver tissue was harvested for ALDH2 enzyme
activity assay. Immediately after euthanasia, an approximately 4 g sample of the liver was
harvested, rapidly frozen in liquid nitrogen and stored in a −80° C freezer for subsequent
ALDH2 enzymatic activity analysis using a spectrophotometrical assay described below. All
animal procedures were approved by the local Institutional Animal Care and Use
Committee.

MR protocol
All experiments were performed on a clinical 3T Signa MR scanner (GE Healthcare,
Waukesha, WI) equipped with self-shielded gradients (40 mT/m, 150 mT/m/ms). A custom-
built dual-tuned (1H/13C) quadrature rat coil (inner diameter=80 mm, length=90 mm),
operating at 127.9 MHz and 32.2 MHz, respectively, was used for both RF excitation and
signal reception. A reference phantom containing an 8-M solution of 13C-urea placed on top
of the animal was used for calibration of the transmit 13C RF power, and also for
concentration quantification. Single-shot fast spin-echo 1H MR images with nominal in-
plane resolution of 0.47 mm and 2-mm slice thickness were acquired in the axial, sagittal,
and coronal planes throughout the scan session as anatomical references for prescribing
the 13C-MRSI acquisitions.

Dynamic 13C MRSI data were acquired from a 10-mm slice through the liver using the 2D
3-shot spiral spectroscopic imaging sequence described in [31,32]. The sequence included a
spatially non-selective lactate saturation pulse at the beginning of each sampling interval to
saturate signal from in-flowing lactate generated in other organs, particularly the heart.
Imaging parameters were: FOV=80 mm, nominal resolution=5×5 mm2, spectral width=276
Hz, variable flip angle scheme (35.3°, 45° 90° for the 3 interleaves) to effectively excite all
the longitudinal magnetization at each temporal sampling point, echo time TE=3 ms. The
acquisition time for the 3-shot spiral MRSI was 375 ms, and the sampling interval was 5 s,
allowing approximately 4.55 s dead time between the lactate saturation pulse and the
imaging for inflow of fresh pyruvate spins into the slice and 13C label exchange with lactate.
The time from dissolution to start of pyruvate injection was approximately 20 s, and the scan
was started coincident with the injection. The MRSI data were reconstructed similarly as
described in [32], and metabolic maps for pyruvate and lactate were calculated by
integrating the signal within±20 Hz around each peak in absorption mode. The mean time-
resolved signal intensities for pyruvate and lactate were calculated in an ROI in the liver.

The dynamic data were analyzed using the inflow-based single-slice quantification method
described in [31]. The method is briefly described here. It exploits the inherently time-
varying pyruvate concentration during a bolus injection to obtain independent estimates of
apparent reaction velocity of lactate 13C label in each sampling interval. The injected
pyruvate is assumed to be considerably greater than the endogenous pyruvate. Then, to
estimate the in vivo pyruvate concentration at each time-point, the pyruvate signal is
corrected for the polarization and T1 relaxation. The pyruvate percentage polarization at
dissolution was estimated from the solid-state polarization value and the amount of the
pyruvic acid sample based on independent calibration experiments. After dissolution, the
pyruvate first experiences an in vitro T1 (approximately 60 s as measured in separate
experiments) decay before injection and then an in vivo T1 (approximately 40 s in our study)
decay after injection until the readout time. Finally, the corrected pyruvate signal is
referenced to signal from the external 8-M 13C enriched urea phantom at thermal
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polarization to obtain the in vivo concentration. The influence of T1 decay for lactate is
minimal given the 90° flip angle on lactate along with the spatially non-selective saturation
of lactate signal every TR. The relationship between the estimated pyruvate concentration
and apparent reaction velocity of lactate 13C labeling was mathematically approximated
using a Michaelis-Menten-like formulation for saturatable kinetics with parameters
corresponding to the apparent maximal reaction velocity Vmax and apparent Michaelis
constant KM. While accurate quantification of the enzyme kinetics might need to account for
the two-substrate – two-product sequential BiBi reaction, Zierhut et al. [33] demonstrated
that the nonlinear relationship between the in vivo exchange rate constants and
[1-13C]pyruvate dose was mathematically modeled well using a Michaelis–Menten-like
formulation. Xu et al [31] also employed a Michaelis-Menten-like framework to model the
saturatable kinetics between apparent reaction velocity and pyruvate concentration by taking
advantage of pyruvate inflow. That model is used in this study, and the apparent reaction
velocity of the 13C labeling estimated from the model is a combination of the net chemical
conversion of pyruvate to lactate and isotopic exchange between pyruvate and lactate pools
and also includes contributions from other factors such as organ perfusion and substrate
transport kinetics. The estimated apparent Vmax values are unbiased with respect to
experimental parameters including substrate dose, bolus shape and duration. The apparent
Vmax estimates of the pyruvate-to-lactate 13C labeling process pre- and post-ethanol infusion
were compared and the relative change in Vmax with ethanol, i.e. ΔVmax, was correlated
with ALDH2 enzyme activity. Statistical significance was assessed using Student’s unpaired
t-test between the control group and disulfiram-treated group.

ALDH2 enzyme assay
For the in vitro tissue assays, each 4-g liver sample was kept in 15 mL of a buffer solution
(pH 7.4) containing 210 mM mannitol, 70 mM sucrose, 5 mM 3-(N-
morpholino)propanesulfonic acid (MOPS), and 1 mM EDTA. The protease inhibitor tablet
(Sigma-Aldrich, St. Louis, MO) was also added to the buffer solution to prevent protein
degradation of the liver samples. The liver samples were first homogenized with a Teflon-
Glass Potter-Elvehjem homogenizer and the resulting homogenate was then centrifuged for
15 min at 3000 g in a Beckman L8-80M ultracentrifuge. After centrifugation, the
supernatant on the top was a mixture of mitochondria and cytosol. Approximately 1 mL
supernatant was carefully transported to a separate tube and about 1% triton solution was
added to break down the cell membranes to assay the entire mitochondrial ALDH2 activity.
Protein content in the mitochondria and cytosol mixture was quantitatively determined with
Coomassie protein assay reagent (Pierce, Rockford, IL) with bovine serum albumin as the
standard [34].

The ALDH2 enzymatic activity was determined spectrophotometrically using a kit (Trinity
Biotech, NY, USA) to monitor the reductive reaction of NAD+ to NADH at λ = 340 nm.
The assays were carried out at 25° C in a 96-well microplate. To start the reaction, 150 μL
of 50 mM sodium pyrophosphate buffer (pH=9.5), 75 μL of 2.5 mM coenzyme NAD+, the
sample solution with 94 μg of protein and 3 μL of 10 uM acetaldehyde were added. The
accumulation of NADH was monitored for 10 min with measurements being taken every 30
s. The ALDH2 enzymatic activity A was proportional to the slope S of the recorded NADH
accumulation curve. The slope was estimated by a linear fit for the data acquired over time t
= 0 to 10 min. The empirical formula to calculate ALDH2 activity in units of μmole NADH
formed/min/mg protein was: A=S×1000/(6.22×0.094), where 6.22 is the millimolar
extinction coefficient and 0.094 is the target protein mass (mg) in the assay. For each
sample, the assay was performed twice and the mean value used here.
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Results and Discussion
Figure 2 shows representative time-series of pre- and post-ethanol 13C lactate maps
superimposed onto corresponding 1H MR images to illustrate the temporal dynamics and
spatial distribution of the metabolite. Figure 3 plots the saturable kinetics in the liver ROI
pre- and post-ethanol from two rats, one control and one treated with disulfiram, estimated
using the inflow-based quantification method. Both, the 13C maps in Fig. 2 and the reaction
velocity curves in Fig. 3, clearly show increased lactate signal post-ethanol compared to pre-
ethanol. The relative change of the lactate apparent Vmax for the disulfiram-treated rat was
smaller than that for the control rat, due to the lower ethanol-generated NADH from the
partially inhibited ALDH2 activity.

Table 1 summarizes the estimated apparent Vmax values of the pyruvate-to-lactate 13C
labeling process pre- and post-ethanol infusion for all rats and the ALDH2 enzyme
activities. The relative change of the lactate apparent Vmax with ethanol (ΔVmax) was 116%
± 12% (mean ± std, n=3) for the control group, 82% ± 10% for the disulfiram-90 group
(p=0.029, unpaired t-test with control group) and 57% ± 9% for the disulfiram-600 group
(p=0.028, unpaired t-test with control group). Compared to the mean ALDH2 activity of the
control group, the ALDH2 activity of the disulfiram-90 group was 68.2% ± 10.8% and of
the disulfiram-600 group was 39.3% ± 11.5%. Thus, the higher disulfiram dose led to a
larger reduction in the Pyr-to-Lac ΔVmax with ethanol, consistent with a greater inhibition
of ALDH2 activity. Figure 4 plots the measured ΔVmax as a function of ALDH2 activity for
all rats, showing that the ΔVmax of the pyruvate-to-lactate 13C labeling process correlates
well with the ALDH2 activity assay results (linear fit R2=0.76).

The y-axis intercept of the fitted line in Fig. 4 is approximately 26% and this intercept
corresponds to the case in which the ALDH2 activity is completely inhibited (i.e., the
second reaction of the ethanol metabolism is completely blocked). Because the first step of
the ethanol metabolism (ethanol to acetaldehyde) still generates the coenzyme NADH, there
still remains some increase in lactate production after ethanol infusion. However, since
acetaldehyde quickly accumulates in rat liver due to the complete ALDH2 inhibition and the
equilibrium point of the first reaction of the ethanol metabolism is consequently shifted to
the ethanol side, there is less than half of NADH produced compared with the control
scenario. Therefore, ΔVmax should be less than half of ΔVmax in the control group (i.e,
ΔVmax < 0.5*116% = 58%).

The disulfiram-600 ALDH2 activity was somewhat higher than the 25% of normal reported
in literature, and may be due to the presence of high-KM ALDH1 in the mitochondria and
cytosol mixture of the liver tissue assayed. Disulfiram does not affect the ALDH1 activity
[4].

An alternate pathway for ethanol metabolism is the microsomal ethanol-oxidizing system
(MEOS), which depends on cytochrome P-450 and generates acetaldehyde by the oxidation
of NADPH to NADP+ resulting in free radical release. Ethanol oxidation via MEOS is
considerably lower than ADH and this pathway probably only accounts for about 10% of
total alcohol metabolism [35], and likely has minimal effect in this study as reflected by the
good correlation obtained between ALDH2 activity and pyruvate-to-lactate apparent
reaction velocity. However, it may need to be considered in future quantitative studies.
Ethanol-derived acetate can also enter the citric acid cycle via conversion to acetyl-CoA, for
instance as a fuel for brain astroglia [36], producing additional NADH. However, in the
liver, processing by the citric acid cycle of the acetyl-CoA from ethanol is blocked as the
excess NADH from ethanol metabolism inhibits the enzymes isocitrate dehydrogenase and
α-ketoglutarate dehydrogenase. The accumulation of acetyl-CoA can then lead to formation
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of ketone bodies and fatty acid synthesis (leading to the “fatty liver” condition) [25]. All of
these factors, including altered redox state (NAD+/NADH) from ethanol metabolism,
reactive oxygen species production and oxidative stress contribute to alcohol-induced
hepatic fibrosis [37]. While the pyruvate-to-lactate 13C labeling process reflects the
increased NADH/NAD+ due to ethanol metabolism, it does not completely represent the
redox state. For example, ethanol metabolism via MEOS could alter the redox state
(NADP+/NADPH) without the same impact on 13C labeling. Methods for assessing the
redox state using hyperpolarized 13C have been reported in other studies [38,39].

This study demonstrates an application of hyperpolarized 13C MRSI for indirect detection of
a metabolic process occurring over timescales greater than the short T1 relaxation time
constraint of hyperpolarized 13C studies. The manipulation of ALDH2 activity by disulfiram
occurred over 36 hours and the buildup of NADH from ethanol took place over 45 min prior
to the bolus injection of Pyr. The changes in the enzyme activity were then detected via the
conversion of Pyr to Lac using the coenzyme NADH linking the two processes.

Conclusion
This work demonstrates that dynamic in vivo MRSI measurements of the relative change of
[1-13C]Lac labeling before and after ethanol infusion, or ΔVmax, following a bolus injection
of hyperpolarized [1-13C]Pyr can potentially serve as a non-invasive indicator of ALDH2
activity in this ethanol-treated rat model. Future work will involve extending these results to
measure ALDH2 activity in the heart following ischemia/reperfusion injury [7].
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Figure 1.
Experimental design with timing of injections and MRSI acquisitions. 13C MRSI
measurements of hyperpolarized [1-13C]Pyr were performed twice on each animal, before
and after ethanol infusion. The animals were divided into three groups (3 animals/group):
controls, those receiving 90-mg/kg disulfiram dose, and those receiving 600-mg/kg
disulfiram.
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Figure 2.
Time series of baseline and post-ethanol 13C lactate maps superimposed onto 1H images
from a control rat and a disulfiram-treated rat (600-mg/kg dose). The ethanol infusion led to
greater lactate signal post-ethanol compared to baseline. The increase in 13C lactate label
generated was lower for a disulfiram-treated rat than the control. All images are displayed
on the same scale.
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Figure 3.
Apparent reaction velocity estimates in the liver pre- and post-ethanol from two rats: one
treated with disulfiram and one untreated. The change in apparent Vmax pre-to-post ethanol
was lower when ALDH2 activity was inhibited via disulfiram.
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Figure 4.
ΔVmax of the pyruvate-to-lactate 13C labeling process correlates well with the ALDH2
enzyme activity of the liver tissue. The y-axis of the plot shows the percent change in Vmax
from pre-to-post ethanol.
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