Skip to main content
. Author manuscript; available in PMC: 2014 May 1.
Published in final edited form as: Retina. 2013 May;33(5):933–938. doi: 10.1097/IAE.0b013e3182733f38

Table 1.

Multiple Regression Models Using Mixed Repeated Measures Models, Predicting Vitreous and Water Flow Rates for Increasing Aspiration and Cut Rates.

Parameter estimate±SE P-value
Vitreous flow rates
Core - R2 = 0.91
  Intercept -0.01461
  Aspiration (per 100 mmHg increase) 0.008873±0.000270 <0.001
  CPM (per 1000 increase) 0.003703±0.000541 <0.001
50-50 - R2 = 0.87
  Intercept -0.01680
  Aspiration (per 100 mmHg increase) 0.007717±0.000360 <0.001
  CPM (per 1000 increase) 0.005035±0.000434 <0.001
Shave - R2 = 0.86
  Intercept -0.02253
  Aspiration (per 100 mmHg increase) 0.006478±0.000363 <0.001
  CPM (per 1000 increase) 0.006666±0.000439 <0.001
Water flow rates
Core - R2 = 0.94
  Intercept 0.06928
  Aspiration (per 100 mmHg increase) 0.03961 ±0.0001029 <0.001
  CPM (per 1000 increase) -0.02142±0.002126 <0.001
50-50 - R2 = 0.96
  Intercept 0.01224
  Aspiration (per 100 mmHg increase) 0.03325±0.000633 <0.001
  CPM (per 1000 increase) -0.00386±0.001191 0.002
Shave - R2 = 0.86
  Intercept -0.05495
  Aspiration (per 100 mmHg increase) 0.02300±0.001146 <0.001
  CPM (per 1000 increase) 0.01775±0.001384 <0.001

R2 = coefficient of determination, CPM = cuts per minute, SE= standard error