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A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its
DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible
HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not
yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely
in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of
spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript
different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase
spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression
is distinct from that observed for another member of this gene family, which was previously shown to be
expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family
members play distinct roles in the differentiation of the germ cell lineage in mammals.

Heat shock proteins are activated in response to external
stimuli such as elevated temperature in organisms as dis-
tantly related as bacteria and humans (9, 19, 33, 39). The
genes involved in this highly conserved response are
grouped on the basis of the relative molecular weights of
their protein products. There is frequently more than one
gene within each group. The existence of multiple members
of the various HSP gene families is widespread in evolution.
The yeast HSP70 gene family consists of at least eight
different genes which have been identified at the genetic and
molecular level (9). Recent estimates of the number of genes
in the mouse and human HSP70 gene families suggest that
they contain at least 5 (21) and 8 to 10 (25) genes, respec-
tively.

Studies on the expression of the HSP genes suggest that
they may also be activated as part of a normal developmental
program. Expression of HSP70 gene family members has
been observed during embryonic development of organisms
as diverse as frogs (6), sea urchins (36), and mice (4, 5, 13,
16). Meiotic cells have also been shown to be a site of
expression of members of the HSP gene families. HSP20
family members are expressed in growing oocytes and in
spermatocytes of Drosophila (12, 46) and in sporulating
yeast cells (17). HSP70 genes have been shown to be
expressed in the germ line of Drosophila (7) and mice, rats,
and humans (16, 16a, 45).

Hybridization with a cDNA probe corresponding to a heat
shock-inducible member of the HSP70 gene family has been
shown to yield in mammalian testes a uniquely sized tran-
script that is not found in other tissues (45). This develop-
mentally regulated transcript is expressed at the highest
levels in enriched populations of haploid spermatids. The
transcript appears to be very stable, since it remains at high
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levels in RNA isolated from elongating spermatids and
residual bodies. A low level of hybridization was also
observed in RNA isolated from spermatogenic cells in earlier
stages of differentiation. This hybridization might have been
attributed to the low level of early spermatids which con-
taminate the meiotic prophase cellular fraction (43). How-
ever, we also considered the possibility that the high level of
sequence similarity of the HSP70 genes across species and
among family members might result in our detecting the
expression of another member of the HSP70 gene family.
The high level of sequence conservation of the HSP70

genes has permitted the identification of multiple members of
this gene family. In the present study, we report the isolation
of a new member of this gene family and its relationship to
other HSP70 gene family members at the level of DNA
sequence analysis. Characterization of the expression of this
gene reveals that it is expressed with a unique developmental
specificity within the male germ line.

MATERIALS AND METHODS

Isolation of genomic clones. Two mouse genomic libraries
(kindly provided by R. Near, Massachusetts Institute of
Technology) were constructed by partial digestion of either
AJ or BALB/c mouse DNA with MboI and isolation of 15- to
20-kilobase (kb) fragments on a sucrose gradient (22). The
size-selected DNAs were ligated into the BamHI site of the
lambda phage vector Charon 30 and packaged (22); 5 x 105
phage from the AJ library were screened by plaque hybrid-
ization with a 32P-labeled Drosophila HSP70 gene probe (14)
as described previously (44). An EcoRI-BamHI restriction
fragment from phage 11 (see Results) was subcloned into
pBR322 (pM1.8) and used to screen a second (BALB/c)
genomic library. A single recombinant phage, X 621, was
obtained. Restriction and subsequent genomic DNA blot
analysis indicated that only a 3.8-kb fragment from an EcoRI
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digest of X 621 DNA contained HSP70-related sequences.
This fragment was subcloned into pUC18 to generate pM3.8.
Genomic Southern blot analysis. High-molecular-weight

mouse DNA was isolated from NIH 3T3 cells (22); -10 pug of
the digested DNA was electrophoresed on a 0.8% agarose
gel and transferred onto GeneScreen Plus membrane (New
England Nuclear Corp.) according to protocols supplied by
the manufacturer. The filters were prehybridized overnight
at 650C in 10% dextran sulfate-1.0 M NaCI-1.0% sodium
dodecyl sulfate (SDS) with 100 pug of denatured salmon
sperm DNA per ml. Probe was added to 4 x 105 cpm/ml, and
hybridization was allowed to proceed at 650C for a minimum
of 16 h. Hybridized filters were washed sequentially, 1 h
each, in 2x SSC (lx SSC is 0.15 M NaCl4.015 M sodium
citrate)-1% SDS at 650C (two times) and then with 0.2x
SSC-1% SDS at 650C (two times). For rehybridizations,
filters were treated with 0.4 M NaOH for 30 min at 420C,
neutralized in 100 mM Tris hydrochloride (pH 7.5), moni-
tored for complete probe removal by autoradiography, and
then rehybridized. Hybridized filters were exposed at -70°C
with intensifying screens.
Two different clones were utilized for the genomic analy-

sis. Clone pM9.5 is a pBR322 subclone of an approximately
9.5-kb BamHI genomic fragment which contains a heat-
inducible mouse HSP70 gene (C. Hunt and S. K. Calder-
wood, submitted for publication). The 1.5-kb probe from
pM9.5 is a BalI-XhoI fragment which spans amino acids 1
through 542 of the coding portion of the HSP70 gene. The
gene represented by this clone will be referred to as HSP70.1
in this manuscript. The second probe was the 1.8-kb EcoRI-
BamHI insert from pM3.8. DNA sequence analysis (see
Results) revealed that this fragment contains -500 base pairs
(bp) of upstream sequences and ends at a BamHI site which
encodes amino acid 462. The HSP70 gene family member
represented by this clone will be referred to as HSP70.2 in
this manuscript. Both probes were labeled with [32P]dXTP
by random priming on purified DNA inserts (11).
DNA sequence analysis. Sequence analysis ofHSP70.2 was

carried out by the dideoxy-chain termination method of
Sanger et al. (38), substituting 7-deaza GTP for dGTP in the
reaction to eliminate GC compression (23). From pM1.8 and
pM3.8, specific subclones were constructed in M13mpl8 or
M13mpl9 by forced directional cloning. Sequence data were
compiled on a Vax2O6O computer with Intelligenetics pro-
grams.
Recombinant DNA clones used in RNA analysis. The fol-

lowing probes were obtained from cloning and sequencing
studies for use in analysis of expression of the gene: (i)
pM1.8, see above; (ii) pM1.8-200, an -230-bp SmaI-to-TaqI
fragment of pM1.8 which contains 121 bp of 5' untranslated
sequences, 30 bp of the most 5' region of the putative coding
region of HSP70.2, and vector sequences.
The following probes were obtained from other investiga-

tors for use in our analysis ofRNA from various tissues and
cell lines: (i) pMHS213, a HindIII-EcoRI insert containing
1.3 kb of cDNA for a heat-inducible member of the HSP70
family (21; a gift from L. Moran); (ii) pabl sub9, a plasmid
comprising sequences derived from the Abelson murine
leukemia virus (41; a gift from S. Goff).

Source of tissues and cells. Swiss Webster male mice were
used as the source of normal mouse tissues. For enrichment
of particular testicular cell types by the developmental
progression of spermatogenesis in the mouse, testes were
collected from animals on days 7 and 17 of life (3, 28, 42).
Enriched populations of cells in specific stages of spermato-

genesis were separated by sedimentation at unit gravity
according to procedures described by Wolgemuth et al. (43).
Mouse L cells were grown in Dulbecco minimal essential

medium with 10% fetal calf serum at 370C with 5% CO2 and
subjected to heat shock as described previously (45). The
heat shock treatment was a modification of that described by
Lowe and Moran (20): L cells were heat shocked at 430C for
90 min and allowed to recover for 2 h at 370C. Cells were
lysed directly on the culture plates, and RNA was isolated
and analyzed as described below.

Analysis of mRNA. RNA was isolated from the different
tissues and separated testicular cell populations by using the
LiCl precipitation method of Cathala et al. (8). Poly(A)+
RNA was selected through one cycle of oligo(dT)-cellulose
chromatography (2). RNA that is not retained by oligo(dT) is
termed the flow-through RNA.
RNA samples were electrophoresed on denaturing 0.8%

agarose-2.2 M formaldehyde gels. Gels were blotted onto
nitrocellulose or GeneScreen Plus (22) and baked for 3 h at
80'C (nitrocellulose) or exposed to UV light (GeneScreen
Plus) to fix RNA to the filters. Probes were labeled by nick
translation or random priming (11). Hybridization was es-
sentially as described by Wahl et al. (40) at high stringency in
the presence of 10% dextran sulfate, 50% formamide, and
4x SSC. After hybridization, filters were washed sequen-
tially for 20 min each in 2x SSC-0.1% SDS (two times), lx
SSC-0.1% SDS, 0.1 x SSC-0.1% SDS, and 0.1x SSC alone,
all at 650C. Filters were exposed to autoradiographic film
with intensifying screens.

RESULTS

Isolation and genomic organization of the HSP70.2 gene.
Approximately 5 x 105 recombinant lambda phage from an
AJ strain mouse genomic library were screened with a probe
for the Drosophila HSP70 gene. Eight clones were con-
firmed as bona fide HSP70 clones. Restriction enzyme
mapping of the clones demonstrated that three unique
phages, designated X 4, X 11, and X 14, had been isolated. X
14 was shown to contain a mouse HSP70 gene which
recognizes a heat-inducible mRNA of 3.1 kb in mouse NIH
3T3 cells (Hunt and Calderwood, submitted). The sequence
in the coding region of this gene is identical to that of
pMHS213, a cDNA isolated from a cDNA library prepared
from heat-shocked mouse L cells (20). X 4 appears to contain
an HSP70-related pseudogene (data not shown). The results
for X 11 are described below.

Restriction enzyme digestion and Southern blot hybridiza-
tion analysis yielded the restriction map shown in Fig. 1A. A
4.0-kb BamHI fragment contained sequences which hybrid-
ized to the Drosophila HSP70 gene probe. HSP70 cross-
hybridizing sequences were further localized to a 1.8-kb
EcoRI-BamHI subfragment which was subcloned into
pBR322 to form the clone pM1.8.
DNA sequence analysis (see below) indicated that clone

pM1.8 contained only the 5' 462 amino acids of the putative
gene product for this gene, ending at a BamHI restriction
site. Because this site formed the junction between the insert
DNA and the right arm of the lambda phage cloning vector,
it was apparent that only part of the gene had been cloned. A
second mouse genomic library was therefore screened with
pM1.8 as the probe. Among the phage giving positive
hybridization, one clone liberated a 3.8-kb EcoRI fragment
that hybridized with pM1.8. This 3.8-kb fragment was sub-
cloned into the EcoRI site of pUC18 to generate plasmid
pM3.8 (Fig. 1A).
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FIG. 1. Restriction and Southern blot analyses of the HSP70.2
gene. (A) Restriction map of X 11 showing its relationship to the
plasmid subclones. The locations of all BamHI restriction endonu-
clease sites (B) are indicated for the insert DNA (single line). Phage
DNA is represented by double lines, and the single thick line is the
HSP70.2 coding sequence. The arrow indicates the direction of
transcription. Clone pM1.8 is a pBR322 subclone containing 1.8 kb
of DNA from the indicated EcoRI site (R) to the BamHI site at the
junction between the insert and phage sequences. Clone pM3.8 was
created by subcloning a 3.8-kb EcoRI fragment from X 621 into
pUC18. It overlaps pM1.8, extending past the 3' end of the gene. (B)
Genomic blot analysis. Genomic DNA from mouse NIH 3T3 cells
was restricted with BamHI (lanes 1 and 4), BamHI-EcoRI (lanes 2
and 5), or EcoRI (lanes 3 and 6), separated by gel electrophoresis,
and transferred to GeneScreen Plus membranes. Lanes 1 through 3
were probed with a radiolabeled 1,500-bp fragment isolated from
pM9.5 containing sequences spanning amino acids 1 through 542 of
this gene. Lanes 4 through 6 are the same filter as in lanes 1 through
3 after the first probe was removed and annealed with the 1.8-kb
insert from pM1.8. This fragment spans the complete 5' end of the
HSP70.2 gene, to amino acid 462. Experimental conditions are
described in Materials and Methods. Exposure time was 1 day.

Southern blot hybridization analysis was used to deter-
mine the number of genes in the mouse genome related to
pM1.8. High-molecular-weight DNA was digested with
EcoRI or BamHI or both restriction endonucleases. The
resulting fragments were analyzed by Southern blot hybrid-
ization analysis with the mouse genomic probe pM1.8 (see
above) or pM9.5, a subclone of X 14 (Hunt and Calderwood,
submitted). Clone pM9.5 detected three or four bands in all
digests (Fig. 1B); the bands were not the same sizes as the
EcoRI and BamHI fragments found in clone X 11 (Fig. 1A).
The filter was then rehybridized with clone pM1.8. A single
major band was detected in each digest: a 4.0-kb fragment
for BamHI, a 1.8-kb BamHI-EcoRI fragment, and a 3.8-kb
EcoRI fragment. We concluded that pM1.8 represents a

single-copy gene which differed enough in its DNA sequence
to be distinguished from other HSP70-related genes. As
noted in Materials and Methods, we have termed this gene
HSP70.2 for the purposes of this discussion.
Primary sequence analysis of HSP70.2. Clones pM1.8 and

pM3.8 were used to determine the complete nucleotide

sequence of HSP70.2 (Fig. 2). A single unspliced open
reading frame was observed, capable of encoding a 634-
amino-acid protein with a predicted molecular weight of
69,734. A TATA box was found at nucleotide 631, upstream
of the translation start site. Assuming that transcription
starts 32 nucleotides 3' of the box, an untranslated 121-
nucleotide leader is expected. Further upstream, several
additional sequence motifs characteristic of eucaryotic pro-
moters were found. At nucleotide 442, an inverted CCAAT
box was found 36 bp 5' of the TATA sequence. The core Spl
sequence CCGCCC is present at nucleotide 419, and much
further 5' several more Spl and CCAAT sequences are
present. HSP70.2 lacks an exact match to the heat shock
element (HSE) consensus sequence CNNGAANNTTC
NNG (31, 32); 12 of 14 nucleotides were the same beginning
at nucleotide 445: CTGAGAGTTTCCAG.
The nucleotide and predicted amino acid sequences of

HSP70.2 were compared to several mammalian HSP70 gene
family members (Table 1). HSP70.2 is closely related to the
heat-inducible members of the HSP70 gene family, with 79%
nucleotide similarity to either a human (15) or mouse (Hunt
and Calderwood, submitted) gene, and 72% similarity to the
published partial sequence of the cDNA pMHS213 which
was isolated from a heat-shocked mouse L-cell library (21).
The percent similarity rises to 83% when both species are
compared at the amino acid level. Compared with the
clathrin-uncoating enzyme, the nucleotide relationship is
73% similarity for the human gene (10) and 74% for the rat
gene (29). Unexpectedly, the corresponding amino acid
comparison between HSP70.2 and the clathrin-uncoating
enzyme genes yielded the highest similarity found, 86% for
the human gene and 87% for the rat gene. The least similarity
was observed when HSP70.2 was aligned with the rat
glucose-regulated protein, with only 63% similarity at the
amino acid level (26).

Expression of the HSP70.2 gene. To identify the transcripts
produced by HSP70.2, we isolated RNA from mouse L cells,
from heat-shocked L cells, and from selected adult mouse
tissues and assayed for the presence of transcripts recog-
nized by HSP70.2 by Northern (RNA) blot hybridization
analysis. Probe pM1.8 detected heat-inducible transcripts of
-2.4 and 3.5 kb in total RNA from heat-shocked L cells (Fig.
3) and from somatic tissues such as liver and brain (data not
shown) but not in non-heat-shocked L cells (Fig. 3). This
probe also recognized an abundant transcript of -2.7-kb in
length in RNA from adult mouse testes (Fig. 3). A similar
pattern was obtained when RNAs from the same sources
were hybridized with pMHS213, a cDNA isolated from a
heat-shocked L-cell cDNA library (Fig. 3).
Because of the high level of sequence similarity among

various members of the HSP70 gene family, we then exam-
ined these RNA samples with probe pM1.8-200, which
contains sequences unique for the gene HSP70.2 (Fig. 3). In
contrast to the pattern observed using the longer genomic
probe pM1.8, which contains regions of extensive sequence
identity to pMHS213, the 200-bp subclone did not recognize
transcripts in the RNA from heat-shocked L cells. However,
probe pM1.8-200 readily detected the -2.7-kb transcripts in
RNA isolated from adult mouse testis (Fig. 3).

Expression of HSP70.2 in the male germ line. As noted
above, the tissue specificity of expression and the size of the
resulting testicular transcripts were strikingly similar to our
previous observations on another member of the HSP70
gene family, recognized by the cDNA clone pMHS213 (45).
We therefore compared the cellular and developmental
specificity of expression of HSP70.2 with that observed for
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FIG. 2. Nucleotide sequence of the HSP70.2 gene. The complete nucleotide sequence of HSP70.2 is presented, as determined from the
genomic DNA in clones pM1.8 and pM3.8. Nucleotide sequences similar to elements known to function in transcription, either by functional
or protein binding assays, are indicated as follows: A, TATA box; B, inverted CCAAT box; C, SP1 elements CCGCCC; D, HSEs,
CNNGANNTTCNNG.
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TABLE 1. Nucleotide and amino acid sequence similarities
among HSP70 genes

% Similarity of HSP70.2
HSP70 gene or product (reference) Amino

Nucleotides acids

Human uncoating enzyme (10) 73 86
Rat uncoating enzyme (29) 74 87
Human HSP70 (15) 79 83
Mouse HSP70.1a 79 83
Rat GRP (26) 63
pMHS213 (21) 72 76

a Hunt and Calderwood, submitted.

the gene detected by pMHS213 in a series of Northern blot
hybridization analyses.
RNA was isolated from testes at three stages of postnatal

development to determine whether HSP70.2 is expressed in
testes which contain premeiotic or postmeiotic germ cells.
Testes recovered from mice on postnatal day 7 or 8 contain
germ cells in various stages of the stem cell differentiation
cycle but do not contain germ cells which have entered
meiotic prophase (3, 28). Testes from animals on day 17 of
postnatal development contain germ cells which have en-

tered meiotic prophase and progressed as far as the pachy-
tene stage, in addition to the mitotic stem cells. Testes from
adult animals contain virtually the complete spermatogenic
cell lineage, from mitotic stem cells to fully differentiated
spermatozoa. Testes at each of these stages contain the full
complement of somatic cells, including Leydig cells and
Sertoli cells.
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FIG. 3. HSP70 gene transcripts in mouse L cells and normal
mouse tissues. RNAs were electrophoresed in denaturing 0.8%
agarose-2.2 M formaldehyde gels and processed for Northern blot
hybridization analysis with 32P-labeled pMHS213, the genomic
clone pM1.8, or the genomic subclone pM1.8-200. Hybridization
conditions were at high stringency (22, 40). L cells were heat
shocked as previously described (45). Lanes marked L-cell and
L-cell HS (heat shocked) contained 15 ,ug of total RNA; lanes
marked adult testes contained 20 Rg of total RNA. The asterisk
indicates a residual Hox-1.4 (42) transcript from a previous hybrid-
ization. Exposure times: pMHS213, 1 day; pM1.8, 3 days; pM1.8-
200, 7 days.

The results are depicted in Fig. 4. Both pM1.8 and the
HSP70.2-specific subclone pM1.8-200 readily detected tran-
scripts in RNA from testes from day 17 as well as in RNA
from adult animals. In contrast, pMHS213 only detected
2.7-kb transcripts in RNA from the adult animal (Fig. 4),
consistent with our earlier observations (45). These data
demonstrate that HSP70.2 is expressed earlier in the differ-
entiation pathway of the germ cell lineage, most abundantly
at or about the time the cells enter meiotic prophase, than is
the gene whose transcripts are recognized by the probe
pMHS213. This observation further suggests that there are
two distinct HSP70 genes, which exhibit discrete develop-
mental specificity of expression in the mouse male germ line
but which yield similarly sized transcripts.

Further support for the expression of two genes and
additional data defining the cellular specificity of expression
of HSP70.2 were obtained by examining RNA isolated from
enriched populations of spermatogenic cells. The rationale
and methods for this experimental approach have been
discussed in detail in previous studies from our laboratory
(35, 42). In brief, RNA was isolated from enriched popula-
tions of spermatogenic cells in meiotic prophase (predomi-
nantly pachytene), of early (round) spermatids, and of cyto-
plasmic fragments of elongating spermatids and residual
bodies. Analysis for the presence of the 2.7-kb transcripts
was performed by Northern blot hybridization (Fig. 5).
Transcripts detected by pM1.8-200 (and by pM1.8) were
most abundant in the meiotic prophase cells. In certain blots,
it appeared that HSP70.2 transcripts decreased in abundance
in early spermatids and in residual bodies and cytoplasmic
fragments (Fig. 5 and data not shown). In contrast, the
2.7-kb transcripts detected by pMHS213 were most abun-
dant in early spermatids and residual body fractions (Fig. 5).
c-abl, which has been shown to produce a novel transcript
uniquely in early spermatids and residual bodies (35), served
as a positive control for RNA integrity.

DISCUSSION

DNA sequence and structure of HSP70.2. Examination of
the DNA sequence data for HSP70.2 suggests that HSP70.2
may occupy a unique position in the HSP70 gene family.
Structurally, it is closely related to the heat-inducible mem-
bers of the family. Like all of the known heat-inducible
members, it lacks introns in the coding sequence. It is also
most similar at the nucleotide level to sequences of the
inducible members (79%). Additionally, HSP70.2 contains a
sequence with 12 of 14 bases matching the HSE consensus
sequence CNNGAANNTTCNNG, located in the same rel-
ative position of the HSEs in the chicken HSP70 gene (24).
This partial HSE sequence, however, appears to be nonfunc-
tional with respect to heat inducibility. All known heat-
inducible eucaryotic HSP70 promoters contain either exact
HSEs or multiple overlapping HSEs of higher homology
than that found in HSP70.2 (19, 31, 32). Other members of
the HSP70 gene family which contain inexact HSEs, such as
the genes encoding glucose-regulated protein or clathrin-
uncoating enzyme, are also not induced by heat or are only
marginally induced (1, 10, 18). The predicted amino acid
sequence of HSP70.2 is most highly similar to the sequence
of the gene encoding clathrin-uncoating enzyme, an HSP70
family member involved in removing the clathrin network
surrounding coated pits (37). The HSP70.2 gene, therefore,
may have been derived from the heat-inducible HSP70 genes
but may have evolved functional properties more similar to
those of genes encoding the uncoating enzyme.
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FIG. 4. Developmental stage-specific expression of HSP70 mRNAs. RNA was isolated from mouse testes recovered from animals on day
7 or 8 and on day 17 of life and from adult animals. Northern blot hybridization analysis was performed as described in the legend to Fig. 3.
The left panel shows the ethidium bromide-stained gel; the right panels are the autoradiographs. Each lane contained 25 kg of total RNA.
Exposure time for each panel was 1 day.

No consensus polyadenylation signal (AATAAA) was
observed within 1 kb of the translation stop codon. We
suggest that the sequence TACAAA, at position 3350, may
represent the polyadenylation signal, based on the following
evidence. Oppi et al. (30) recently suggested that this se-
quence serves as the polyadenylation signal of the develop-
mentally regulated c-abl testicular transcript (35). Northern
blot hybridization analysis with various genomic fragments
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in this region demonstrated a positive hybridization signal to
testicular RNA when fragments which are 5' to this se-
quence were used (Zakeri, Hunt, and Wolgemuth, unpub-
lished observations). Conversely, fragments which originate
from regions 3' o this sequence do not yield positive
hybridization signal to testicular RNA. Finally, the predicted
length of the mRNA, if this sequence serves as a polyade-
nylation signal, would be 2,861 nucleotides. With the addi-
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FIG. 5. Northern blot hybridization of RNAs isolated from enriched populations of spermatogenic cells. The cells were purified according
to our standard procedures, RNA was isolated, and Northern blot hybridization analysis was performed as described in the legend to Fig. 3.
Lanes: Meiotic pro, cells in the prophase stage of meiosis, predominantly pachytene; E'tid, early spermatid cells; cyto frag/RB, cytoplasmic
fragments of elongating spermatids and residual bodies fraction of cells; Testis-A', 5 kug of poly(A)+ RNA from total adult testis; Testis-FT,
25 kug of poly(A)- RNA from total testis. Total RNAs from the various sources contained 15 Rg per lane. The panel labeled abi served as a

positive control (blot provided by G. Mutter [27]); transcripts detected were identical to those described in our previous studies (35). Exposure
times: pMHSP213, 3 days; pM1.8, 2 days; pM1.8-200, 7 days; abl, 2 days.
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tion of a short poly(A) tail, the final length would be very
close to the size predicted from relative migration on form-
aldehyde gels.

Expression ofHSP70 gene family members in the male germ
line. The pattern of expression of HSP70.2 exhibits certain
similarities to that observed previously for another member
of the HSP70 gene family, defined as being recognized by the
cDNA clone pMHS213. Both genes are expressed at high
levels in the male mammalian germ line and yield transcripts
-2.7 kb in length. Although this size similarity complicated
our analysis, it was not totally surprising given the high level
of conservation of the overall structure and sequence iden-
tity among the HSP70 genes. All mouse HSP70 transcripts
reported to date fall with the size range of 2.0 to 3.5 kb (16,
21, 45). Lowe and Moran (21) noted two distinct but comi-
grating transcripts in heat-shocked L cells. The testicular
transcripts recognized by clone pMHS213 are indistinguish-
able in length among mouse, rat, and human samples (45).
Delineation of the precise size of the -2.7-kb transcripts will
await the availability of cDNA clones.
The developmental regulation of expression of HSP70.2

was distinct from that observed for the HSP70 gene identi-
fied by clone pMHS213. High levels of HSP70.2-specific
transcripts were detected in early stages of spermatogenic
development, including the pachytene stage of meiotic pro-
phase. The gene recognized by pMHS213 was expressed
later, most abundantly in postmeiotic (haploid) cells in
terminal stages of spermiogenesis. We are not aware of any
other developmental system in which sequential activation
of members of the HSP70 gene family has been observed,
notably in the absence of exogenous stress.

Speculation on the function of HSP70 gene family members
in the male germ line. It is premature to propose specific
functions during spermatogenesis for HSP70 gene family
members. However, certain aspects of the precise and
evolutionarily conserved structure and pattern of expression
of various HSP genes allow us to note several themes.
The conservation of expression of the low-molecular-

weight heat shock proteins within meiotic cells has been
documented in organisms as diverse as Drosophila and
yeasts (17, 46). HSP70 gene family members are expressed
in the germ cell lineage in evolutionarily divergent organ-
isms, including Drosophila (7) and mammals (45). Our pre-
vious observations (45) and the studies presented here
suggest that expression of more than one member of the
HSP70 gene family is important in the mammalian germ cell
lineage. Expression of the HSP70 family may also be impor-
tant in early mammalian embryogenesis (4, 13, 16). In each
of these examples, specific developmental induction of var-
ious HSP gene family members is occurring in response to as
yet unidentified developmental cues.

It is interesting to note that the expression of HSP genes
coincides temporally with major differentiative events in
these cells. It has been suggested that heat shock proteins or
related proteins may function in the assembly and/or disas-
sembly of a variety or cellular macromolecular structures
(33). These proteins could thus be involved with the forma-
tion and disruption of morphogenetic structures during germ
cell differentiation. A remarkable and transient structure
such as the synaptonemal complex would be an obvious
candidate for a structure that needs to be assembled and
broken down during meiotic prophase. Similarly, the round
spermatid undergoes striking morphological changes during
spermiogenesis, forming a flagellum and an acrosome. Early
embryonic morphological changes are less dramatic, al-
though the formation of the somatic-type pronuclei from the

sperm and egg nuclei serves as an example of a major
cellular structural change.
The association of HSP gene expression with the appear-

ance of such precise morphological events should facilitate
analysis of the effects of disrupting the normal pattern. That
is, overexpression or interference with expression could
result in a specific morphological phenotype. Although the
presence of multiple HSP family members may complicate
such analysis (4), mammalian gametogenesis may provide a
good test system for ascertaining the effects of disrupting
gene function, since it appears from our results that two
different members of a specific family have evolved to be
expressed at unique times and may thus have evolved unique
and critical functions as well.
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