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Abstract
One of the major limitations of computational protein structure prediction is the deviation of
predicted models from their experimentally derived true, native structures. The limitations often
hinder the possibility of applying computational protein structure prediction methods in
biochemical assignment and drug design that are very sensitive to structural details. Refinement of
these low-resolution predicted models to high-resolution structures close to the native state,
however, has proven to be extremely challenging. Thus, protein structure refinement remains a
largely unsolved problem. Critical assessment of techniques for protein structure prediction
(CASP) specifically indicated that most predictors participating in the refinement category still did
not consistently improve model quality.

Here, we propose a two-step refinement protocol, called 3Drefine, to consistently bring the initial
model closer to the native structure. The first step is based on optimization of hydrogen bonding
(HB) network and the second step applies atomic-level energy minimization on the optimized
model using a composite physics and knowledge-based force fields. The approach has been
evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial
structure in both global and local structural quality measures. 3Drefine method is also
computationally inexpensive, consuming only few minutes of CPU time to refine a protein of
typical length (300 residues).
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protein structure refinement; protein structure prediction; statistical potential; protein energy;
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INTRODUCTION
The goal of protein tertiary structure prediction is to accurately estimate the three-
dimensional position of each atom in a protein. Comparative modeling (or homology
modeling) is the most widely used technique in the field of protein structure prediction. In
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the traditional comparative modeling methods, an experimental protein structure (or
template) that has significant sequence similarity to the target protein of interest is first
identified, and then a sequence alignment between the target and the template is generated in
order to use the structural information of the aligned regions of the template to construct a
structural model for the target protein[1]. But, even with the best possible template and
target sequence alignment, predicted models often deviate from the true native structures in
terms of their atomic coordinates. Significant progress toward improving the accuracy of
comparative modeling has been made during recent years by building the target structure
combining the fragments from multiple templates [2-4]. The introduction of multiple
templates has certainly enhanced the accuracy of structure prediction by bringing the model
closer to the native structure than using a single template. Despite having largely correct
backbone conformations, these models sometimes still have poor structural qualities,
including irregular hydrogen bonding network, steric clashes, unphysical bond length,
unrealistic bond angles, torsion angles and side-chain χ angles. Thus, direct refinement of
the predicted models from their coordinate information alone with the goal of detection and
correcting the errors is an essential part of computational protein structure prediction
process.

The earlier studies in the field of protein structure refinement can be broadly classified into
two categories: (1) methods that perform significant conformational changes in terms of
backbone positioning and structural information [5-7] and (2) protocols that make small
structural changes at the local level by modifying the side chain conformation[8,9] or
removing the gaps and steric clashes [10,11]. The first kind of methods is more adventurous
having potential of substantial improvement in the structural qualities [12]. But these
techniques are computationally expensive and often inconsistent. The second type of
protocols, although consistent, generally fails to bring model considerably closer to the
native state. Consistent and simultaneous improvement in both global and local structural
qualities of the initial models in a computationally efficient manner is, therefore, a nontrivial
problem.

Protein structure refinement has received noteworthy attention in the recent critical
assessment of techniques for protein structure prediction (CASP8 and CASP9). According
to the results in CASP9 refinement experiment, very few methods exist which can
consistently bring the initial models closer to the native structure. The majority of the
improvement has been observed at the local level by modification of the physicality of the
models or alteration of the side chain positions and not at the global topologies [13,14].
Encouragingly, some promising progress has been made in the recent past by development
of methods that have the potential to improve both the global topologies and the local
structural qualities of the predicted models by using optimized physics-based all-atom force
field [15], applying knowledge-based potential [16,17] or performing Fragment-Guided
Molecular Dynamics Conformation Sampling [18]. These protocols usher the way to solve
the protein structure refinement problem.

In this work we present an efficient refinement protocol, called 3Drefine that is based on
two steps of refinement process. We extensively test this method on CASP benchmarks
having high diversity in the difficulty of the prediction targets. 3Drefine demonstrates
significant potential in atomic-level protein structure refinements in terms of both global and
local measures of structural qualities. Thus, we expect the protocol to be a useful addition to
current state-of the-art refinement tools. We also hope that this method can be adopted as a
final step in the existing protein structure prediction pipeline.
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MATERIALS AND METHODS
The 3Drefine protocol refines the initial protein structures in two steps: (1) Optimizing
Hydrogen Bonds network and (2) atomic-level energy minimization using a combination of
physics and knowledge based force fields; both carried out using Java based molecular
modeling package MESHI[19]. The justification for choosing MESHI over the other
modeling packages is threefold: (1) the strict object-oriented design used in MESHI
enhances possibility of code reuse by means of inheritance mechanism provided in Java,
thereby reducing the development time; (2) MESHI has robust garbage-collection utility to
deal with failures and (3) the open source and platform independent nature of MESHI makes
it more flexible.

Optimizing Hydrogen Bonds network
Hydrogen atoms are the most frequently occurring atoms in a protein structure and play a
crucial role in protein folding through hydrophobic interaction or hydrogen bonding[20-22].
Previous studies in the field suggest that accurately determining the positions of the
hydrogen atoms has a major influence on applying atomic-level potentials for protein
structure refinement[23-25]. Unfortunately, most of the computational methods for protein
structure prediction lack the ability to consistently and correctly identify the hydrogen
atoms. We, therefore, decided to first optimize the hydrogen bonding network in the initial
model.

The current state-of-the-art protocols for predicting the hydrogen bonds generally follow a
combination of local geometry restraint and a conformational search [26-29]. We adopt a
very similar approach here to optimize hydrogen bonding network. Using MESHI [19], the
hydrogen bonds in the initial full-atomic model are calculated first. The position of non-
polar hydrogen atoms are determined by using fixed bond lengths and bond angles
parameters supplied in the MESHI library which have been derived by a collection of 1145
protein domains as part of MESHI package. For the polar hydrogen atoms, a search is
performed via “Geometry” and “Molecular Elements package” of MESHI to find out the
most favorable position of hydrogen atoms satisfying hydrogen bonds with the closest
neighboring atoms and considering the protonation state of each amino acid. We call this an
extended atomic model.

Atomic-level Energy Minimization
We use atomic-level force fields driven by MESHI [19] for performing energy minimization
on the extended atomic model. Since the current release of MESHI package does not include
any established force fields, we, therefore, construct a customized all-atomic total energy of
a protein model by combining the energetic contributions of the bonded interactions
described in ENCAD potential [30], which is an example of a traditional molecular
mechanics force field, some standard energy elements using the “Energy package” included
in MESHI software and a Knowledge-based atomic pairwise potential of mean force [16].
The ENCAD molecular mechanics force fields are chosen because they are freely available
and have all been implemented for use with the MESHI molecular dynamics package. We
include only the bonded terms of the ENCAD potential (bond stretches, bond angle bends,
and torsion angle twists) since they are stronger than the nonbonded terms [16] (van der
Waals interactions, and electrostatic interactions). As some of the energy terms require the
secondary structure values for accurate calculations, we set the secondary structure of the
extended atomic model by using DSSP [31]. Almost all energy term requires some
knowledge about the distances between the atoms. To this end, we use a fast heuristics for
calculating distances in the system. Given the atom list of the system, an internal matrix of
distance objects is created for all the inter-atomic distances by means of the “Distance
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Matrix class” in MESHI. Following the standard convention adopted in the MESHI package
to calculate distances in a computationally inexpensive way, we have made two
assumptions: first, the atoms that are separated by 4 bonds or less are considered bonded and
second, distances must be within a cutoff of 5.5 Å. This means that any distance between
non-bonded atoms (separation of more than four covalent bonds) that is higher than 5.5 Å
has been assumed infinite.

Finally, the customized total energy of the extended atomic model, which is used to guide
the minimization, is calculated by MESHI “Total Energy class” and consists of the
following terms:

(1)

In the following sections we will describe each of the energy terms mentioned in Eq. (1):

Bond Length energy term
When two atoms are connected by a chemical bond they tend to maintain a fixed distance
(called equilibrium distance) depending on the type of the atoms participating in the bond
formation. Any change in this equilibrium distance adds potential energy to the protein. As
per the ENCAD potential [30], this is usually represented as:

(2)

where b is the distance between the two bonded atoms, b0 is their equilibrium distance and
Kb is a bond stretching force-constant subject to the atom types. The parameters b0 and Kb
depend on the type of the bonds and their values can be found at the published work for
ENCAD bonded energy terms [30]. This is denoted in Eq. (1) as Ebondlength term.

Bond Angle energy term
Similar to bond length, when three atoms are connected with two chemical bonds they
incline to maintain a fixed angle (called equilibrium angle) subject to the atom types. Any
variation in this equilibrium angle adds potential energy to the protein. Following the
standard ENCAD potential [30], this can be defined as:

(3)

where θ is the distance between the two bonded atoms, θ0 is their equilibrium distance and
Kθ is a bond angle force constant. Like bond length energy term, the parameters θ0 and Kθ
related to bond angle energy term depend on the type of the bonds the atoms are involved in
and their values can be found at the publication of the ENCAD bonded energy terms [30].
We symbolize this in Eq. (1) as Ebondangle term.

Dihedral or torsions angle twist energy term
The third term in Eq. (1) has been denoted as Etorsion and it represented in ENCAD potential
[30] as:

(4)

where n is the periodicity, φ0 is the equilibrium value and Kφ is the half of the rotation
barrier height. Values of these parameters have been described in ENCAD potential [30].
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The torsion energy term has the ability to represent true dihedral angles and unrealistic or
out-of-plane torsion (or dihedral) angles.

We implement all the above mentioned energy terms of the bonded interactions using the
MESHI framework [19,32].

Hydrogen Bonds energy term
Hydrogen Bonds energy term calculates the energy over all the backbone Hydrogen bonds
in the protein and is denoted by Ehydrogenbonds in Eq. (1). We use a combination of “Energy”
and “Geometry packages” of MESHI [19] framework to calculate the energy of the
hydrogen bonds for the extended atomic model. Following the explicit hydrogen bonding
potential defined in FG-MD [18] refinement method, we consider only the short range
hydrogen-bonding potential with cutoff distance between the Hydrogen and the Oxygen ≤ 3
Å. This is defined as:

(5)

where dij is the distance between hydrogen of the donor and oxygen of the acceptor, α is the
N-H-O angle and β is the angle of C-O-H. Values of these parameters have been adopted
from the published work of FG-MD[18] as d0 = 1.95 ± 0.17 Å, α0 = 160.0 ± 12.2°, β0 =
150.0 ± 17.5° and the values of the force constants are k1 = 2.0, k2 = 0.5 and k3 = 0.5.

Tethering energy term
Protein models sometimes have unfavorable atomic interaction and these disordered atomic
positions can cause large initial forces that result in artificial movement away from the
original structure while performing energy minimization. One solution to avoid these large
deviations is to relax the protein models gradually. But a more profound approach would be
to assign tethering forces to all heavy atoms during the minimization process. The tethering
constant is a force applied to fix atomic coordinates on predefined positions and the strength
of tethering force affects the extent of movement of the atoms from the initial coordinates.
While tethering the well-defined main chain atoms, the side chains are allowed to move and
adjust their position in order to minimize the total potential energy. Tethering of protein is
known to have significant impact on the rates and mechanisms of protein folding [33].
Tethering energy term, symbolized by Etether in Eq. (1) is a tethering term of the Cα and Cβ
atoms of the model to their initial positions. We implemented the tethering energy term by
means of the “Molecular Elements package” in the MESHI software. Tethering spring
constants have been set to 1 Energy Unit/Å.

Knowledge-based atomic pairwise potential of mean force energy term
The final term in Eq. (1), Ekbpairwise is an implementation of the knowledge-based potential
of mean force [16]. The original work is based on the interaction statistics of 167 atom types
derived by counting of pairwise atomic contact frequencies of proteins from a selection of
500 files from the Protein Data Bank (PDB) having high resolution (1.8 Å or better), low
homology, and high quality. In the original study, the weight (w) of KB01 [16] potential has
been set to w = 1.0, which is near-optimally weighted [17]. We use the same weight for our
refinement protocol. The knowledge-based potential of mean force has been implemented
via “Energy package” of MESHI [19].

Bhattacharya and Cheng Page 5

Proteins. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Minimization Protocol
The 3Drefine minimization involves 200,000 steps of energy minimization using limited
memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) algorithm [34] or until
convergence to machine precision, which is carried out by the “Optimizers package” in
MESHI [19] framework. The backbone structure is refined primarily by the bonded terms of
the ENCAD potential [30] and the knowledge-based potential of mean force energy term
[16] while the Tethering energy term plays crucial role in optimizing the side chains. The
hydrogen bonding network is updated during the minimization by using the explicit
Hydrogen bonding energy term described in Eq. (5). The energy minimized model is the
final refined model.

Data Set Preparation
To assess the performance of 3Drefine approach, we collected the refinement targets on
recent critical assessment of techniques for protein structure prediction (CASP) [35]. To
further test the protocol on a large benchmark of 107 CASP9 targets, we used the initial
models generated by our structure prediction method, MULTICOM-REFINE [36],
participated during the CASP9 experiment. The structure refinement category has been
introduced since CASP8 [35]. In these experiments, the predictors were given a starting
model for refinement in a blind mode. These starting models had been generated by the
CASP structure prediction servers and the organizers evaluated it to be among the best
prediction for each target. Although 3Drefine run has been performed after the CASP8 and
CASP9 refinement experiments, we ensured same modeling conditions as the CASP blind
predictors so that the performance of 3Drefine can be directly compared with the other state-
of-the-art refinement methods participating in CASP8 and CASP9.

Metrics used for evaluation
We determine the quality of the structural refinement by observing the changes in global
topologies of the models before and after refinement with respect to their native structures.
We also determine the local structural qualities of the initial and refined model in order to
measure the physical reasonableness of the structure. We have focused on GDT-HA score
[37], TM-score [38] and Cα RMSD [39] which are measures of the global positioning of Cα
atoms. To evaluate the local qualities of the models, we use MolProbity score [40].

GDT-HA score
GDT-HA [37] score measure the fraction of Cα atoms that are positioned correctly. It
counts the average percentage of residues with Cα distance from the native structure
residues below 0.5, 1, 2, and 4 Å, respectively, after optimal structure superposition. GDT-
HA is related to GDT-TS, which uses cutoffs of 1, 2, 4, and 8 Å. Therefore, GDT-HA is
more sensitive to small structural errors. Because of the strong mutual correlation between
GDT-HA and GDT-TS score, we chose to only use GDT-HA in our analysis. GDT-HA
score has been a widely used scoring function to measure the global positing of Cα atoms in
CASP experiments [41-43]. It ranges from [0, 1] with higher value indicating better
accuracy.

Template Modeling score (TM-score)
TM-score [38] is a variation of the Levitt–Gerstein (LG) [44] score. It is a global measure of
similarity of structural topologies. TM-score is defined as follows:
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(6)

where LN is the length of the native structure, LT is the length of the aligned residues to the
template structure, di is the distance between the ith Cα pair of aligned residues, and d0 is a
scale to normalize the match difference. “max” represents that the maximum value is
considered after optimal spatial superposition. The value of the constant d0 is expressed in
the original work [38] as:

(7)

Like GDT-HA score, TM-score also lie in [0, 1] with higher TM-score suggests enhanced
accuracy. However, rather than using specific distance cutoffs and focusing only on the
fractions of structures as described for GDT-HA score, all the residues of the modeled
proteins are evaluated in the TM-score. Furthermore, TM-score does not depend on the
protein length. A TM-score > 0.5 indicates that the proteins share the same fold [45].

RMSD
We evaluated the Root Mean Square Deviation (RMSD) [39] of the Cα positions of the
atoms in order to determine the average distance between the Cα atoms after superposition.
Similar to GDT-HA and TM-score, RMSD is a global measure of the correct positioning of
the Cα atoms. However, since RMSD is based on a single superposition, lacking any kind of
distance cutoffs, there is a week correlation between GDT-HA and RMSD score. Also,
unlike GDT-HA or TM-score; a lower RMSD value indicates that the protein model is close
to its native state. Even if the coordinates of only a few atoms undergo large atomic changes,
RMDS becomes high; making RMDS sensitive to small structural errors.

MolProbity
MolProbity [40] is an all-atom measure of the physical correctness of a structure based on
statistical analysis of high-resolution protein structures. It is basically a log-weighted
combination of the clashscore, percentage Ramachandran not favored and percentage bad
side-chain rotamers, giving one number that reflects the crystallographic resolution at which
those values would be expected. The MolProbity score is calculated as:

(8)

where clashscore is the number of unfavorable steric overlaps ≥ 0.4 Å, including Hydrogen
atoms, and rotaout and ramaiffy are the percentages of the outliers of the side-chain rotamers
and the backbone torsion angles, respectively. Thus MolProbity is sensitive to steric clashes,
rotamer outliers, and Ramachandran outliers. The weighting factors were computed from a
log-linear fit to crystallographic resolution on a filtered set of PDB structures, so that a
protein’s MolProbity score is the resolution at which it’s MolProbity score would be the
expected value. Thus, lower MolProbity scores indicate more physically realistic models.
Unlike the other scoring measures we use, MolProbity is not native-dependent that is; the
native structure is not required to calculate it. This difference makes MolProbity score
significantly distinct from the other scoring function used in this work.
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RESULTS AND DISCUSSION
We first present the analysis on the relative importance of the various energy terms used in
3Drefine approach. Then the overall results obtained by using 3Drefine refinement protocol
have been evaluated on recent critical assessment of techniques for protein structure
prediction (CASP) [35] in the refinement category along with a comparative analysis of
3Drefine against all the groups participated in CASP8 and CASP9 refinement experiments
[13,14] together with a recently published refinement method called FG-MD [18]. We also
examine the local qualities of the CASP8 and CASP9 refinement targets in detail before and
after refinement and compared that with the qualities of the native structures. Finally we
assess the performance of 3Drefine on 107 CASP9 targets using the initial models generated
by our structure prediction method, MULTICOM-REFINE [36] during the CASP9
experiment.

Effects of various energy terms
To examine the detailed effects of various energy terms; we split 3Drefine into six different
runs:

1. Ebondlength + Ebondangle + Etorsion: Minimization using only the bonded terms of
ENCAD potential [30]. These are the first three terms of Eq. (1).

2. Ebondlength + Ebondangle + Etorsion + Etether: Tethering energy term has been
added to the bonded terms of ENCAD potential.

3. Ebondlength + Ebondangle + Etorsion + Etether + Ehydrogenbonds: Explicit hydrogen
bonding potential has been added to the ENCAD bonded terms and Tethering
energy term.

4. Ebondlength + Ebondangle + Etorsion + Ehydrogenbonds + Ekbpairwise: ENCAD bonded
terms together with the hydrogen bonding potential and knowledge-based potential
of mean force [16]. This is basically the total energy defined in Eq. (1) without the
Tethering energy term.

5. Ebondlength + Ebondangle + Etorsion + Etether + Ekbpairwise: ENCAD bonded terms
together with the Tethering energy term and knowledge-based potential of mean
force [16]. The hydrogen bonding potential is omitted here from the total energy
described in Eq. (1).

6. Ebondlength + Ebondangle + Etorsion + Ehydrogenbonds + Etether + Ekbpairwise: This is the
total energy used in the 3Drefine refinement as presented in Eq. (1).

Table I summarizes the average results on CASP8 and CASP9 refinement targets. First, the
combination of only the bonded terms of ENCAD potential [30] exhibits slight degrade in
the quality of global topology as measured by cumulative GDT-HA score, cumulative TM-
score, average RMSD score (i.e. cumulative GDT-HA from 6.898 to 6.843, cumulative TM-
score from 9.316 to 9.309 and average RMSD from 3.004 Å to 3.003 Å for CASP8
refinement targets and cumulative GDT-HA from 7.319 to 7.298, cumulative TM-score
from 10.368 to 10.355 and average RMSD from 4.344 Å to 4.353 Å for CASP9 refinement
targets).

After adding the Tethering energy term to the bonded terms of ENCAD potential [30], an
apparent improvement is observed over the ENCAD bonded terms only with cumulative
GDT-HA score, cumulative TM-score, average RMSD score of 6.890, 9.318 and 3.003 Å
respectively for the CASP8 targets and 7.358, 10.372, 4.344 Å respectively for the CASP9
targets. Although, the quality of the models on an average are not improved as compared to
the starting models for CASP8 targets except for a slight improvement in the cumulative
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TM-score, Tethering energy term proves to be a beneficial addition to the 3Drefine total
energy potential. For CASP9 targets, only the addition of Tethering energy term
demonstrates improvement over the starting models in terms of cumulative GDT-HA score
(from 7.319 to 7.358) and cumulative TM-score (from 10.368 to 10.372), while the average
RMSD remains unaltered.

Addition of the hydrogen-bonding potential to the bonded terms of ENCAD potential and
Tethering energy term seems not to affect the quality of the models compared to bonded
terms of ENCAD potential and Tethering potential in terms of cumulative GDT-HA score
and cumulative TM-score. However, the average RMSD score has been reduced when
compared to the starting models (i.e. average RMSD from 3.004 Å to 2.978 Å for CASP8
refinement targets and from 4.344 Å to 4.339 Å for CASP9 refinement targets).

To further test the effects of adding Tethering energy term, we execute the minimization by
omitting the Tethering potential from the 3Drefine total energy term described in Eq. (1).
The cumulative GDT-HA score has been reduced for both CASP8 (from 6.898 to 6.896) and
CASP9 targets (from 7.319 to 7.262). An increase in average RMSD can also be observed
for CASP9 targets (from 4.344 Å to 4.350 Å). For CASP8 targets, although the average
RMSD is less than the initial models (2.998 Å), this is worse than the combination of
bonded terms of ENCAD potential with Tethering energy term and hydrogen bonding
potential.

To justify the use of explicit hydrogen bonding potential, we run 3Drefine minimization
without the hydrogen bonding energy term in Eq. (1). The results shows further increase in
the RMSD scores (2.999 Å for CASP8 refinement targets and 4.344 Å for CASP9
refinement targets).

Finally, we perform the minimization using all the energy terms as presented in Eq. (1). This
approach has achieved the highest cumulative GDT-HA score, cumulative TM-score and
lowest RMSD score for both CASP8 and CASP9 refinement targets.

Assessment of 3Drefine on CASP8 Refinement Experiment
We evaluate the performance of 3Drefine refinement protocol on all the 12 targets in
CASP8 refinement experiment and compared it with all other groups participating in CASP8
refinement category along with FG-MD [18] which is a recent work and did not participate
in CASP8. For the assessment of the results, we gather the performance of all the
participating groups in CASP8 in terms of cumulative GDT-HA score, cumulative TM-
score, average RMSD score and average MolProbity from the previously published works
[13,18] on the assessment of CASP8 refinement experiment.

The groups have been ordered based on the cumulative GDT-HA score of refined models
for all the 12 targets. Upper part of Table II summarizes the overall result of 3Drefine with
FG-MD [18] and top five groups participating in CASP8. A complete list of the CASP8
groups is listed in Table S1 in the supplementary information document at http://
sysbio.rnet.missouri.edu/3Drefine/download.html.

The “Null” group basically represents the starting model provided by the CASP organizers
for refinement. Groups that perform worse than Null group have on average degraded the
model rather than improving it. The results demonstrate other than FG-MD; 3Drefine is the
method that could consistently drive the initial model closer to the experimental structure in
terms of cumulative GDT-HA, TM-scores and average RMSD.
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Overall, the cumulative GDT-HA and TM-score are 1.04% and 1.4% higher and RMSD is
0.123 Å lower than the second best LEE group participating in CASP8. The recent work,
FG-MD, however, outperforms 3Drefine in these measures; although the performance is
comparable. In terms of average MolProbity score, 3Drefine models performed better than
FG-MD, suggesting improved local qualities of the structures after refinement.

When compared with the starting models, 3Drefine exhibits consistent improvement in both
global and local topologies of the initial structures. Out of the 12 CASP8 initial models,
3Drefine improves GDT-HA score for 9, TM-score for 12, RMSD for 11 and MolProbity
score for 10 targets. In Figures 1A and 1B, we present the score changes (i.e. score after
refinement – score before refinement) of the models refined by 3Drefine in terms of GDT-
HA, TM-score, RMSD and MolProbity score against the TM-score of the starting model
before refinement, which show that the qualities of the models refined by 3Drefine had been
improved in most of the cases.

Two representative examples of CASP8 refinement have been presented in Fig. 2. For the
target TR464, 3Drefine refinement resulted in a 1.3% increase in GDT-HA score, a 0.1 %
increase in TM-score and a 56 % decrease in MolProbity score. For the target TR432, the
GDT-HA and TM-score improvement are 0.8 % and 0.4 % respectively while MolProbity
improvement is 6 %.

Assessment of 3Drefine on CASP9 Refinement Experiment
There were 14 targets available for refinement in CASP9 Refinement Experiment with
length from 69 to 159 residues [14]. Along with the initial models and global distance test
total score (GDT-TS), predictors were provided with hints about the focus regions, that is,
groups of residues that need refinement. To ensure strict blind prediction, we do not use the
hints or the starting GDT-TS score for 3Drefine run.

A summary of 3Drefine with top five CASP9 predictors ordered based on the cumulative
GDT-HA score of the first model for all 14 targets have been listed in the lower part of
Table II. The results for the other groups have been adopted from the published works on
CASP9 refinement assessment [14,18] and a complete list of all the CASP9 groups has been
presented in Table S2 in the supplementary information file.

The results show that 3Drefine, FG-MD, ZHANG and SEOK were able to consistently
refine the staring model on the basis of GDT-HA, TM-score and RMSD score. However, the
both ZHANG and SEOK models have MolProbity score higher than the initial model
indicating degradation in the local qualities of the structures. The MolProbity improvement
for 3Drefine was 30.9% more than the best ZHANG group participating in CASP9. When
compared to FG-MD, 3Drefine improves the MolProbity score by 3.8 %. Overall, 3Drefine
protocol demonstrates consisted refinement of the initial model in terms of cumulative
GDT-HA, cumulative TM-score, average RMSD and average MolProbity score;
outperforming all the CASP9 predictors including the recent work FG-MD in terms of
cumulative GDT-HA score.

In Fig. 3A-3D we present the changes in GDT-HA, TM-score, RMSD and MolProbity score
before and after refinement against the TM-score of the starting models for all the 14
CASP9 targets by 3Drefine and FG-MD. There are 9,13,11 and 12 cases when 3Drefine can
improve the GDT-HA, TM-score, RMSD and MolProbity scores respectively; while FG-
MD do so for 11, 9, 9 and 13 CASP9 targets.

Overall, the performance of 3Drefine is comparable to FG-MD in terms of its ability to
enhance global qualities of the initial structure, that is, improvement on GDT-HA, TM-score

Bhattacharya and Cheng Page 10

Proteins. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and RMSD scores; although 3Drefine performs slightly better than FG-MD on CASP9
targets on these measures. However, with respect to the improvement of local qualities of
structures, 3Drefine clearly outperforms FG-MD. The average MolProbity score of 3Drefine
is 3.8 % better than that of FG-MD with an overall improvement of 16.6 % in MolProbity
score over the starting models. Fig. 3E and 3F show two typical examples of refinement on
CASP9 targets. For the target TR606, 3Drefine refinement resulted in a 3.1% increase in
GDT-HA score, a 0.5 % increase in TM-score and a 21 % decrease in MolProbity score.
There are 2.1 % and 0.6 % improvement of the GDT-HA and TM-score respectively and 8.1
% improvement in MolProbity score for the target TR622.

A closer look at the local qualities of CASP8 and CASP9 Refinement Targets
Although the global structural measures like GDH-HA score, TM-score or the Cα RMSD
scores provide the accuracy predicted protein models, they are primarily focusing on the
correctness of the backbone conformation of proteins and often fail to delve into finer
atomic details of the predicted models. For instance, staggered χ angles are crucial details in
estimating the qualities of protein structure {Lovell, 2000 #122}; but they are not considered
in the global quality measures. Also the unfavorable steric clashes are strongly correlated
with quality of a protein structure, with clashes reduced nearly to zero in the well-ordered
parts of very high-resolution crystal structures {Arendall, 2005 #121}. In order to
investigate these minute but vital aspects of models, we decide to perform a detailed analysis
on the local structural qualities of the CASP8 and CASP9 refinement targets using
MolProbity score - a single composite metric for local model quality.

All-atom contact, rotamers, and Ramachandran analysis are fundamental to the MolProbity
structure-validation approach {Davis, 2007 #119}, which is widely accepted standard in
macromolecular crystallography. CASP8 marks the first use of the MolProbity score for
evaluation of non-experimental protein models. It is a very sensitive and demanding
measure; attracting lot of attentions in serious works to assess the protein model qualities
beyond Cα accuracy metrics {Keedy, 2009 #120}.

Table III summarizes the MolProbity score for all CASP8 and CASP9 refinement targets.
For each targets the score for initial model, score after 3Drefine refinement has been
presented along with the MolProbity score for the native structures. It can be clearly seen
that apart from a few targets (two targets in CASP8 and two targets in CASP9); the
MolProbity score is always lower in the native structures when compared with the staring
models. On an average, the MolProbity score for the initial structures in CASP8 and CASP9
are 2.46 and 2.42 respectively while the native structures have an average score of 1.68 and
1.44 respectively. The difference in the MolProbity score for the initial models and the
native structures undoubtedly demonstrate the need for the refinement of the local qualities
of the starting structures in any refinement protocol.

Promisingly, 3Drefine exhibits improvement in the local qualities of the predicted protein
models as measured by MolProbity score in CASP8 and CASP9 refinement targets. Apart
from two targets in CASP8 (TR389 and TR432) and two targets in CASP9 (TR530 and
TR569), the MolProbity score is always reduced compared to the starting models. Overall,
the average MolProbity score for the refined models are 2.34 and 2.10 for CASP8 and
CASP9 refinement targets respectively. Although the refined models are still far from
achieving the average MolProbity score as the native structures, 3Drefine has certainly
enhanced the local model qualities with respect to the initial structures.

Bhattacharya and Cheng Page 11

Proteins. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Performance of 3Drefine on 107 CASP9 Targets
To further assess the performance of 3Drefine on a large set of target models, we tested the
refinement protocol on 107 CASP9 targets generated by our tertiary structure predictor
MULTICOM-REFINE [36] that participated in the CASP9 experiment. We selected the first
predicted model generated by MULTICOM-REFINE as the starting model for 3Drefine run
for each of the 107 CASP9 targets. Similar to our testing strategy of 3Drefine for CASP8
and CASP9 refinement experiments, we performed the refinement in a blind mode, that is,
without the knowledge of the native structure.

We observe a consistent improvement in the global qualities of the starting models after the
refinement as measured by the GDT-HA, TM-score, and RMSD score. There were 59, 89
and 87 cases when 3Drefine brings the starting model closer to the native ones with respect
to GDT-HA, TM-score and RMSD score respectively.

Overall, there was a 0.4 % increase in cumulative GDT-HA score and 0.1 % increase in
cumulative TM-score for the refined models over the initial structures predicted by
MULTICOM-REFINE for all the 107 CASP9 targets. The average RMSD of the refined
models was 0.007 Å lower than the starting models.

The changes of the RMSD score after refinement over the TM-score of the starting models
has been shown as a scatter plot in Fig. 4. In Fig 5A and 5B, we present the change of GDT-
HA and TM-score before and after refinement against the initial TM-score for the 107
CASP9 targets. We controlled the initial TM-score Detailed histograms of changes in the
score have been shown in Fig. S1A and S1B and is available the supplementary information
document. These results demonstrate the ability of 3Drefine protocol for consistent
refinement of the CASP9 predicted models to bring it closer to its native structure in terms
of global qualities of the structures. Most significant improvements have been observed
when the TM-score of the starting model is > 0.5, that is, when the predicted models share
the same fold with the native structure [45].

3Drefine refinement results for the CASP8 and CASP9 refinement experiments along with
the refinement of 107 CASP9 models are freely available at: http://sysbio.rnet.missouri.edu/
3Drefine/download.html

CONCLUSION
Despite attracting constant attention by the researches, protein structure refinement problem
remains a largely unsolved problem [46]. Because of the strong mutual association between
the back-bone positioning and side-chain conformation of a protein model [47] simultaneous
refinement of both the global topologies and local structural qualities of a protein structure is
intended. Unfortunately, apart from a few promising works in the recent years [15-18]
majority of the structure refinement protocols fail to achieve this goal. Addressing this
problem successfully would have major implications in resolving the bottleneck to apply
computational protein structure prediction methods in structure-based drug design [48],
protein docking [49] and prediction of biological functions based on protein structure [50].
As per the results of most recent critical assessment of techniques for protein structure
prediction (CASP) refinement experiments, CASP8 and CASP9, there may be substantial
room for improvement in the refinement category [13,14].

In this work, we present a computationally efficient and reliable protocol for protein
structure refinement, called 3Drefine. This method is a combination of two steps of
minimization: Optimizing Hydrogen Bonding Network and Energy Minimization using a
composite physics and knowledge based force fields, which is implemented within the
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MESHI [19] molecular modeling framework. It takes only few minutes (usually less than 5
minutes) of CPU time to refine protein models of usual length using 3Drefine.

3Drefine was tested in blind mode for CASP8 and CASP9 refinement targets in a
completely automated manner, without using the knowledge about the information provided
by CASP organizers to focus on certain parts of the proteins for refinement. We observe that
3Drefine has the ability to consistently bring the model closer to the native structure. The
models refined by 3Drefine have shown improvement of the global topologies of the starting
models as measured by GDT-HA, TM-score and Cα RMSD to native structures as well as
the local structure qualities as measured by the MolProbity score. The overall results of
3Drefine were better than or comparable to the other state-of the-art methods participating in
CASP refinement category.

We also tested the performance on a large benchmark of 107 CASP9 targets by using
MULTICOM-REFINE [36] as a structure prediction method to generate the initial
structures. 3Drefine demonstrates consistent improvement in qualities of the initial models.

Although promising, the improvement in qualities of the starting models after 3Drefine
refinement is often modest. This is the case with almost all other existing state-of-the-art
refinement protocols primarily due to the limited accuracy of physics based empirical force
fields used predominantly in the refinement methods. Broader samplings around the initial
conformation of the protein using these force fields impose the risk of degrading the model
quality instead of improving it. As the result, the refinement algorithms often rely on a more
conservative strategy to sample locally around the starting structures producing
improvement only in general physicality of the models rather than substantially improving
the backbone positioning. Also, with the progress in the structure prediction pipelines, the
qualities of the starting models are getting improved. Therefore, adopting more adventurous
global search techniques at the cost of consistency that can improve the overall fold in the
starting models are becoming less common amongst the refinement pipelines. Even with the
unadventurous strategies, the existing refinement protocols are often inconsistent as
indicated by the results of CASP8 and CASP9 refinement experiment with majority of
groups degrading the model qualities on an average. The unique nature of 3Drefine protocol
is consistency. Around 80% of the times 3Drefine has improved the global qualities in the
starting structures in CASP8 and CASP9 refinement targets. Also, the ability of 3Drefine to
simultaneously improve the backbone positioning and local model qualities is encouraging.
Future directions would be to use 3Drefine method in conjunction with some global search
technique that can substantially improve the overall fold in the starting models together with
the improvement in general physicality and local qualities of the models.

We conclude that 3Drefine can become a reliable and efficient method in protein structure
refinement. The success of the protocol in improving accuracy of the initial models in a
computationally inexpensive way for CASP refinement targets, where the initial model has
been generated by a variety of structure prediction techniques, suggests that 3Drefine can be
adopted as a final step in computational structure prediction pipeline.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Changes in global and local structural qualities using 3Drefine on CASP8 Refinement
Targets
(A) Scatter plot of changes in GDT-HA and TM-score. A positive change indicates the
quality of the model of a target has been improved by refinement.
(B) Scatter plot of changes in RMSD and MolProbity-score. A negative change indicates the
quality of the model of a target has been improved by refinement.
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Fig. 2.
Structural superposition of initial model (blue) and refined model using 3Drefine (red) on
the native structure (green) for two CASP8 Targets. The values under each model indicate
GDT-HA, TM-score, RMSD and MolProbity score respectively before (blue) and after (red)
refinement.
(A) Structural superposition for Target TR464.
(B) Structural superposition for Target TR432.
Figures were prepared in PyMOL (The PyMOL Molecular Graphics System, Version 1.4.1,
Schrödinger, LLC.).
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Fig. 3.
Changes in local and global qualities of CASP9 Refinement Targets
(A) Scatter plot for GDT-HA score changes for 3Drefine and FG-MD
(B) Scatter plot for TM-score changes for 3Drefine and FG-MD
(C) Scatter plot for RMSD-score changes for 3Drefine and FG-MD
(D) Scatter plot for MolProbity-score changes for 3Drefine and FG-MD
(E) Structural superposition of initial model (blue) and refined model using 3Drefine (red)
on the native structure (green) for CASP9 target TR606.
(F) Structural superposition of initial model (blue) and refined model using 3Drefine (red)
on the native structure (green) for CASP9 target TR624.
The values under each model indicate GDT-HA, TM-score, RMSD and MolProbity score
respectively before (blue) and after (red) refinement.
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Fig. 4.
Scatter plot of RMSD changes for 107 CASP9 Targets
(Initial models generated using MULTICOM-REFINE).
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Fig. 5.
Refinement results for 107 CASP9 Targets using 3Drefine (Initial structures generated using
MULTICOM-REFINE)
(A) GDT-HA score changes. A positive change indicates the quality of the model of a target
has been improved by refinement
(B) TM score changes. A positive change indicates the quality of the model of a target has
been improved by refinement.
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Table III

MolProbity scores for CASP8 and CASP9 Refinement Targets

Target Name Initial MolProbitya Refined MolProbityb Native MolProbityc

CASP8 TR389 2.68 2.72 1.05

TR429 2.61 2.47 1.81

TR432 2.01 3.76 1.1

TR435 2.42 2.07 2.0

TR453 1.13 0.5 1.48

TR454 3.14 2.83 0.86

TR461 2.41 1.88 1.62

TR462 2.06 1.87 2.7

TR464 3.15 2.75 2.55

TR469 2.53 2.23 1.86

TR476 1.98 1.86 2.66

TR488 3.38 3.25 0.5

Average 2.46 2.34 1.68

CASP9 TR517 1.4 1.36 1.02

TR530 0.9 1.67 0.64

TR557 1.5 1.49 1.14

TR567 1.4 0.77 3.6

TR568 1.5 1.19 0.56

TR569 0.7 1.01 2.05

TR574 3.6 2.93 0.50

TR576 3.7 3.16 1.46

TR592 3.5 2.09 1.94

TR594 2.9 2.65 1.01

TR606 3.2 2.56 0.81

TR614 4 3.7 1.67

TR622 3.7 3.4 1.42

TR624 1.9 1.43 2.33

Average 2.42 2.10 1.44

a
MolProbity score for the starting models.

b
MolProbity score after 3Drefine refinement.

c
MolProbity score for Native Structures.
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