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Abstract
Alterations in White Matter (WM) may be seen in young relatives at risk and may underlie
vulnerability to Schizophrenia. We were interested in exploring which of the WM regions were
altered in adolescent offspring at familial risk for Schizophrenia. We examined structural
alterations in the offspring of subjects with Schizophrenia or Schizoaffective disorder (HR; n=65;
36 males) and healthy controls (HC; n=80: 37 males) matched for age and education. MRI images
were collected using a GE 1.5T scanner at the University of Pittsburgh Medical Center. Image
processing was done using FreeSurfer (MGH) by an experienced rater blind to clinical data. We
used multivariate analysis of covariance, with intracranial volume (p> 0.05) and age as covariates.
High Risk offspring had significant reductions in total WM, hemispheric WM and WM within left
parietal and left cingulate cortices. Male offspring had more pronounced right hemisphere WM
reductions than females.
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1. Introduction
Schizophrenia represents a group of probably etiologically heterogeneous, severe mental
disorders the neurobiological underpinnings of which are not yet fully understood
(Keshavan et al, 2008a; MacDonald and Schulz, 2009). Schizophrenia has been thought to
result from “disconnectivity” of white matter systems (Friston and Frith, 1995). It has been
proposed that alterations in the white matter connectivity may give rise to the some of the
symptoms found in schizophrenia. For example, Crow (1998) suggested that auditory
hallucinations could arise from aberrant communication between language centers in the left
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and right temporal cortices. Hubl and colleagues reported alterations in lateral parts of the
arcuate fasciculus in patients with hallucinations (Hubl et al. 2004). Aberrations in white
matter connectivity between distributed systems could also lead to disorders of self-
monitoring which in turn could lead to auditory hallucinations (Silbersweig and Stern, 1996,
1998).

Morphometric studies using ROI methodology have shown that in addition to the gray
matter abnormalities, regional and global white matter volumes also have been
compromised in schizophrenia (reviewed in Shenton et al., 2001). This is supported by
several studies using different methodologies such as voxel based Morphometry [Giuliani et
al, 2005; Meda et al., 2008), deformation based Morphometry (Davatzikos, 2005) and ADC
(Apparent diffusion coefficient) based Morphometry (Ardekani et al., 2005). These various
methods have shown, albeit with differing results, that white matter volumes in the brain are
altered in schizophrenia. A recent review and meta-analysis (Olabi et al., 2011) of 928
patients and 867 controls examining 32 brain regions showed that patients’ annual WM
volume reduction in several brain regions was −.32% in the frontal, −.32% in the parietal,
and −.39% temporal lobes.

While there is growing evidence that schizophrenia subjects show changes in white matter
(Kubicki et al., 2007), (Bloemen et al, 2010), there is very little known about whether these
alterations are related to underlying liability to the illness. Family history remains one of the
strongest etiologic factors in schizophrenia, with an estimated heritability of almost 80%
(Mcgrath et al., 2008). The study of young relatives of patients with schizophrenia therefore
offers a unique window into the premorbid liability to the illness (Keshavan et al, 2008b).
The Preclinical (premorbid and prodromal) phase of the illness has been investigated in
studies (Lawrie et al., 2001; Lymer et al., 2006; Lawrie et al., 2008) that have shown white
matter alterations.

Although the evidence for white matter involvement is accumulating, it is unclear whether
this involvement is limited to certain regions or whether they are widespread, and whether
the familial susceptibility may have a role in the neurodevelopmental aspects of WM. To
assess the potential role of WM in disrupted neurodevelopmental processes, we examined
volumetric alterations in the white matter of familial HR subjects and Healthy controls. Few
studies have looked at total WM volume, hemispheric WM volumes and regional WM
volumes across both hemispheres in high risk subjects. These studies have not yielded
consistent results (reviewed in Agnew-Blais & Seidman, in pressreviewed in Agnew-Blais
& Seidman, 2012; Boos et al., 2007: meta-analysis).

We hypothesized that given their familial susceptibility for the illness, subjects at high risk
for Schizophrenia would show volumetric WM alterations compared to age and sex matched
healthy controls.

2. METHODS
2.1. Participants

The study was conducted at the Western Psychiatric Institute and Clinic, Pittsburgh. Sixty
five racially diverse adolescents or young adult offspring (OS) of of schizophrenia probands
and eighty healthy controls (HC) were recruited. The overall sample characteristics have
been described in previous reports (Francis et al, 2011). Twenty eight OS subjects had one
parent with Schizoaffective disorder (SZA) and thirty seven OS subjects has one parent with
SZ. Of these, twenty three fathers had a diagnosis of SZ/SZA, while forty two mothers had a
diagnosis of SZ/SZA. Offspring of parents with schizophrenia or schizoaffective disorder
were recruited by approaching patients in the clinic and through advertisements. Healthy
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Controls were recruited through advertisements in the same community as OS subjects.
Diagnostic assessments of HC and OS and parental diagnoses of schizophrenia or
schizoaffective disorder used the structured clinical interviews for DSM-IV diagnoses
(SCID)(First et al., 1995) and were confirmed using consensus meetings led by senior
diagnosticians (M.S.K and D.M). Participants with an IQ < 80, lifetime evidence of a
psychotic disorder, exposure to antipsychotic medications or anti-depressant medications,
current or recent (within the previous month) substance use disorder, significant
neurological or unstable medical conditions were excluded. All participants signed informed
consent after the study was fully explained to them. For participants < 18 years of age,
consent was provided by the parent or guardian, and the subjects provided informed assent.
The study was approved by the University of Pittsburgh Institutional Review Board.

2.2. Image Acquisition
MRI scans were obtained on subjects using a GE 1.5T whole body scanner (GE Medical
Systems, Milwaukee, Wisconsin). The detailed scanning protocol has been described in an
earlier publication (Gilbert et al, 2001). The scans were T1 weighted images: three-
dimensional spoiled gradient recalled (SPGR), acquired in a steady-state pulse sequence
(124 coronal slices, 1.5 mm thickness, TE=5 msec, TR=25 msec, acquisition
matrix=256×192, FOV=24 cm, flip angle 40°). Approximately 10% of the MRI scans with
radio frequency inhomogeneity defects and motion artifacts were not included in the
analysis.

2.3 Image Analysis
2.3.1 Semi-automated morphometric analysis using FreeSurfer—We used
FreeSurfer (FS) 4.0.5 (64 bit version) (Massachusetts General Hospital, (Fischl et al, 2004;
Desikan et al, 2006; Dale et al, 1999; Fischl et al, 1999; van der Kouwe et al, 2008;) running
on Linux for morphometric analysis. FS, a semiautomated brain image morphometric
software, has been used to study the brain morphology of several illnesses including
schizophrenia (Fischl and Wald, 2007; Fischl et al, 2002;). FS has 3 automated stages
(Fischl et al, 2004), each followed by manual image editing by an Image analyst (AF).
Image processing included motion correction of volumetric T1-weighted images, removal of
non-brain tissue using a hybrid watershed/surface deformation procedure (Segonne et al.,
2004), automated Talairach transformation, segmentation of the subcortical white matter and
deep gray matter volumetric structures (Fischl et al., 2002, 2004b), intensity normalization,
tessellation of the gray matter white matter boundary, automated topology correction (Fischl
et al., 2001; Segonne et al., 2007), and surface deformation following intensity gradients to
optimally place the gray/white and gray/CSF borders at the location where the greatest shift
in intensity defines the transition to the other tissue class (Dale et al., 1999). Detailed
pictures of WM segmentation may be seen in Salat et al, (2009).

We chose FreeSurfer’s semi-automated morphometric analyses for specific reasons. Inter-
subject variability and random error inherent in manual techniques is minimized by
automated methods. A second reason is the economy of time for completion. By contrast,
the possibility of systematic error in automated approaches can be detected and corrected by
rigorous manual editing, such as that followed in this study. Each scan was carefully
checked for errors of template registration, skull strip, segmentation and parcellation at each
stage of the image processing. We performed Inter-Rater reliability between AF and NT (see
acknowledgements) on the 33 WM regions of ten brains and obtained an average inter class
correlation value = .99 (WM) and .96 (GM).

Our objective was to examine early WM volume alterations in the regions of the left and
right hemispheres of non-psychotic High risk subjects and controls. Since two decades of
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research studies have consistently implicated regions within the frontal, temporal and
parietal, and cingulate WM in the etiopathogenesis of SZ (reviewed in Shenton et al, 2001),
we examined the WM volumes in these lobes. Although we did not include the other regions
within the MANCOVA, we present ANCOVA analysis of the WM of all the other regions
in Tables 1 and 2. The corpus callosum was not included since it was published elsewhere
(Francis et al, 2011).

2.4. Statistical Analysis
White matter volumes were normally distributed [Shapiro–Wilk’s test (W statistic, p>0.1)].
Multivariate analyses of covariance (MANCOVA) were used with Group and Sex as
categorical predictors and Age and ICV as covariates to test differences in white matter
volumes between offspring and healthy controls. We first compared total, left and right
hemispheric WM across groups. We next performed several MANCOVA analyses on each
of the lobes (right and left Frontal, Temporal, Parietal lobes, Motor-Somatosensory cortex
and Cingulate cortices) as dependent variables. Tables 2 and 3 show the regions included in
the MANCOVAS. Significant MANCOVAs were followed by univariate ANCOVAs to
identify specific regional volumetric deficits. Univariate ANCOVAs were carried out on
other regions in secondary analysis. Bonferroni corrections were used on the MANCOVAs
and ANCOVA tests to control for multiple comparisons. We derived a Bonferroni corrected
p value by dividing 0.05 by the number of MANCOVAs and the univariate tests within each
MANCOVA. This alpha value was then used to determine whether each p value survived
the correction or not.

3. RESULTS
3.1. Total and Hemispheric White Matter

OS subjects had significantly reduced total white matter F (1, 145) = 15.54 p < 0.0001.

OS subjects had significantly less WM in the left hemisphere [HR - 204734.22 mm3 (SD)
27586] [HC - 218976.6 mm3 (SD) 27728.85] (F (1, 145) = 14.83 p < 0.0001] and right
hemisphere [HR-206716.82 mm3 (SD) 28635.97] [HC - 221522.54 mm3 (SD) 27932.82] (F
(1, 145) = 15.46 p < 0.0001].

3.2. Lobar effects
The MANCOVAs showed that left parietal [ F(6,142) = 3.42 p < 0.004], left motor-
somatosensory [ F(3,142) = 3.3 p < 0.02] left cingulate [ F(4,141) = 3.44 p < 0.01] and right
temporal[ F(8,141) = 2.5 p < 0.01], right parietal [ F(6,142) = 2.5 p< 0.02 ] had significantly
reduced volume in High risk offspring compared to healthy controls. Only the left parietal
cortex WM and left cingulate WM survived the correction for multiple MANCOVAs.
Tables 2 and 3 shows the ANCOVA analysis for all the white matter regions in high risk
subjects when compared to healthy control subjects.

3.3. Gender, Age and White Matter
There was a significant group X sex interaction in the right hemisphere WM volume F (1,
145) – 4.6408, p < 0.032. Although HR subjects had smaller RH WM volumes than their
healthy counterparts, this appeared to be more pronounced in the males than females. There
were no significant sex by group interaction in the left hemisphere WM. White matter
correlated positively with age for all assessed regions but these correlations did not
significantly differ between the groups.
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4. Discussion
White matter constitutes the anatomical infrastructure for inter and intra hemispheric
connectivity. In a sample of non-psychotic genetic high risk offspring and age matched
healthy controls, our study showed that total WM volume in the right hemisphere was
reduced by 6.68 % and the left hemisphere was reduced by 6.5 % in high risk subjects
indicative of a developing vulnerability to the illness. In addition, male HR brains showed a
greater reduction in the right hemisphere WM when compared to females. Our study showed
that WM in the posterior regions of the brain namely left parietal cortex, and left cingulate
cortex were significantly reduced in HR subjects. A study done on 22q11 deletion
syndrome, which is a risk model for Schizophrenia, showed similar WM reductions in the
parietal, temporal and occipital areas of the brain (da Silva Alves et al, 2011). It is possible
that such a reduction of WM volume early in the preclinical phase may present as a decrease
in the white matter fiber density in schizophrenia as shown in several DTI studies (Karlsgodt
et al, 2009, Bloemen et al, 2010). In a separate study on the same sample, we showed that
the splenium volume of the Corpus Callosum (Francis et al, 2011) was significantly reduced
lending evidence that the inter-hemispheric connectivity between temporo-parietal regions
could also be altered in this sample.

ROI based studies have shown that frontal WM is compromised in SZ (Brier et al., 1992;
Buchanan et al,2004; Sanfilipo et al, 2000; Wible et al., 2001; Hulshoff-Pol 2002; Mathalon
et al, 2003 and Buchsbaum et al, 2006). In a meta-analysis of 17 VBM studies of WM, Di et
al, (2009) showed WM alterations in the right and medial frontal WM regions which was
consistent with the ROI studies. In addition, they showed that the internal capsule WM is
also altered. This is consistent with several DTI studies (Szeszko et al., 2005; Kubicki et al,
2005, 2007; Buchsbaum et al., 2006). In summary, WM alterations in the left hemisphere in
HR subjects observed in this study lend evidence to the concept of a loss of connectivity
between regions as a possible marker for susceptibility in schizophrenia. It is possible that
such abnormalities may underlie a later misconnection syndrome as hypothesized by several
investigators of white matter involvement in schizophrenia (Karlsgodt et al, 2009). More
studies are warranted since genetic influences on WM volume and their relationship with
cognitive abilities in genetic High risk subjects and healthy individuals are only being
presently unraveled. While morphometric studies of WM such as the present study provide
important clues to altered short and long range connectivity of WM fasciculi in the brain,
Diffusion Tensor Imaging studies and fMRI connectivity studies are more likely to
definitively inform these issues.
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Highlights

• Our study compares WM volumes in Genetic High Risk against Control
subjects.

• WM volume in the R hemisphere was reduced by 6.68 % in high risk subjects.

• Left hemisphere WM was also reduced by 6.5 %.

• Male HR brains showed a greater reduction in the R hemisphere WM.

• WM volumes of L parietal lobe, and L cingulate cortex were reduced in HR
subjects.
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Fig 1.
FreeSurfer White Matter Segmentation:
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Fig 2.
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Table 1

Demographic Information of Subject Populations

Variable Offspring (N = 65) Control (N = 80)

M (SD)/N (%) M (SD)/N (%) P b

Age 16.30 (3.40) 16.62 (3.65) 0.60

Male 38 (54%) 24 (38%) 0.08

Caucasian 34 (49%) 41 (65%) 0.08

Education (yrs) 9.72 (3.33) 10.18 (3.29) 0.43

b
Fisher’s exact test or independent t-test, two-tailed, for significant differences between OS and HC participants.
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