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Abstract
Despite intensive clinical and laboratory research and effort, Glioblastoma remains the most
common and invariably lethal primary cancer of the central nervous system. The identification of
stem cell and lineage-restricted progenitor cell populations within the adult human brain in
conjunction with the discovery of stem-like cells derived from gliomas which are themselves
tumorigenic and have been shown to have properties of self-renewal and multipotency, has led to
the hypothesis that this population of cells may represent glioma initiating cells. Extensive
research characterizing the anatomic distribution and phenotype of neural stem cells in the adult
brain, and the genetic underpinnings needed for malignant transformation may ultimately lead to
the identification of the cellular origin for glioblastoma. Defining the cellular origin of this lethal
disease may ultimately provide new therapeutic targets and modalities finally altering an
otherwise bleak outcome for patients with glioblastoma.
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2. INTRODUCTION
Glioblastoma is the most common and lethal primary malignancy of the central nervous
system (CNS) representing approximately 50% of all gliomas (1). With a median survival of
14–16 months, and 2-year survival rate of less than 10–15% using today’s best treatment
modalities, improvements in survival over the past 100 years can be measured in weeks (2).
These tumors represent a relentless disease state with a clear propensity towards migration
and invasion within and into the neural parenchyma along with recurrence at both local and
distant sites (3).

Traditional views have held that these tumors originate from the malignant transformation of
differentiated glial components of the CNS (i.e. astrocytes and oligodendrocytes) (4). The
discovery of multipotent stem cell and lineage-restricted progenitor cell populations in the
CNS of the postnatal mammalian brain, and subsequent identification of stem-like cells in
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several primary brain tumors including glioblastoma has led to the development of the
Cancer Stem Cell (CSC) theory of gliomas challenging this hypothesis (4–7). This theory
posits that rather than the de-differentiation of mature cell populations being the mechanism
behind gliomagenesis, gliomas are instead derived from the malignant transformation of
cells derived from this newly defined neural stem cell or lineage-restricted progenitor
population. Moreover, accumulating evidence suggests that these glioblastoma-derived
stem-like cells are responsible for the invasiveness and resistance to treatment that
characterizes glioblastoma (8–15).

Based on the cancer stem cell theory, extensive research defining the phenotypic as well as
genetic similarities between adult neural stem cells (NSCs) and glioma initiating cells
(GICs) is on going in the hopes of decisively identifying the cellular origin of this tumor,
potentially opening the door to new therapeutic targets and modalities. In this article, we
discuss evidence supporting the neural stem cells and lineage restricted progenitor cells as
the origin of glioblastomas, and specifically as a source of glioma initiating cells (GICs).

3. HYPOTHESES REGARDING THE CELLULAR ONTOLOGY OF
GLIOBLASTOMA: CANCER STEM CELL (CSC) MODEL

Traditionally it was thought that mature cells of astroglial or oligodendroglial lineage,
through a number of genetic changes, underwent neoplastic transformation to yield gliomas
(16). According to this theory, mutations permitting mature, differentiated cells to re-enter a
relatively undifferentiated state through the removal of cell-cycle check points, blockade of
apoptotic pathways, and the re-activation of developmental pathways were required for the
formation of gliomas (16). This theory was in large part based on the widely held belief that
the brain was a quiescent organ, incapable of post-natal neurogenesis and the idea that
astrocytes and oligodendrocytes were the only cell populations capable of division in the
mature brain (17).

Beginning with the findings of Altman and Das demonstrating neurogenesis in the adult rat
brain (18, 19) and the subsequent findings in the canary by Goldman and Nottebohm (20),
this dogma has been increasingly challenged. In the years following these discoveries,
numerous studies have demonstrated that adult mammalian brain is capable of continued
neurogenesis; a finding that has been confirmed in the adult human brain (21, 22). This
process of neurogenesis in the adult brain has been primarily confined to the forebrain
subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (21–32).
Within these locations in both rodents and humans, a population of astrocytes has been
described which have the properties of self-renewal and multipotentiality consistent with a
neural stem cell identity (22, 27, 33, 34). Subsequent to the discovery of stem cell
populations residing within the SVZ and SGZ of the central nervous system, several groups
reported the presence of stem cell-like populations isolated from glioblastoma tissue (6, 7,
35). In the appropriate culture conditions, it was found that a subset of tumor cells from
surgical explants could generate neurospheres which could give rise to neurons, astrocytes
and oligodendrocytes, a previously described property of NSCs (6, 35). Additionally,
glioblastoma-derived neurosphere cells could recapitulate histologically and cytologically, a
tumor resembling the initial glioblastoma in an immunocompromised murine xenograft
model (6, 7).

Growing evidence from a number of cancers has supported the theory that most if not all
tumors in humans are comprised of a heterogeneous population of cells which have varying
tumorigenic potential (36–38). Initially demonstrated in leukemia and subsequently in
several solid tumors including those from breast, head and neck, colon, pancreatic, and
prostatic cancer, it was shown that only a subset of cells isolated from patients possessed the
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ability to proliferate in vitro, differentiate into mature forms under the proper conditions, and
form tumors in xenograft models having characteristics resembling the parent malignancy
(39–44). These findings led to the hypothesis that within a tumor, a stem cell-like population
is primarily responsible for its tumorgenicity; hence they are referred to as Cancer Stem
Cells. The discovery of cell populations derived from glioblastoma which demonstrated
these properties has led to the hypothesis being extended to include glioblastoma. Taken
together the hypothesis has been made that GICs are derived from NSCs and by extension,
arise from the SVZ (4, 7, 21, 45–50).

4. SOURCES OF NSCs AND LINEAGE-RESTRICTED PROGENITOR CELLS
IN THE POST-NATAL MAMMALIAN BRAIN

As mentioned earlier, NSCs and lineage-restricted progenitor cells, which are defined as cell
subpopulations capable of self-renewal and differentiation into multiple lineages (51), have
been described in several regions of the adult mammalian brain including the SVZ, SGZ of
the hippocampal dentate gyrus, striatum, frontal and temporal cortex, as well as the
subcortical white matter (24, 51–55). Of these regions, the SVZ has been found to be the
largest reservoirs of these cells in both the adult rodent and human brain.

4.1. Organization of the Rodent Subventricular Zone
In the adult rodent brain, the SVZ lines the lateral wall of the lateral ventricles bilaterally
underlying the ependymal layer (Figure 1). Within this region, resides a population of
slowly dividing astrocyte-like NSCs termed type B1 cells (27, 56). These cells, believed to
be derived from a neuroepithelial lineage that has also been shown to be the source of the
ependymal lining of the ventricular wall, is thought to be responsible for neurogenesis
throughout the adult life (57).

Through asymmetrical divisions, type B1 cells within the SVZ give rise to type C cells, a
rapidly proliferating cell population, alternatively referred to as transit-amplifying cells.
Immature neuroblasts or type A cells, derived from this pool of transit-amplifying cells
subsequently migrate from the SVZ in chains surrounded by the glial processes of type B2
cells towards the olfactory bulb comprising the rostral migratory stream (RMS). These
migrating neuroblasts ultimately contribute to various populations of interneurons of the
granule layers of the olfactory bulb (26, 58–60).

Interestingly, the SVZ has also been shown to be a source of oligodendrocytes both during
development and in response to demyelinating disease (61, 62). Menn et al. found that the
source of these SVZ-derived oligodendrocytes was a subpopulation of Olig2 expressing type
B cells which migrate into the subcortical white matter in a manner orthogonal to the RMS
where they became local oligodendrocyte progenitor cells (OPCs) (63). Though the majority
of research is focused on cells within the SVZ, this population of subcortical progenitor cells
cannot be excluded as a possible source of GICs. Consistent with this hypothesis, using a
murine model of oligodendroglioma, Persson et al. recently found that OPCs, and not NSCs,
enriched for a tumor-forming cell population (64).

4.2. Organization of the Human Subventricular Zone
In contrast to the structure of the rodent SVZ where astrocyte-like stem cells directly oppose
the ventricular ependyma, a feature also described in the SVZ of canines and non-human
primates, the human SVZ possesses a more complex organization comprised of four distinct
layers including a hypocellular gap separating the presumed stem cell population from the
ependyma (Figure 2; (12, 21, 22, 65–67)). From innermost to outermost layers these are:
layer I is a monolayer of ependymal cells lining the ventricular cavity; layer II is an
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immediately adjacent is the hypocellular gap; layer III is a ribbon of astrocytes in which a
population of neural stem cells is felt to reside; and layer IV is referred to as the transitional
zone comprised primarily of myelinated fibers.

Unique to the adult human SVZ, the hypocellular gap is rich in glial fibrillary acidic protein
(GFAP) expressing processes with ependymal expansions and an abundant network of
astrocyte-astrocyte and astrocyte-ependymal interconnections. The function of these
interconnections is unclear though it has been hypothesized that they may regulate neuronal
function, play a role in metabolic homeostasis, or control NSC proliferation and
differentiation (21, 68–70). Layer III, comprised principally of large astrocyte-like cells is
the layer in which mitotic bodies consistent with dividing stem cells have been identified,
although not to the degree seen in the SVZ of other mammals such as the rodent and non-
human primates (21, 22). While neuron-like cells have been identified between layers III
and IV which appear to be migratory based on their morphology, the presence of definitive
migrating chains of neuroblasts has not been shown (21, 22, 71). Curtis et al. however have
argued that an RMS-like structure in fact does exist in the adult human brain with chains of
neuroblasts arranged around a ventricular remnant extending from the anterior horn of the
lateral ventricle to the olfactory bulb. Subsequent studies by Bradford et al. recently
provided further support of this finding demonstrating expression of Neogenin, a Netrin/
RGMa receptor thought to be a marker of neurogenesis descriptive of the rodent RMS, in
basal forebrain of humans along what is purported to represent the human equivalent of the
RMS (71). Research in our laboratory has confirmed the presence of a structure analogous to
the RMS of rodents in human tissues of fetal origin though their applicability to the adult
human cortex remains controversial (71–75).

Given the fundamental differences in SVZ anatomy noted between the rodent and human
brain, it is not unreasonable to expect that different developmental pathways and structures
are at work explaining the failure to definitively demonstrate populations of stem cells and
progenitor cells having the same or similar properties in both. In rodents, robust
neurogenesis can be seen in the SVZ extending out through the RMS which experiences a
decline as the animal ages (76). In contrast with this finding, neurogenesis in the human
SVZ, both in the fetal and adult brain is of relatively smaller magnitude though clearly still
present (21). This noted disparity should however be interpreted with caution; studies
characterizing the anatomy of the rodent SVZ and its associated patterns of neurogenesis
have been performed in both embryonic and relatively young mice in comparison to
investigations in humans where though fetal tissues have been examined, adult neurogenesis
has largely been evaluated in the aged brain which is unlikely to be equivalent to that of the
young rodent.

Further illustrating the disparities between rodent and human SVZ architecture, Hansen et
al. recently described a population of radial glia-like cells populating the outer layers of the
SVZ (OSVZ) of the human neocortex, not seen in the rodent brain, which are capable of
undergoing both proliferative divisions and self-renewing asymmetric divisions giving rise
to neuronal progenitor cells which are themselves capable of further proliferation indicating
yet another potential source of stem cells associated with the SVZ (77). These radial glia
cells are distinctly different from the traditionally defined population in that while they
project apical processes toward the pial surface, the majority fail to show basal processes
extending to the ventricular wall (77). Though of unclear significance, this population of
radial glia-like cells is thought to represent in part, a mechanism allowing for the neocortical
expansion defining of humans and higher primates (77). Furthermore, it is not unreasonable
to consider the possibility that these cells may represent yet another potential source of
GICs.
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Despite the controversies surrounding the functional anatomy of the human SVZ and the
striking differences seen between it and other mammalian SVZs, it is clear that neural stem
cell-like populations can be isolated from SVZ explants though the exact in situ localization
of these populations remains elusive for now (22, 77).

5. PUTATIVE MALIGNANT TRANSFORMATION OF NSCs AND LINEAGE-
RESTRICTED PROGENITOR CELLS

Unlike mature, differentiated components of the CNS such as astrocytes and neurons, stem
cells and lineage-restricted progenitor cells remain highly proliferative resulting in increased
susceptibility to malignant transformation of neural stem cells. Exposure to N-ethyl-N-
nitrosourea (ENU) or avian sarcoma virus has been shown to result in tumor formation
preferentially within the SVZ of the canine and rodent brain rather than in areas with less
proliferative capacity (78–81). Feldkamp et al. found in a murine model that exposure of
progenitor cells to high levels of epithelial derived growth factor (EGF) or platelet derived
growth factor (PDGF) resulted in the formation of tumors histologically resembling human
gliomas (82). Furthermore, ventricular infusion of EGF or PDGF results in increased
proliferation of SVZ progenitor cells and the development of highly invasive glioma-like
masses (46, 83). Agreeing with these findings, constitutively activating mutations and/or
increased expression of EGF and PDGF receptors as well as autocrine PDGF/PDGFR
signaling are known to be present in malignant gliomas (84–87). Both PDGF and EGF
signaling can feed through the Ras/Akt pathways, widely known to be significant in
oncogenesis, and retroviral delivery of activated Ras and Akt to mouse progenitor cells
induces high-grade glioma formation (88). As with other malignancies, disruption of tumor
suppressor function has also been found to result in glioma formation; p53−/−/NF1−/− dual
knockout mice develop spontaneous lesions associated with the SVZ closely mimicking
human glioblastoma in appearance and behavior (Figure 3; (89)).

Interestingly but not necessarily surprising is the decline noted in the size of the stem cell
population as the brain ages (90). Central to this decline is the upregulation of p16INK4a and
p19Arf expression which are involved in cellular senescence. Deletion of p16INK4a partially
rescues the age-related decline in the stem cell population of the mouse SVZ (90). p16INK4a/
p19Arf loss of function mutations are one of the most prevalent genetic alterations in
glioblastoma (91); these changes however are not sufficient to initiate gliomagenesis on
their own, but can in conjunction with EGFR activation, stimulate glioma formation in both
murine NSCs and differentiated astrocytes (92).

The Notch signaling pathway represents another developmentally important transcriptional
pathway implicated in glioma propagation. Under normal circumstances, Notch is involved
in the maintenance, but not the generation of the neural stem cell population. Mice with
homozygous deletion of the Notch1 gene have rapidly depleted neural stem cell populations
during embryonic development (93, 94). In vitro, blockade of Notch by gamma secretase
inhibitors (GSIs) reduced neurosphere formation through reduced proliferation and
increased apoptosis where in contrast, expression of active Notch1 increased tumorgenicity
(95). In vivo, GICs pretreated with GSIs failed to form tumors upon subcutaneous injection
into nude mice. Similarly, delivery of GSIs via drug impregnanted polymer beads blocked
tumor growth and promoted survival (95).

6. SIMILARTIES BETWEEN NSCs AND GLIOMA INITIATING CELLS
NSCs and lineage-restricted progenitor cells of the SVZ have unique expression patterns of
tumor suppressor genes, cell surface markers, cytoskeletal proteins, transcription factors and
growth factors/growth factor receptors which are largely shared by glioma stem cell-like
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populations. Additionally, glioblastomas have been shown to orchestrate a vascular niche
mimicking the normal neural stem cell niche thereby helping to maintain the glioma
initiating cell pool (45).

6.1. Transcription factors
One of the arguments for NSCs being a source of GICs is the expression of early
developmental genes which persist in GICs contributing to proliferation and self-renewal.
The background upon which these genes act in conjunction with possible changes in the
regulation of a given pathway likely makes the distinction between the normal, and the
tumorigenic state seen in glioblastoma.

For example, Sonic Hedgehog (Shh) is a central regulator of patterning and proliferation in
the cerebellum during development (96–98). Dysregulation of the Shh pathway in neural
progenitors in the external granular layer of the cerebellum by mutations of Patched, the Shh
receptor, constitutive activation of Smoothened, or over expression of N-myc lead to the
development of medulloblastoma (99–102). Similar to medulloblastoma, Shh signaling is
also implicated in the pathogenesis of glioblastoma. Shh modulates the activity of three
zinc-finger transcription factors, Gli1, Gli2, and Gli3, which are involved in proliferation
and self-renewal by promoting cell-cycle entry and DNA replication (103, 104). Gli1 is
normally expressed by progenitor cells in the SVZ where they are help to maintain the stem
cell population (105–107). Gli1 expression has also been found in both low- and high-grade
gliomas where the Shh-Gli1 axis is thought to be involved in maintenance of GICs and
tumorigenesis (96). Supporting this theory, administration of cyclopamine, a Shh inhibitor
inhibits the in vitro growth of some glioma stem cell-like lines (108).

6.2. Tumor suppressor genes
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor
suppressor gene which lowers phosphatidylinositol phosphate (PIP3) levels enhancing rates
of apoptosis and also limits cell motility through a G protein-coupled mechanism (109, 110).
PTEN expression in the SVZ is involved in control of stem cell and precursor cell
proliferation, precursor cell migration, as well as being required for neuronal differentiation
from precursor cells of the SVZ (111–114). Deletion of PTEN leads to persistent neural
stem cell self-renewal and expansion of the SVZ while decreasing apoptosis (115, 116).
Similarly, deletion of PTEN in gliomas increases the size of the side population and hence
ABCG2 transporter expression and activity, which are thought to be mainly associated with
stem cell populations (9). In primary or de novo glioblastoma, PTEN mutations are
frequently described; interestingly epigenetic silencing of PTEN through promoter
methylation is described in low-grade tumors and secondary glioblastoma (117).

p53, another tumor suppressor gene, with a key role in regulating DNA repair pathways, is
also frequently deleted or mutated in glioblastoma (4, 118). By itself, p53 mutation is
insufficient to induce glioma formation requiring additional carcinogenic or genetic insults
such as exposure to ENU, constitutive activation of the Ras pathway, or increased PDGF
signaling (89, 119, 120). Co-deletion of the neurofibromatosis (NF)-1 tumor suppressor has
been shown to cooperate with p53 deletions, inducing glioma formation in mouse models
(89). Additionally, NF-1 patients are characterized by an increased frequency of
glioblastoma occurrence (121, 122).

6.3. Growth factors / cytokines and their receptors
As was described above, EGF and PDGF have a pronounced effect upon NSCs, capable
under the right circumstances of causing hyperplasia and proliferation resulting in the
development of periventricular neoplasms akin to early gliomas (46, 83–87). In human

Chesler et al. Page 6

Front Biosci (Schol Ed). Author manuscript; available in PMC 2013 April 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



gliomas, EGFR amplification or expression of EGFRvIII, a constitutively active mutation, is
seen in nearly half of all high-grade tumors (123–125). In the rodent SVZ, EGF prevents C
cell differentiation and encourages infiltrative behavior similar to that seen in high-grade
gliomas (83). Similarly for PDGF, a role has been defined in the normal stem cells niche of
the adult SVZ; a population of type B cells expressing PDGF can give rise in vivo to both
oligodendrocytes and neurons (46). Experimental over-expression of PDGF induces areas of
proliferation and hyperplasia within the SVZ similar to those seen in early gliomagenesis
(46).

Transforming growth factor (TGF)-beta has also been shown to have a place in normal SVZ
function, having a role in progenitor cell differentiation (126, 127). In glioblastoma, TGF-
beta expression has been demonstrated by several groups including our own (unpublished
observation). In glioblastoma, TGF-beta expression has been described in both whole tumor
samples and specifically in GIC populations in vitro and in in vivo experimental models.
Under these circumstances, TGF-beta likely contributes to the development of the
immunosuppressive phenotype described in glioblastoma involving both the Treg subset of
T cells and macrophage/microglial populations (128–132).

6.4. Vascular niche
Stem cells of all tissues and organisms reside in unique microenvironments or niches (133,
134). Within the SVZ of the mammalian brain, clusters of capillaries, associated growth
factors such as brain-derived neurotrophic factor (BDNF), vascular endothelial growth
factor (VEGF), and extracellular matrix components such as tenascin-C and chondroitin
sulfate, create an environment which fosters stem cell growth and regulates proliferation and
cell fate through cross talk and maintenance of local environmental factors such as pH and
oxygen tension (135–142). Similarly, gliomas are typically highly vascularized tumors often
with extensive capillary beds that can provide a similar vascular niche for GICs to reside in.
Calabrese et al found that CD133+/Nestin+ glioma-derived stem cells were closely
associated with capillary associated endothelial cells; experimentally the number of blood
vessels or endothelial cells in an orthotopic brain tumor model increased the fraction of self-
renewing cells within the tumor and accelerated tumor growth (45). Expectedly, depleting
blood vessels in the same model arrested tumor growth and depleted the self-renewing cell
populations in these tumors. Recently, using a mouse model of PDGF-induced glioma,
Charles et al. found that nitric oxide (NO) production via endothelial Nitric Oxide Synthase
(eNOS) expressed by the endothelium within the perivascular niche activated Notch activity
in GICs (143) . Activated Notch increased their capacity to form neurospheres in vitro, and
enhanced their tumorigencity in vivo, tying together the importance of dysregulated
developmental pathways and, the association of GICs and the perivascular niche in
gliomagenesis (143).

6.5. Cytoskeletal proteins
Nestin, a type IV intermediate filament protein, is expressed during development by neural
progenitors throughout the brain but becomes restricted to the SVZ in the adult brain (144).
Nestin+ cells are particularly sensitive to ENU exposure persisting throughout tumor
progression (145, 146). Nestin+ cells have also been described in human gliomas, which
while not an adequate marker of GICs suggests a link between stem cell populations and
glioma formation (147). The microtubule-associated protein (MAP), doublecortin, is
preferentially expressed in high-grade human gliomas (148). In a non-tumorigenic context,
doublecortin is encoded by a locus on the X chromosome associated with lissencephaly,
contains two actin-binding domains and is involved in neuronal migration (149). In the adult
brain, it is primarily expressed in migrating neuroblasts such as the type A cells of the rodent

Chesler et al. Page 7

Front Biosci (Schol Ed). Author manuscript; available in PMC 2013 April 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



RMS (149, 150). Additionally, over expression of doublecortin in vitro is protective against
hypoxia and glucose deprivation in glioma lines (151).

7. CLINICAL EVIDENCE FOR THE SVZ AS A SOURCE OF GLIOMA
INITIATING CELLS

Although populations of cells from both glioblastoma and the SVZ can be shown to possess
stem cell-like properties in vitro, this in and of itself does not provide for the suspected
connection between stem or progenitor cells of the SVZ and glioblastoma. Several clinical
observations from glioma patients do however provide indirect support for this hypothesis. It
has been noted by several groups that a large proportion of gliomas are found to associate
with and involve the SVZ at the time of diagnosis; this relationship appears to have a
negative impact on outcome (47, 152). In 2007, Lim et al. defined an MRI-based
classification scheme for glioblastoma correlating in a limited series with predicted tumor
recurrence pattern (47). In their schema, glioblastomas were stratified into four groups based
on the association of the identified contrast enhancing lesion (CEL) with the SVZ and the
cortex. CELs involving both the SVZ and cortex were most likely to present with multifocal
disease and have noncontiguous recurrences. Where in contrast, those tumors which spared
both the cortex and SVZ were never multifocal and recurrences were always adjacent to the
initial site of diagnosis. Consistent with this classification scheme, Chaichana et al. in an
observational study, found that median survival for patients with lateral ventricle associated
glioblastoma was significantly decreased compared with glioblastoma patients in whom the
tumor was not associated with the lateral ventricle (8 months vs 11 months; (152)). Further
supporting a central role for the SVZ in glioblastoma, Evers et al. retrospectively evaluated a
cohort of 55 patients previously diagnosed with WHO Grade III (anaplastic astrocytoma) or
Grade IV gliomas (glioblastoma), examining the correlation between the amount of
radiation delivered to the periventricular tissues and progression-free survival (PFS) (153).
Within their cohort, PFS was significantly increased and relative risk of progression (RR)
significantly reduced in those receiving a high dose of radiation to the bilateral
periventricular regions (>59Gy) compared to the groups receiving a lower dose (<59Gy).
This effect was not seen when comparing high versus low doses of radiation to the SGZ nor
was the effect seen when stratifying groups by total dose delivered indicating radiation
specifically delivered to the periventricular region and hence the SVZ as important(153).

8. ASSIGNING A SOURCE FOR GLIOMA INITIATING CELLS
A substantial amount of clinical and experimental results suggest that the cell of origin
likely derives from the NSCs and/or progenitor cells of the SVZ. Clinically, most though not
all glioblastomas are found to be associated with the periventricular regions of the lateral
ventricles in humans (21, 47). Additionally, delivery of higher than average doses of
radiation to the bilateral periventricular regions correlates with longer PFS compared with
those receiving lower doses to the same regions suggesting that cell populations arising from
or residing in this region are important in tumor recurrence (153). Experimentally,
manipulation of pathways known to be abnormal in glioblastoma such as EGF/EGFR,
PDGF/PDGFR, SHH, and Notch signaling in NSCs can cause phenotypic changes closely
mimicking the human disease.

Several difficulties are readily apparent when trying to assign a specific origin to GICs.
Much of our understanding of neural stem cell biology comes from studies of the rodent
brain. Within the brain of postnatal rodents, several distinct populations of neural stem cell
and lineage-restricted progenitors have been described. Both EGF and PDGF have been
implicated as important growth factors in gliomagenesis with amplification or activating
mutations of the EGFR being described in almost half of all malignant gliomas, similarly
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PDGF and PDGFR are upregulated in glioblastoma (84, 87, 154). EGF responsive type C
cells of the SVZ are a sizable population of migratory, rapidly dividing transit-amplifying
cells. Stimulation with EGF blocks type C cell differentiation, promotes neurosphere
formation in vitro, and enhances their migration along white matter tracts and blood vessels
similar to gliomas. B cells of the SVZ have been shown to express PDGF which in the
rodent SVZ causes progenitor cell proliferation and hyperplasia similar to that seen in early
gliomagenesis (46). Moreover, treatment with antimitotic agents (e.g cytosine-b-D-arabino-
furanoside) kill type C cells while sparing type B cells. Given that the GIC population is
hypothesized to be responsible for both invasive spread and recurrence characteristic of
glioblastomas, this finding can suggest that type B cells are the origin of GICs explaining in
part their resistance to chemotherapy agents (4, 155). Limited evidence supports the
possibility of OPCs being a source of GICs; Kondo and Raff demonstrated that OPCs
manipulated in vitro could acquire stem-like properties along with the re-expression of
Sox2, an immature neuro-epithelial marker associated with glioblastomas (156, 157).
Additionally, in a murine model of oligodendroglioma, Persson et al. demonstrated that
OPC-like rather than NSC-like cells populations enriched for tumor-initiating cells; a
finding further supported by the finding that NG2+-enriched populations from human
oligodendroglioma explants could recapitulate oligodendrogliomas in a xenograft model
(64). In some cases glioblastomas fail to contact the ventricle and hence the SVZ, suggesting
that for a subset of glioblastomas, OPCs or perhaps OSVZ associated radial glia may be the
origin of GICs (47, 77).

Though evidence from rodent models can be cited in favor of multiple cellular origins for
GICs, fundamentally the ability to generalize these results to the human disease is limited.
The structure and function of the human SVZ and associated NSCs are disparately different
from those of the rodent. The presence of a hypocellular gap, lack of a clearly defined RMS,
absence of human equivalents to types A, B, and C cells, and the presence of outer SVZ
layer radial glia that fail to contact the ependyma all stand in clear contrast to the rodent
SVZ.

Additionally, the initial supposition that CD133+ cells represented the GIC subpopulation of
gliomas is increasingly being called into question (4, 7, 38, 50). Initial studies suggested that
the CD133+ population represented GICs due to the observation that neurospheres were
more readily established from these sorted populations compared with CD133− cells, and as
few as 100 CD133+ cells were sufficient to establish tumors in xenograft models (7).
Recently however data is accumulating to suggest while more rare, CD133− populations can
demonstrate a stem-like phenotype and propagate tumors in xenograft models. It is unclear
however if CD133+ and CD133− cells represent entities along a developmental spectrum or
instead reflect distinct stem-like populations based on transcriptional profiles, both able to
act as GICs (158, 159).

9. CLINICAL IMPLICATIONS OF GLIOMA INITIATING CELL IDENTITY
As previously discussed, the CSC population within glioblastomas has a pronounced
resistance to both radiation and chemotherapy suggesting in the context of the CSC
hypothesis that these populations are a likely source of resistance to treatment and
recurrence inherent in this disease (8, 10). Not surprisingly, numerous groups are studying
various molecular pathways involved in glioma-associated CSC biology which may
ultimately find their way into the clinical armamentarium. Heimberger’s group at MD
Anderson for example has shown that constitutive activation of the Signal Transducer and
Activator of Transcription Protein (STAT)-3 in CSCs is involved in the establishment of an
immunosuppressive state; pharmacologic inhibition of STAT3 with WP1066 was found to
partially restore glioma-specific immune responses in allogeneic T cells suggesting a
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possible role in the treatment of glioblastoma by aiding the host anti-tumor response (14).
Modulation of the SHH and Notch pathways has been shown in vitro and in vivo to deplete
stem cell-like populations derived from gliomas and inhibit tumor growth in xenograft
models; in pediatric populations, a phase I study for medulloblastoma using the small
molecule inhibitor of SHH, GDC-0449, is currently underway (95, 108, 160). Driving the
differentiation of glioma-associated CSCs through bone morphogenic protein (BMP)-4
treatment similarly inhibited CSC proliferation and tumor growth (161). Furthermore,
radiation directed at the bilateral periventricular regions of glioblastoma patients has
correlated with improved PFS and reduced RR of progression (153).

These experimental and clinical observations represent an attractive target for future
treatment modalities. Though like most oncologic treatments, need be considered carefully.
Radiation and chemotherapy most often represent a balancing act between efficacy against
tumor and normal tissues, a concept known as the therapeutic index. Targeting STAT3 in
stem-cell populations is an attractive avenue for aiding the host anti-tumor immune
response; STAT3 however is a key signaling molecule in the response to leukemia
inhibitory factor (LIF), important in neural stem cell maintenance (14, 162). Similarly,
radiation targeted at the periventricular regions, a proposed source of GICs and known
location of NSCs, improves PFS (153). Acharya et al. however, have recently demonstrated
low dose radiation exposure (1–2 Gy) can have detrimental effects on NSCs of the SGZ
promoting apoptosis and increased oxidative and nitrosative stress in surviving NSC
populations suggesting a mechanism for radiation-associated cognitive decline (163). Thus
while, treatments targeting the GIC population may provide a new avenue for the treatment
of glioblastoma, the effects on the normal parenchyma will have to be weighed.

10. CONCLUSIONS
Starting with the initial identification of a CD133+-expressing cell subpopulation derived
from gliomas which demonstrated properties of self-renewal, multipotentiality, and
recapitulation of glioblastomas in a xenograft model, the role of stem-like cells in the
ontology of glioblastoma has been a central topic of interest and investigation among glioma
researchers and clinicians (7). The cancer stem cell hypothesis represents an important
advancement in our understanding of the origin of glioblastoma, opening a new avenue for
therapeutic modalities to target a currently incurable and invariably lethal disease. Despite
intensive research by a number of groups, the definitive identity of GICs remains elusive.

Glioblastoma is a highly heterogeneous disease entity with a spectrum of pathologic features
which can vary from patient to patient. Numerous genetic derangements can be
demonstrated in tumor samples from both primary and secondary glioblastomas, which can
recapitulate glioblastomas in experimental models. Differences in anatomic locations can
also be shown to have prognostic significance. Furthermore, experimental evidence can be
provided that implicates several different stem cell and lineage-restricted progenitor
populations as the source of GICs. While research continues to hunt for the true origin of
GICs, the possibility that glioblastomas are in fact several different disease entities which
differ only in relatively subtle ways as evidenced by the apparent differences in anatomic
origins (periventricular vs subcortical vs cortical), genetic derangements (p53 mutations,
PTEN mutations, EGFR amplification and EGFRvIII mutations, etc), as well as pathologic
subtypes (glioblastoma, gliosarcoma, giant cell glioblastoma) might be considered. Only
continued investigation will shed light on this dilemma.
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CNS central nervous system

CSC cancer stem cell

NSC neural stem cell

GIC glioma initiating cell

SVZ subventricular zone

SGZ subgranular zone

RMS rostral migratory stream

OPC oligodendrocyte precursor cell

GFAP glial fibrillary acidic protein

ENU N-ethyl-N-nitrosourea

EGF epithelial growth factor

PDGF platelet-derived growth factor

GSI gamma secretase inhibitor

Shh sonic hedgehog

PTEN phosphatase and tensin homologue deleted on chromosome

PIP3 phosphatidylinositol phosphate

NF neurofibromatosis

TGF transforming growth factor

BDNF brain-derived neurotrophic factor

VEGF vascular endothelial growth factor

NO nitric oxide

eNOS endothelial-derived nitric oxide synthase

MAP microtubule associated protein

CEL contrast enhancing lesion

PFS progression-free survival

RR relative risk

DAPI 4′,6-diamidino-2-phenylindole

STAT signal transducer and activator of transcription

LIF leukemia inhibitory factor

BMP bone morphogenic protein
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Figure 1.
Structure of the Rodent SVZ. (A) Drawing depicting the progression of neural stem cell
(type B) to oligodendroglial precursors (OPC) or transit amplifying cells (type C) to
immature neuroblasts (type A). (B) Drawing depicting the cytoarchitecture and cellular
composition of the rodent SVZ. (C) Immunohistochemistry (40x) of the rodent SVZ. GFAP
– glial fibrillary acidic protein; DCx – doublecortin; DAPI – 4′,6-diamidino-2-phenylindole;
E—ependymal cells; A—type A cells; B—type B cells.
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Figure 2.
Structure of the Human SVZ. (A) Drawing depicting the cellular composition and
cytoarchitecture of the human SVZ. Green cells represent layer III astrocytes, blue cells are
a trapped ependymal cell rest, and elongated red cells are migratory neuron-like cells
characterized at the layer III-IV interface (see text for more information). (B)
Immunohistochemistry (20x) depicting the four layers that make up the human SVZ (Layer I
– Ependymal layer, Layer II – Hypocellular gap, Layer III – Astrocytic ribbon, Layer IV –
Transitional zone). GFAP – glial fibrillary acidic protein; DAPI – 4′,6-diamidino-2-
phenylindole.
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Figure 3.
Differential oncologic effects upon cells of the human brain with varying proliferative
potential. Left: T1-weighted coronal MRI of the human brain. Top right: Drawing depicting
the putative effect of chemical and mutational insults experimentally proposed to be
involved in glioblastoma formation upon SVZ derived cells with proliferative capacity.
Bottom right: Drawing depicting the absent or reduced effect upon subcortical/cortical cells
known to have decreased proliferative capacity compared with the SVZ of chemical and
insults experimentally proposed to be involved in glioblastoma formation. ENU - N-ethyl-
N-nitrosourea; EGF - epithelial derived growth factor; PDGF - platelet derived growth
factor, NF – neurofibromatosis.
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