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Abstract
Identifying genetic variants influencing human brain structures may reveal new biological
mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is
a biomarker of incipient Alzheimer’s disease1,2 and is reduced in schizophrenia3, major
depression4 and mesial temporal lobe epilepsy5. Whereas many brain imaging phenotypes are
highly heritable6,7, identifying and replicating genetic influences has been difficult, as small
effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies.
Here we report genome-wide association meta-analyses and replication for mean bilateral
hippocampal, total brain and intracranial volumes from a large multinational consortium. The
intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P
= 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue.
Additionally, rs10784502, located within HMGA2, was associated with intracranial volume
(12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total
brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).

The hippocampal formation is a key brain structure for learning, memory8,9 and stress
regulation10 and is implicated in many neuropsychiatric disorders. Further, overall brain and
head sizes are altered in many disorders and are significantly correlated with general
cognitive ability11–13. Hippocampal, total brain and intracranial volumes are highly heritable
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in non-human primates14,15 and in humans6,7. Finding loci that influence these measures
may lead to the identification of genes underlying susceptibility for neuropsychiatric
diseases. Here we sought to identify common genetic polymorphisms influencing
hippocampal, total brain and intracranial volumes in a large multinational consortium.

Our discovery sample comprised 17 cohorts of European ancestry from whom genome-wide
SNPs and structural MRI data were collected (Supplementary Tables 1–3). Unselected
population samples and case-control studies were included, with cases ascertained for
neuropsychiatric disorders including depression, anxiety, Alzheimer’s disease and
schizophrenia. To distinguish whether putative effects at these loci varied with disease
status, analyses were run in the full sample (N = 7,795) and in a healthy subsample (N =
5,775). To help disentangle overall brain size effects from those specific to hippocampal
volume, associations were assessed with and without controlling for total brain and
intracranial volumes (Online Methods). As the initial goal of the study was to explore
associations with hippocampal volume, total brain and intracranial volumes were analyzed
in healthy subjects only.

Phenotypes were computed from three-dimensional anatomical T1-weighted magnetic
resonance images, using validated automated segmentation programs16–18 (Supplementary
Fig. 1 and Supplementary Tables 4 and 5). Extensive quality control analysis of
segmentation was performed on sample outliers; subjects with poorly delineated brain
volume phenotypes were removed (Supplementary Figs. 2–6). The mean bilateral
hippocampal volume across the discovery cohorts was 3,917.4 mm3 (s.d. = 441.0 mm3).

Heritability of structural brain phenotypes was estimated in a sample of Australian
monozygotic and dizygotic twins and their siblings (Queensland Twin Imaging (QTIM)
study; N = 646, including ungenotyped participants; age range = 20–30 years) for
hippocampal volume (h2 = 0.62), total brain volume (h2 = 0.89) and intracranial volume (h2

= 0.78). Hippocampal volume was also highly heritable in an extended pedigree cohort of
Mexican-Americans from the United States (Genetics of Brain Structure and Function
(GOBS); N = 605; age range = 18–85; h2 = 0.74), as were total brain volume (h2 = 0.77) and
intracranial volume (h2 = 0.84). All heritability estimates were highly significant (P <
0.001).

To enable consortium-wide comparison of ancestry and to adjust appropriately for
population stratification, each site conducted multidimensional scaling (MDS) analyses
comparing their data to the HapMap 3 reference populations (Supplementary Fig. 7). All
subsequent analyses included the following covariates: sex, linear and quadratic effects of
age, interactions of sex with age covariates, MDS components and dummy covariates for
different magnetic resonance acquisitions. Analyses were filtered for genotyping and
imputation quality (Supplementary Fig. 8 and Supplementary Table 6); distributions of test
statistics were examined at the cohort level through Manhattan and quantile-quantile plots
(Supplementary Figs. 9–24). We conducted fixed-effects meta-analysis with METAL,
applying genomic control19 (Supplementary Figs. 25–32). For completeness and to account
for heterogeneity across sites, a random-effects meta-analysis was also performed20

(Supplementary Figs. 33–40). We attempted in silico replication of the top five loci for each
trait within the combined CHARGE Consortium discovery set and 3C replication sample21

(N = 10,779), as well as in two cohorts of European ancestry (imputed to the Utah residents
of Northern and Western European ancestry (CEU) and/or Toscani in Italy (TSI) HapMap
cohorts; N = 449) and in two additional cohorts (imputed to combined CEU and Yoruba in
Ibadan, Nigeria (YRI), and to Mexican ancestry in Los Angeles, California (MEX); N =
842). We also undertook custom genotyping of the two most promising SNPs in two
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additional samples of European ancestry (BIG replication and Trinity College Dublin/
National University of Ireland, Galway (TCD/NUIG); N = 1,286).

In general, previously identified polymorphisms associated with hippocampal volume
showed little association in our meta-analysis (BDNF, TOMM40, CLU, PICALM,
ZNF804A, COMT, DISC1, NRG1, DTNBP1; Supplementary Table 7), nor did SNPs
previously associated with schizophrenia22 and bipolar disorder23 (Supplementary Table 8).
The most significant SNPs in each analysis from the discovery sample (P ≤ 5 × 10−5) are
listed (Supplementary Tables 9–16). No markers reached genome-wide significance (P <
1.25 × 10−8; Online Methods) in the discovery sample alone. However, the strongest
associations for hippocampal and intracranial volumes were replicated, yielding results at
genome-wide significance (Fig. 1 and Table 1; see Supplementary Tables 17–25 for
additional results and gene-based tests24).

In our discovery sample, two SNPs in the same linkage disequilibrium (LD) block showed
strong associations with hippocampal volume after controlling for intracranial volume
(rs7294919 and rs7315280; r2 = 0.81, CEU 1000 Genomes Pilot 1). A random-effects
analysis of the discovery sample, conducted to examine heterogeneity between cohorts,
reduced significance only slightly for rs7294919 (P = 4.43 × 10−7) compared to the primary
fixed-effects analysis (P = 2.42 × 10−7). The association was consistent, although stronger,
in the full sample compared to the healthy subset (Fig. 2). Notably, the association was
robust to the effects of head and brain size (Fig. 2), and the locus was not significantly
associated with intracranial volume (P = 0.54) or total brain volume (P = 0.41). This
suggests an effect at the level of the hippocampus rather than on brain size in general. The
direction of the effect was consistent across samples and ages (Fig. 1). Haplotype analysis of
directly genotyped variants near rs7294919 in two samples confirmed that the association
was present across the haplotype and that the causal variant was well marked by rs7294919
(Supplementary Note). rs7294919 was also significantly associated with hippocampal
volume in the cohorts from the CHARGE Consortium, which are composed of elderly
subjects. Meta-analysis of the Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) discovery and replication samples with those from the CHARGE Consortium
yielded a highly significant association for rs7294919 (P = 6.70 × 10−16; N = 21,151).

rs7294919 lies between HRK and FBXW8 (12q24.22; Fig. 1) and is not in LD with any
SNPs within coding sequences, UTRs or splice sites within 500 kb (r2 > 0.4) in the CEU
sample from the 1000 Genomes Project Phase 1. To determine whether the observed
association is related to a regulatory mechanism, we examined potential cis effects of this
variant on expression levels of genes within a 1-Mb region. In temporal lobe tissue resected
from 71 individuals with mesial temporal lobe epilepsy and hippocampal sclerosis in the
University College London (UCL) epilepsy cohort, we examined association between
rs4767492 (a proxy for rs7294919, which was not directly genotyped; r2 = 0.636 in 1000
Genomes Project Phase 1) and expression levels. This analysis suggested an association (P =
0.006, controlling for age) with expression of the TESC gene, which lies 3′ to FBXW8 (149
kb; Fig. 3). To corroborate this finding, we used the publicly available SNPExpress database
(see URLs), which includes data on gene expression in post-mortem frontal cortex from 93
subjects. In this independent sample, expression levels of TESC again significantly differed
by genotype (rs4767492; P = 0.0021). Additional replication came from the UK Brain
Expression Database, where TESC expression in post-mortem brain tissues from 134
individuals free from neurological disorders showed a strong difference by genotype in
temporal cortex (rs7294919; P = 9.7 × 10−4 for gene and 4.8 × 10−5 for exon 8). Given the
small sample sizes and low minor allele frequency of this SNP (MAF = 0.099), no
homozygotes for the minor allele were observed in any brain tissue sample, limiting the
inferences we can draw regarding mode of action. Expression of HRK showed little
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evidence of association with the proxy genotype in the UCL epilepsy cohort (P = 0.11) or
SNPExpress (P = 0.16) but was associated with rs7294919 in temporal cortex within the UK
Brain Expression Database (P = 0.0051). Additional associations were observed in
peripheral blood mononuclear cells (PBMCs; Supplementary Note).

The expression results in brain tissue suggest that TESC is a primary positional candidate
for our quantitative trait locus (QTL). Studies of mouse and chicken embryos show that
TESC is expressed throughout the brain during development, with the strongest expression
in the developing telencephalon and mesencephalon and near the developing ventricles25.
TESC also has moderate expression in the human hippocampus during adulthood (Allen
Institute Brain Atlas, see URLs; Fig. 3). Its protein product, tescalcin, interacts with the Na+/
H+ exchanger (NHE1)26, which is involved in the regulation of intracellular pH21, cell
volume and cytoskeletal organization27. TESC expression is strongly regulated during cell
differentiation in a cell lineage–specific fashion28,29. Our data suggest that this role in cell
proliferation and differentiation is relevant for hippocampal volume and brain development.

The strongest association with intracranial volume was observed at rs10784502 (Table 1), an
intronic SNP near the 3′ UTR of the HMGA2 gene (12q14.3; Fig. 1). This locus was
associated with intracranial volume across lifespan, as shown by the strong replication in
samples from healthy elderly individuals in the CHARGE Consortium. The combined
analysis resulted in the identification of a highly significant association (P = 1.12 × 10−12).
Of note, rs10784502 has been reliably associated with increased adult height (P = 3.636 ×
10−32; effect allele: C)30. The genetic correlation between height and intracranial volume
within the QTIM sample was significant (rg = 0.31; P = 1.34 × 10−7), as was that observed
in the GOBS sample (rg = 0.20; P = 0.026), suggesting modest overlap of shared genetic
determinants. rs10784502 also had an effect on total brain volume in the discovery sample
(P = 9.49 × 10−5). When considering the results from the intracranial volume meta-analysis
in SNPs previously associated with height31–33 (NSNPs = 175; Supplementary Fig. 41), a
clear inflation of the test statistic was observed (λ = 1.44), indicating that SNPs associated
with height are also associated with intracranial volume. This enrichment, which was not
observed for hippocampal volume (Supplementary Figs. 42 and 43), was due to a
systematically higher degree of association throughout the candidate SNP set rather than a
small number of large effects. Structural equation modeling showed that the effect of
rs10784502 on intracranial volume could not completely be accounted for by the indirect
effects of this SNP on height or by the correlation between height and intracranial volume
(Supplementary Fig. 44).

Examining correlations between rs10784502 and expression levels of genes within a 1-Mb
region, we identified a significant effect on the expression of HMGA2 (P = 0.0077) as the
single significant result in the GOBS transcriptional profile data. Additionally, HMGA2
expression levels in PBMCs were significantly negatively genetically correlated with
intracranial volume (rg = −0.49; P = 0.016) in this cohort. These results support HMGA2 as
a positional candidate gene underlying our observed QTL. HMGA2 encodes the high-
mobility group AT-hook 2 protein, which is a chromatin-associated protein that regulates
stem cell renewal during development34. It is implicated in human growth through genetic
association studies and the presence of rare mutations35 and also has known roles in neural
precursor cells36. Whether both functions are due to the same underlying mechanisms
warrants further study.

To test for pleiotropic effects of rs7294919 and rs10784502, we examined the influence of
these variants on cognition in the Brisbane Adolescent Twin Study37 (N = 1642). The C
allele of rs10784502, which was associated with increased intracranial volume, was also
associated with increased full-scale IQ, as measured via the Multidimensional Aptitude
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Battery38 (effect size (β) = 1.29, standard error (S.E.) = 0.47; P = 0.0073; phenotypic
correlations are shown in Supplementary Table 26). This effect was driven by performance
(PIQ; β = 1.74, S.E. = 0.61; P = 0.0044) rather than by verbal subtests (VIQ; P = 0.103).
rs7294919 was not associated with full-scale IQ (P = 0.139) or PIQ (P = 0.489) but showed
nominal association with VIQ (effect allele: C; β = 0.126, S.E. = 0.062; P = 0.043).

No associations at genome-wide significance were detected for total brain volume.
Following inclusion of the replication samples, the strongest evidence for association was
detected at rs10494373 within DDR2 (1q23.3; P = 5.81 × 10−7) (Table 1), which encodes a
receptor tyrosine kinase involved in cell growth and differentiation39.

The current study identified and replicated two quantitative trait loci for hippocampal and
intracranial volumes across lifespan in a large sample including both healthy subjects and
those with neuropsychiatric diagnoses. The rs7294919 variant was associated with decreased
hippocampal volume of 47.6 mm3 or 1.2% of the average hippocampal volume per risk
allele. Although further work is necessary to confirm the causal variant(s) and functional
mechanisms, this QTL influencing hippocampal volume differences may act by regulating
expression of TESC specifically within the brain. In addition, the C allele of rs10784502 is
associated, on average, with 9,006.7 mm3 larger intracranial volume, or 0.58% of
intracranial volume per risk allele and is weakly associated with increased general
intelligence by approximately 1.29 IQ points per allele.

It has previously been hypothesized that brain imaging endophenotypes would have large
effect sizes; however, this has proven not to be the case for the specific volumetric traits
measured here, which had comparable effect sizes to those observed in other genome-wide
association studies of complex traits40. Notably, the discovery sample had 99.92% power to
detect variants with effect sizes of 1% of the variance for MAF ≥ 0.05. It remains to be
determined whether specific genetic variations linked to volumetric brain differences are
also associated with other neuropsychiatric disorders, brain function and other cognitive
traits. If this is the case, neuroimaging genetics may also discover new treatment targets
related to the neurobiology of these disorders, in addition to improving phenomenologically
based diagnostic criteria.

ONLINE METHODS
All participants provided written informed consent, and studies were approved by the
respective Local Research Ethics committees or Institutional Review Boards. MRI scans
came from previously collected data. Suggested protocols for imaging analysis are publicly
available on the ENIGMA Consortium website (see URLs); however, any validated
segmentation software was permitted. Accuracy of segmentation programs is influenced by
scanner and head-coil type and scanner sequences and by participant characteristics, such as
age. Each site was permitted to use any validated automated segmentation algorithm that
worked most accurately in their data set. The two most commonly used hippocampal
segmentation packages were the FMRIB’s Integrated Registration and Segmentation Tool
(FIRST)16 from the FMRIB Software Library (FSL) package of tools43 and FreeSurfer17.
Brain volume, the sum of gray and white matter excluding ventricles and cerebrospinal fluid
(CSF), was calculated using the FSL FMRIB’s Automated Segmentation Tool (FAST)44

package or FreeSurfer. Estimated total intracranial volume was calculated through
registration of each MRI scan to a standard brain image template18, using either FSL
FLIRT45 or FreeSurfer (exceptions referenced in Supplementary Table 2). To calculate
intracranial volume, the inverse of the determinant of the transformation matrix was
multiplied by the template volume (1,948,105 mm3). Extensive quality control analysis on
phenotype segmentations included manual examination of phenotype volume histograms
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(Supplementary Figs. 2–6) and box plots of all volumetric measures. Outliers were manually
evaluated by overlaying the automated segmentations on the original MRI scan. Subjects
were excluded from the analysis if structures were poorly segmented.

As assessed previously, the correlation in volumes between automatic and manually
segmented hippocampi was high; the accuracy was reported to be higher with FreeSurfer
than with FIRST in one study (FreeSurfer r = 0.82; FIRST r = 0.66)46 and similar between
the two in another (FreeSurfer r = 0.73; FIRST r = 0.71)47. Scan-rescan reliability was also
high for both methods (FreeSurfer intraclass correlation (ICC) = 0.98; FIRST ICC = 0.93)48.
We undertook a large-scale assessment to determine the correspondence between
segmentations from both FSL and FreeSurfer in the same subjects. Correspondence was
found to be reasonably high for average bilateral hippocampal segmentation (r = 0.75; N =
6,093; Supplementary Table 4). This is close to the agreement between different human
raters, as quantified by interrater reliability (ICC = 0.73–0.85)49,50, which may be a
reasonable upper bound on the accuracy of automated segmentation. Brain volume and
intracranial volume were delineated with high correspondence between the two methods (r =
0.95, r = 0.90, respectively; N = 4,321).

Heritability estimates for trait measures were calculated in two family-based samples, QTIM
and GOBS. Estimates for the QTIM sample used a twin and sibling analysis within Mx. An
extended family analysis in Sequential Oligogenic Linkage Analysis Routines (SOLAR)51

was used for the GOBS sample.

Given sample size and the heritability of hippocampal volume, power calculations were
performed using the Genetic Power Calculator52. We had 99.92% power to detect variants
with effect sizes of 1% of the variance and 71.16% power to detect variants with effect sizes
of 0.5% of the variance for MAF ≥ 0.05.

All cohorts were genotyped using commercially available arrays. Genetics protocols were
developed to standardize the filtering, imputation and association of genome-wide genotype
data (see ENIGMA protocols in URLs). SNPs were filtered out of samples on the basis of
standard quality control criteria, including low MAF (<0.01), poor genotype calling (call
rate of <95%) and deviations from Hardy-Weinberg equilibrium indicating possible errors in
genotyping (P < 1 × 10−6). Genotyping methods and exceptions to these thresholds are
summarized in Supplementary Table 3.

Genetic homogeneity within each sample was assessed through MDS plots (Supplementary
Fig. 7). Ancestry outliers were excluded through visual inspection. A standardized
population template from HapMap 3 representing those sampled was selected for
imputation. Performance of software for imputation is generally similar between the most
used methods53,54 for common variants (MACH55, IMPUTE56 and BEAGLE57); the
protocols provided included use of the MACH tool. As raw genotype data were not directly
transferred to the meta-analysis site, a histogram of allele frequency differences between
each contributing group and the HapMap 3 CEU population was generated for each group
(Supplementary Fig. 8) to further examine genotyping and imputation quality. A simulation
to determine the effect of varying quality control thresholds on imputation quality
(Supplementary Table 6) showed that the minor variation in quality control thresholds and
imputation reference panels between sites was unlikely to have influenced imputation
accuracy.

Genome-wide association analyses were performed that included and excluded individuals
with disease. Including individuals with disease (all subjects) offers advantages of greater
sample size and wider phenotype distribution, which may provide greater power to detect
genetic effects58–60. We reanalyzed phenotypes after we excluded individuals with disease
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to confirm that the observed associations were not due to confounds relating to disease,
medication or the possibly altered environments and experiences of these persons. To aid in
the interpretation of results, we reanalyzed hippocampal volume after controlling for
intracranial volume and total brain volume in two separate analyses. This helped to
determine whether the observed associations were caused by direct effects on hippocampal
volume or were attributable to more global associations with head size. In addition, genome-
wide association analyses of intracranial volume and brain volume were conducted in the
healthy controls to clarify whether observed associations were specific to hippocampal
volume or influenced brain size in general. Participating sites were asked to conduct five
genome-wide association analyses (three analyses of hippocampal volume, intracranial
volume and brain volume). In addition, cohorts with groups of individuals with disease were
asked to perform hippocampal analyses including data from these individuals.

Evidence for association was assessed using the allelic dosage of each SNP (accounting for
familial relationships in the GOBS, QTIM and SYS samples). SNP-derived covariates were
tested as fixed effects, while explicitly modeling the genetic relationships between family
members in these pedigree-based studies51,61,62. Analyses used multiple linear regression
with the phenotype of interest as a dependent variable and the additive dosage of each SNP
as an independent variable of interest, controlling for covariates of population stratification
(four MDS components), age, age2, sex and the interactions between age and sex and age2

and sex. Dummy covariates were used to control for different scanner sequences or
equipment within a site when needed. We refer to these covariates as ‘other covariates’, and
these were included in all analyses. The extensive regression model was used to statistically
control for factors known to affect hippocampal volume that are not specific genetic
influences. Recommended protocols for association were provided to the studies based on
those used in mach2qtl software (see ENIGMA protocols).

To combine information from multiple studies, we generated a secure web-accessible upload
site for participants to upload their association results. An automated system parsed the
uploaded results files (see URLs). This parser was designed to read raw results files from a
variety of association software packages (mach2qtl, PLINK, SOLAR, SNPTEST,
QUICKTEST, Merlin-offline and ProbABEL), perform a series of tests on the incoming
data to ensure quality, correctly assign the effect allele (dependent on both the imputation
and association programs used) and correctly scale the β values and standard errors from
association into the same units. Quality control was performed on imputed SNPs to filter out
SNPs with low frequency (MAF of <0.01) or poor imputation quality (estimated R2 of
<0.3). Result files and summary statistics from each group were pooled for meta-analysis.
Meta-analysis was undertaken for each SNP across all groups based on a fixed-effects model
using an inverse standard error–weighted meta-analysis protocol implemented in METAL19.
Genomic control was applied at the level of each study and at the meta-analysis level to
adjust for population stratification or cryptic relatedness not accounted for by MDS
components63. To account for heterogeneity across samples, a random-effects meta-
analysis20 was also conducted via the program METASOFT without using genomic control.
Using KGG64 we performed gene-based tests on the double genome–controlled meta-
analysis results, using the extended Simes test24 to obtain an overall P value for association
of the entire gene with a 50-kb boundary on either side. Results from genes with P ≤ 1 ×
10−4 are presented (Supplementary Tables 18–25).

Meta-analysis was performed separately on the discovery sample, the CEU and TSI
replication sample and the CEU and YRI or MEX replication sample. These results were
then pooled to form the combined meta-analysis statistics for discovery and replication. The
in silico replication results from the CHARGE Consortium were added to this, and a final
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meta-analysis was conducted. The location of Manhattan and quantile-quantile plots is
specified in Supplementary Table 27.

To appropriately account for the multiple comparisons conducted, we first sought to
determine the effective number of independent phenotypes among the eight highly
correlated genome-wide association analyses. This was calculated by creating an 8 × 8
matrix derived from cross-correlations of meta-analytic t statistics of association for each
SNP across phenotypes. The resulting correlation matrix provided an estimate of the
similarity between phenotypes after adjusting for covariates of interest and appropriately
controlling for family structure. The effective number of tests was then calculated by
summing eigenvalues of the correlation matrix, weighted by a formula that appropriately
controls false positive rates in simulation65. The effective number of tests was determined to
be 4 and an overall genome-wide significance threshold of 5 × 10−8/4 = 1.25 × 10−8 was
used throughout the manuscript.

Regulatory potential of SNPs identified in the genome-wide association analysis was
examined in three samples. In the UCL epilepsy cohort, tissue was obtained from resection
material from affected individuals who had undergone surgery for drug-resistant mesial
temporal lobe epilepsy with hippocampal sclerosis, according to established clinical
protocols. Total RNA from the middle temporal cortex (Brodmann areas 20 and 21) from 86
subjects was isolated and randomly hybridized to Affymetrix Human Exon 1.0 ST arrays,
and quality control analysis was performed using standard methods. The effects of several
methodological (day of expression hybridization, RNA integrity number (RIN)) and
biological covariates (sex, age and medication) on exon–gene expression relationships were
tested for significance. Of these individuals, 71 had participated in a published epilepsy
genome-wide association study, and, therefore, genotyping data were available. Details of
sample collection and genotyping quality control steps have been published previously66.
These samples were assayed with Illumina HumanHap550v3 (N = 44) and Illumina
Human610-Quadv1 (N = 27) arrays.

In the UK Brain Expression database, post-mortem brain tissues from 134 individuals free
from neurological disorders were obtained from the MRC Sudden Death Brain Bank in
Edinburgh and Sun Health Research Institute67. Genotype information was obtained using
Illumina HumanOmni 1M arrays and standard quality control methods. Expression profiling
was conducted in up to ten separate brain regions for each individual brain using the
Affymetrix GeneChip Human Exon 1.0 ST array. Expression levels were normalized using
the Robust Multi-array Analysis (RMA) algorithm restricting to probe sets containing more
than three probes, unique hybridization target (probes that map to a single position within
the genome) and supported by evidence from EntrezGene. The average signals for all
neocortex (AvgCTX) and all brain regions (AvgAll) were tested, as were individual cortical
and subcortical regions. Any significant association where the probe set contained the SNP
or a SNP in high LD (r2 > 0.50) was removed from further analysis.

SNPExpress, a publically available database, was also used for replication of the findings.
The SNPExpress database68 used autopsy-collected frontal cortex brain tissue in 93 samples
from human subjects with no neuropsychiatric conditions and PBMCs in 80 samples. In this
database, transcript expression levels were measured on Affymetrix Human ST 1.0 exon
arrays, and genome-wide genotyping was performed using Illumina HumanHap550K arrays.

Raw gene expression data from human fetal brain were gathered from a published study42.
Post-mortem specimens from four late mid-fetal human brains (18, 19, 21 and 23 weeks of
gestation) were collected from the Human Fetal Tissue Repository at the Albert Einstein
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College of Medicine. Details of specimens, tissue processing, microdissection and
neuropathological assessment have been described elsewhere42.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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collection and sharing for this project were funded by ADNI (NIH grant U01 AG024904). ADNI is funded by the
NIA, the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and through generous contributions
from Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical
Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson & Johnson,
Eli Lilly & Company, Medpace, Merck and Cocpany, Novartis AG, Pfizer, F. Hoffman–La Roche, Schering-
Plough and Synarc, as well as from nonprofit partners at the Alzheimer’s Association and the Alzheimer’s Drug
Discovery Foundation, with participation from the US Food and Drug Administration (FDA). Private sector
contributions to ADNI are facilitated by the Foundation for the NIH (see URLs). The grantee organization is the
Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory of
Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants (P30
AG010129 and K01 AG030514) and by the Dana Foundation. ADNI was launched in 2003 by the NIA, the NIBIB,
the FDA, private pharmaceutical companies and nonprofit organizations as a 5-year public- private partnership. The
primary goal of ADNI has been to test whether serial MRI), positron emission tomography (PET), other biological
markers and clinical and neuropsychological assessments can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease. Determination of sensitive and specific markers of very
early Alzheimer’s disease progression is intended to aid researchers and clinicians in developing new treatments
and monitoring their effectiveness, as well as lessening the time and cost of clinical trials. The Principal
Investigator of this initiative is M.W. Weiner. ADNI is the result of efforts of many coinvestigators from a broad
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range of academic institutions and private corporations, and subjects have been recruited from over 50 sites across
the United States and Canada. The initial goal of ADNI was to recruit 800 adults ages 55 to 90 to participate in the
research—approximately 200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI
to be followed for 3 years and 200 people with early Alzheimer’s disease to be followed for 2 years. For up-to-date
information, please visit the ADNI website (see URLs).

BIG: The BIG study wishes to acknowledge S. Kooijman for coordination of sample collection and A. Heister, M.
Naber, R. Makkinje, M. Hakobjan and M. Steehouwer for genotyping. The BIG study was supported by a
Biobanking and Biomolecular Resources Research Infrastructure Netherlands (BBMRI-NL) complementation grant
for brain segmentation and the Netherlands Organisation for Scientific Research (NWO) Horizon Breakthrough
grant (grant number 93511010 (to A.A.V.).

Bipolar Family Study: The Bipolar Family Study wishes to thank the Scottish Mental Health Research Network
for research assistant support, the Brain Research Imaging Centre Edinburgh (see URLs), a center in the Scottish
Funding Council Scottish Imaging Network–A Platform for Scientific Excellence (SINAPSE) Collaboration (see
URLs), for image acquisition and the Wellcome Trust Clinical Research Facility for genotyping. Genotyping was
supported by the National Alliance for Research on Schizophrenia and Depression (NARSAD) Independent
Investigator Award (to A.M.M.), and data collection was supported by the Health Foundation Clinician Scientist
Fellowship.

fBIRN: fBIRN wishes to acknowledge D.B. Keator for leading fBIRN neuroinformatics development, B.A.
Mueller for image calibration and quality assurance and A. Belger, V.D. Calhoun, G.G. Brown, J.M. Ford, G.H.
Glover, R. Kikinis, K. Lim, J. Laurriello, J. Bustillo, G. McCarthy, D.S. O’Leary, B. Rosen, A.W.T. and J.T.
Voyvodic for their leadership contributions to fBIRN scanner and sequence calibration, tool development and data
collection efforts. The fBIRN study was supported by the US NIH (U24 RR21992) for phenotypic data collection.
Genotyping was performed with the support of the grant RBIN04SWHR to F.M. from the Italian Ministry of
University and Research.

GOBS: The GOBS study was supported by the US NIH (MH0708143 and MH083824 to D.C.G., MH078111 and
MH59490 to J.B., C06 RR13556 and C06 RR017515). P.K. was also supported by an NIH grant (EB006395).

IMAGEN: IMAGEN is funded by the European Commission Framework Programme 6 (FP-6) Integrated Project
IMAGEN (PL037286), the European Commission Framework Programme 7 (FP-7) Project Alzheimer’s Disease,
Alcoholism, Memory, Schizophrenia (ADAMS), the FP-7 Innovative Medicine Initiative Project European Autism
Interventions (AIMS), the UK Department of Health National Institute of Health Research (NIHR)–Biomedical
Research Centre Mental Health program and the MRC programme grant Developmental Pathways into Adolescent
Substance Abuse (93558).

ImaGene: ImaGene wishes to acknowledge J. Lee and J. Lane for processing the blood samples, The Easton
Consortium for Alzheimer’s Disease Drug Discovery and Biomarker Development and the Alzheimer’s Disease
Research Center (ADRC) funded by the NIA at the University of California, Los Angeles (AG16570).

LBC1936: We thank the participants in LBC1936. We thank C. Murray, A.J. Gow, S.E. Harris, M. Luciano, P.
Redmond, E. Sandeman, I. Gerrish, J. Boyd-Ellison, N. Leslie, A. Howden and C. Scott for data collection and
preparation. This project is funded by the Age UK’s Disconnected Mind programme and also by Research Into
Ageing (251 and 285). The entire genome association part of the study was funded by the Biotechnology and
Biological Sciences Research Council (BBSRC) (BB/F019394/1). Analysis of brain images was funded by UK
MRC grants (G1001401 and 8200). The work was undertaken by The University of Edinburgh Centre for Cognitive
Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative
(G0700704/84698). Imaging was performed at the Brain Research Imaging Centre, Edinburgh, a center in the
SINAPSE Collaboration. Funding from BBSRC, the Engineering and Physical Sciences Research Council
(EPSRC), the Economic and Social Research Council (ESRC) and the MRC and Scottish Funding Council through
the SINAPSE Collaboration is gratefully acknowledged. L.M.L. is the beneficiary of a postdoctoral grant from the
AXA Research Fund.

MooDS: This work was funded by the German Federal Ministry of Education and Research (BMBF) in the
National Genome Research Network (NGFN-plus) through the MooDs grant Molecular Causes of Major Mood
Disorders and Schizophrenia (coordinator M.M.N.). Additional funding for genotyping was provided by a
NARSAD Distinguished Investigator award to A.M.-L.

MPIP: The MPIP Munich Morphometry Sample comprises images acquired as part of the Munich Antidepressant
Response Signature Study and the Recurrent Unipolar Depression (RUD) Case-Control Study performed at the
MPIP and control subjects acquired at the Department of Psychiatry at the Ludwig-Maximilians-University. We
wish to acknowledge A. Olynyik and radiographers R. Schirmer, E. Schreiter and R. Borschke for image
acquisition and data preparation. We thank D.P. Auer for local study management in the initial phase of the RUD
study. We are grateful to GlaxoSmithKline for providing the genotypes of the RUD Case-Control Sample. We
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thank the staff of the Center of Applied Genotyping (CAGT) for generating the genotypes of the MARS cohort.
The study is supported by a grant from the Exzellenz-Stiftung of the Max Planck Society. This work has also been
funded by the BMBF in the framework of the National Genome Research Network (NGFN) (FKZ 01GS0481).

NCNG: We would like to thank the personnel involved in recruitment and data collection and, in particular, P.
Due-Tønnessen for clinical assessment of the MRI images. The NCNG study was supported by Research Council
of Norway grants (154313/V50 and 177458/V50). The NCNG GWAS was financed by grants from the Bergen
Research Foundation, the University of Bergen, the Research Council of Norway (FUGE; Psykisk Helse), Helse
Vest Regionalt Helseforetak (RHF) and the Dr Einar Martens Fund.

NESDA-NTR: Funding was obtained from the NWO (MagW/ZonMW 904-61-090; 985-10-002; 904-61-193;
480-04-004; 400-05-717, Addiction-31160008; 911-09-032; SPI 56-464-14192 and Geestkracht Program,
10-000-1002), the Center for Medical Systems Biology (CMSB; NWO Genomics), NBIC/BioAssist/RK/2008.024,
BBMRI-NL, Biobanking and Biomolecular Resources Research Infrastructure, the VU University, the EMGO
Institute for Health and Care Research and Neuroscience Campus Amsterdam, the European Science Foundation
(EU/QLRT-2001-01254), the European Community’s FP7 (HEALTH-F4-2007-201413), the European Science
Council (ERC) Genetics of Mental Illness (230374), Rutgers University Cell and DNA Repository (cooperative
agreement NIMH U24 MH068457-06), the US NIH (R01D0042157-01A) and the Genetic Association Information
Network (a public-private partnership between the NIH and Pfizer, Affymetrix and Abbott Laboratories).

NIMH-IRP: This study was supported by funding from the Intramural Research Program of the National Institute
of Mental Health (NIMH) from the NIH and the US Department of Health and Human Services (K99 MH085098 to
G.L., 1ZIA MH002810 to F.J.M. and 1ZIA MH002790 to W.C.D.). The content of this publication does not
necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of
trade names, commercial products or organizations imply endorsement by the US government.

QTIM: We are extremely grateful to the twins for their participation, the radiographers at the Centre for Advanced
Imaging at the University of Queensland for image acquisition and the many research assistants and support staff at
the Queensland Institute of Medical Research for twin recruitment and daily management, and we especially thank
K. Johnson for MRI scanning and processing, A. Henders for DNA processing and preparation and S. Gordon for
quality control and management of the genotypes. Phenotyping was funded by the US National Institute of Child
Health and Human Development (R01 HD050735) and the Australian National Health and Medical Research
Council (NHMRC) (project grant 496682). Genotyping was funded by the NHMRC (Medical Bioinformatics
Genomics Proteomics Program, 389891). G.M. was supported by an NHMRC Fellowship (613667), and G.Z. was
supported by Australian Research Council (ARC) Future Fellowship (FT0991634). S.E.M. is funded by an ARC
Future Fellowship (FT110100548). J.L.S. was supported by the Achievement Rewards for College Scientists
foundation and the US NIMH (F31 MH087061). D.P.H. is partially supported by a National Science Foundation
(NSF) Graduate Research Fellowhip Program (GRFP) grant (DGE-0707424). P.T. was also supported by the NIH
(grants U01 AG024904, AG040060, EB008432, P41 RR013642, HD050735, AG036535, AG020098 and
EB008281).

SYS: The Saguenay Youth Study Group wishes to thank the following individuals for their contribution in
acquiring and analyzing the data: N. Arbour, M.-È. Bouchard, A. Houde, A. Gauthier and H. Simard for the
recruitment and assessment of participating families, M. Bérubé, S. Masson, S. Castonguay and M.-J. Morin for
MRI acquisition and E. Ding and N. Qiu for MR data management. We thank J. Mathieu for the medical follow up
of participants in whom we detected any medically relevant abnormalities. We are grateful to all families for
participating in the study. The Saguenay Youth Study Group is supported by the Canadian Institutes of Health
Research, the Heart and Stroke Foundation of Quebec and the Canadian Foundation for Innovation. For more
information, please see the study website (see URLs).

SHIP: The Study of Health in Pomerania (SHIP) is supported by the German Federal Ministry of Education and
Research (grants 01ZZ9603, 01ZZ0103 and 01ZZ0403) and the German Research Foundation (DFG; GR
1912/5-1). Genome-wide data and MRI scans were supported by the Federal Ministry of Education and Research
(grant 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of
Mecklenburg–West Pomerania. The University of Greifswald is a member of the Center of Knowledge Interchange
program of the Siemens AG. We thank all staff members and participants of the SHIP study, as well as all of the
genotyping staff for generating the SHIP SNP data set. The genetic data analysis workflow was created using the
Software InforSense. Genetic data were stored using the database Caché (InterSystems).

SHIP-TREND: The authors from SHIP are grateful to M. Stanke for the opportunity to use his Server Cluster for
SNP Imputation. This cohort is part of the Community Medicine Research net (CMR) of the University of
Greifswald, which is funded by the German Federal Ministry of Education and Research and the German Ministry
of Cultural Affairs, as well as by the Social Ministry of the Federal State of Mecklenburg–West Pomerania. CMR
encompasses several research projects that share data from the population-based Study of Health in Pomerania
(SHIP; see URLs). The work is also supported by the German Research Foundation (DFG; GR 1912/5-1) and the
Greifswald Approach to Individualized Medicine (GANI_MED) network funded by the Federal Ministry of
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Education and Research (grant 03IS2061A). Genome-wide data and MRI scans were supported by the Federal
Ministry of Education and Research (grant 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen,
Germany, and the Federal State of Mecklenburg–West Pomerania. The University of Greifswald is a member of the
Center of Knowledge Interchange program of the Siemens AG.
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Lilly & Company (who covered part of the genotyping costs).

TCD: We wish to express our sincere thanks to all participants and to clinical staff who facilitated patients’
involvement. In particular, we acknowledge colleagues from the Trinity College Institute of Neuroscience A.
Bodke, J. McGrath, F. Newell, H. Garavan, and J. O’Doherty for their support in sample collection. Collection and
analysis of these samples were funded by the Wellcome Trust (072894/z/03/z-Gill) and the Science Foundation
Ireland (08/IN.1/B1916_Corvin).

EPIGEN: Work from the London Cohort was supported by research grants from the Wellcome Trust (grant
084730 to S.M.S.), University College London (UCL)/University College London Hospitals (UCLH)
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S.M.S.), the European Union Marie Curie Reintegration (to M. Matarin and S.M.S.), the UK NIHR (08-08-SCC),
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Figure 1.
Association results and meta-analysis of effects in individual and combined analyses. (a)
The strongest association with hippocampal volume was found for rs7294919. Fixed-effects
meta-analysis P values are shown41 after controlling for intracranial volume using all
subjects in the discovery sample. (b) The strongest association with intracranial volume was
found for rs10784502. Fixed-effects meta-analysis P values are shown in healthy subjects
only. (c,d) The effect within each sample contributing to the meta-analysis is shown in
forest plots for hippocampal volume (c) and intracranial volume (d). Association data using
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intracranial volume as a phenotype were not available for the EPIGEN sample. Head size
was not controlled for in the CHARGE Consortium association analyses.
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Figure 2.
Association of rs7294919 with hippocampal volume stratified by disease and covariates.
Effects are consistent in the discovery sample regardless of whether individuals with disease
(N = 7,795) or only healthy subjects (N = 5,775) were included. The effect is also consistent
whether accounting for intracranial volume (ICV), total brain volume (TBV) or without a
measure of head size (Other).
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Figure 3.
Regulatory effects of hippocampal-associated variant and expression of TESC within the
hippocampus. (a–d) The locus most associated with hippocampal volume was also
associated with mRNA expression of the TESC gene in brain in three independent samples,
the UCL epilepsy cohort (a), the SNPExpress database (b), where a proxy SNP was used,
and the UK Brain Expression Database (d), where differences in TESC expression of the
directly genotyped hippocampal variant (rs7294919) were strongest in the temporal cortex
(TCTX) (red box) but also found in the average expression of all cortex (AvgCTX) and
average expression of all brain structures tested (AvgALL). Symbol color represents
genotype in a and d. These regional gradients in expression support the hypothesis that the
SNP may associate with hippocampal but not total brain volume. No effects were detected in
PBMCs from the SNPExpress database (c). CRBL, cerebellar cortex; FCTX, frontal cortex;
HIPP, hippocampus; MEDU, medulla (specifically the inferior olivary nucleus); OCTX,
occipital cortex; PUTM, putamen; SNIG, substantia nigra; THAL, thalamus; WHMT,
intralobular white matter. (e) TESC is differentially expressed within the fetal human brain
(P = 1.33 × 10−12), with the highest expression in striatum (STRIAT) and hippocampus
(HIPP)42. Box plots represent median and 25th to 75th percentiles. Upper and lower lines
show minimum and maximum values, respectively. CBLM, cerebellum; DLPFC,
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dorsolateral prefrontal neocortex; MPFC, medial prefrontal neocortex; MS, motor-
somatosensory neocortex; OCC, occipital visual neocortex; OFC, orbital prefrontal
neocortex; PAS, parietal association neocortex; TAC, temporal association neocortex; TAU,
temporal auditory neocortex; THAL, mediodorsal thalamus; VLPFC, ventrolateral
prefrontal neocortex. (f) TESC has moderate to high gene expression throughout the adult
human hippocampus (shown in green), as visualized in the Allen Institute Human Brain
Atlas using Brain Explorer 2 software. An inferior view of the brain is shown in two
subjects; the anterior portion of the brain is at the top. The colors of spheres within the
hippocampus indicate the Z-scores of TESC expression normalized within each subject
across brain structures. Heat maps show that expression of TESC is higher in the
hippocampus (HiF) and striatum (Str) than in other brain structures.

Stein et al. Page 24

Nat Genet. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Stein et al. Page 25

Ta
bl

e 
1

R
es

ul
ts

 f
ro

m
 th

e 
ge

no
m

e-
w

id
e 

as
so

ci
at

io
n 

m
et

a-
an

al
ys

es
 o

f 
m

ea
n 

hi
pp

oc
am

pa
l, 

in
tr

ac
ra

ni
al

 a
nd

 to
ta

l b
ra

in
 v

ol
um

es

Sa
m

pl
e

N
F

re
q.

 o
f 

th
e

ef
fe

ct
 a

lle
le

β 
(m

m
3 )

S.
E

. (
m

m
3 )

P
 v

al
ue

H
et

er
og

en
ei

ty
P

 v
al

ue
V

ar
ia

nc
e

ex
pl

ai
ne

d 
(%

)h

M
ea

n 
bi

la
te

ra
l h

ip
po

ca
m

pa
l v

ol
um

ea

rs
72

94
91

9b

D
is

co
ve

ry
 F

ix
ed

-e
ff

ec
ts

 m
od

el
7,

79
5

0.
10

4
50

.2
7

9.
71

2.
42

 ×
 1

0−
7

0.
91

3
0.

24
2

  R
an

do
m

-e
ff

ec
ts

 m
od

el
50

.1
2

9.
65

4.
43

 ×
 1

0−
7

0.
91

0
0.

24
1

E
N

IG
M

A
 C

E
U

 a
nd

 T
SI

 r
ep

lic
at

io
n

1,
73

5
0.

10
1

22
.0

5
19

.0
0

0.
24

6
0.

92
4

0.
04

2

E
N

IG
M

A
 C

E
U

 a
nd

 Y
R

I 
or

 M
E

X
 r

ep
lic

at
io

n
84

2
0.

12
5

27
.7

7
25

.9
6

0.
28

5
0.

12
7

0.
09

5

D
is

co
ve

ry
 a

nd
 r

ep
lic

at
io

n
10

,3
72

0.
10

6
42

.7
4

8.
22

1.
99

 ×
 1

0−
7

0.
34

7
0.

17
7

C
H

A
R

G
E

 in
 s

ili
co

 r
ep

lic
at

io
n

10
,7

79
0.

09
3

52
.7

0
8.

45
3.

40
 ×

 1
0−

10
0.

44
2

0.
45

8

E
N

IG
M

A
 a

nd
 C

H
A

R
G

E
21

,1
51

0.
09

9
47

.5
8

5.
89

6.
70

 ×
 1

0−
16

0.
41

9
0.

26
5

In
tr

ac
ra

ni
al

 v
ol

um
ec

rs
10

78
45

02
d

D
is

co
ve

ry
 F

ix
ed

-e
ff

ec
ts

 m
od

el
5,

77
8

0.
48

8
11

86
0.

73
23

19
.0

0
3.

14
 ×

 1
0−

7
0.

78
3

0.
28

1

  R
an

do
m

-e
ff

ec
ts

 m
od

el
11

84
1.

80
22

70
.0

7
3.

93
 ×

 1
0−

7
0.

77
1

0.
28

0

E
N

IG
M

A
 C

E
U

 a
nd

 T
SI

 r
ep

lic
at

io
ne

1,
13

0
0.

52
5

15
75

8.
59

52
44

.6
9

0.
00

3
0.

06
5

0.
46

8

E
N

IG
M

A
 C

E
U

 a
nd

 Y
R

I 
or

 M
E

X
 r

ep
lic

at
io

n
69

9
0.

34
8

19
28

.4
3

62
15

.3
1

0.
75

6
0.

71
0

0.
00

8

D
is

co
ve

ry
 a

nd
 r

ep
lic

at
io

n
7,

60
7

0.
47

9
11

39
5.

74
20

07
.2

7
1.

37
 ×

 1
0−

8
0.

21
7

0.
26

1

C
H

A
R

G
E

 in
 s

ili
co

 r
ep

lic
at

io
n

8,
17

5
0.

50
1

74
29

.5
6

16
30

.9
2

5.
23

 ×
 1

0−
6

N
A

0.
11

0

E
N

IG
M

A
 a

nd
 C

H
A

R
G

E
15

,7
82

0.
49

1
90

06
.7

1
12

65
.7

8
1.

12
 ×

 1
0−

12
0.

14
5

0.
16

6

T
ot

al
 b

ra
in

 v
ol

um
ef

rs
10

49
43

73
g

D
is

co
ve

ry
 F

ix
ed

-e
ff

ec
ts

 m
od

el
5,

77
8

0.
08

2
13

69
3.

29
31

87
.5

1
1.

74
 ×

 1
0−

5
0.

68
8

0.
19

8

  R
an

do
m

-e
ff

ec
ts

 m
od

el
13

56
2.

00
31

14
.1

7
2.

69
 ×

 1
0−

5
0.

72
8

0.
19

4

E
N

IG
M

A
 C

E
U

 a
nd

 T
SI

 r
ep

lic
at

io
n

11
7

0.
10

7
84

35
.8

9
20

25
6.

09
0.

67
8

N
A

0.
00

1

E
N

IG
M

A
 M

E
X

 r
ep

lic
at

io
n

60
5

0.
09

7
26

88
3.

36
86

08
.2

0
0.

00
1

N
A

0.
96

4

D
is

co
ve

ry
 a

nd
 r

ep
lic

at
io

n
6,

50
0

0.
08

5
14

77
8.

23
29

57
.1

4
5.

81
 ×

 1
0−

7
0.

18
2

0.
24

0

Fr
eq

., 
fr

eq
ue

nc
y.

 C
E

U
, T

SI
 Y

R
I 

an
d 

M
E

X
 r

ef
er

 to
 th

e 
H

ap
M

ap
 3

 r
ef

er
en

ce
 p

an
el

s 
m

os
t r

ep
re

se
nt

at
iv

e 
of

 th
e 

sa
m

pl
e 

an
d 

us
ed

 f
or

 im
pu

ta
tio

n;
 N

A
, n

ot
 a

pp
lic

ab
le

.

Nat Genet. Author manuscript; available in PMC 2013 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Stein et al. Page 26
a M

ea
n 

bi
la

te
ra

l h
ip

po
ca

m
pa

l v
ol

um
e 

as
so

ci
at

io
n 

re
su

lts
 w

er
e 

co
rr

ec
te

d 
fo

r 
in

tr
ac

ra
ni

al
 v

ol
um

e,
 s

ex
, a

ge
, a

ge
2 ,

 s
ex

 ×
 a

ge
, s

ex
 ×

 a
ge

2  
an

d 
fo

ur
 M

D
S 

co
m

po
ne

nt
s,

 a
nd

 in
di

vi
du

al
s 

w
ith

 d
is

ea
se

 w
er

e 
in

cl
ud

ed
in

 th
e 

an
al

ys
is

.

b rs
72

94
91

9 
is

 lo
ca

te
d 

at
 1

2q
24

.2
2:

 p
os

iti
on

 1
15

,8
11

,9
75

. E
ff

ec
t a

lle
le

, C
; n

on
-e

ff
ec

t a
lle

le
, T

. G
en

om
ic

 p
os

iti
on

s 
ar

e 
ba

se
d 

on
 th

e 
N

C
B

I3
6/

hg
18

 (
M

ar
ch

 2
00

6)
 g

en
om

e 
as

se
m

bl
y.

c A
ss

oc
ia

tio
n 

re
su

lts
 f

or
 in

tr
ac

ra
ni

al
 v

ol
um

e 
w

er
e 

co
rr

ec
te

d 
fo

r 
se

x,
 a

ge
, a

ge
2 ,

 s
ex

 ×
 a

ge
, s

ex
 ×

 a
ge

2  
an

d 
fo

ur
 M

D
S 

co
m

po
ne

nt
s,

 a
nd

 in
di

vi
du

al
s 

w
ith

 d
is

ea
se

 w
er

e 
ex

cl
ud

ed
 f

ro
m

 th
is

 a
na

ly
si

s.

d rs
10

78
45

02
 is

 a
t 1

2q
14

.3
: p

os
iti

on
 6

4,
63

0,
07

7.
 E

ff
ec

t a
lle

le
, C

; n
on

-e
ff

ec
t a

lle
le

, T
.

e In
tr

ac
ra

ni
al

 v
ol

um
e 

an
d 

to
ta

l b
ra

in
 v

ol
um

e 
w

er
e 

av
ai

la
bl

e 
fo

r 
tw

o 
pa

rt
ic

ip
an

ts
 in

 M
PI

P 
an

d 
on

e 
pa

rt
ic

ip
an

t i
n 

th
e 

B
IG

 c
oh

or
t w

ho
 d

id
 n

ot
 h

av
e 

hi
pp

oc
am

pa
l v

ol
um

e 
m

ea
su

re
s.

 T
he

 p
ro

xy
 S

N
P 

rs
87

56
 w

as
ge

no
ty

pe
d 

in
 th

e 
T

D
C

/N
U

IG
 c

oh
or

t.

f A
na

ly
si

s 
fo

r 
to

ta
l b

ra
in

 v
ol

um
e 

w
as

 c
or

re
ct

ed
 f

or
 s

ex
, a

ge
, a

ge
2 ,

 s
ex

 ×
 a

ge
, s

ex
 ×

 a
ge

2  
an

d 
fo

ur
 M

D
S 

co
m

po
ne

nt
s,

 a
nd

 in
di

vi
du

al
s 

w
ith

 d
is

ea
se

 w
er

e 
ex

cl
ud

ed
. T

ot
al

 b
ra

in
 v

ol
um

e 
w

as
 n

ot
 a

va
ila

bl
e 

fo
r 

th
e

E
N

IG
M

A
 r

ep
lic

at
io

n 
co

ho
rt

s.
 W

ith
in

 th
e 

C
H

A
R

G
E

 C
on

so
rt

iu
m

, a
 n

or
m

al
iz

ed
 v

er
si

on
 o

f 
to

ta
l b

ra
in

 v
ol

um
e 

w
as

 a
na

ly
ze

d 
an

d 
de

fi
ne

d 
as

 to
ta

l b
ra

in
 v

ol
um

e 
in

tr
ac

ra
ni

al
 v

ol
um

e,
 a

nd
, b

ec
au

se
 o

f 
th

is
, t

he
re

su
lts

 a
re

 n
ot

 c
om

pa
ra

bl
e 

be
tw

ee
n 

co
ns

or
tia

.

g rs
10

49
43

73
 is

 a
t 1

q2
3.

3:
 p

os
iti

on
 1

60
,8

85
,9

86
. E

ff
ec

t a
lle

le
, C

; n
on

-e
ff

ec
t a

lle
le

, A
.

h C
al

cu
la

te
d 

as
 2

pq
 ×

 β
2  

/ (
s.

d.
)2

, w
he

re
 p

 a
nd

 q
 a

re
 th

e 
m

in
or

 a
nd

 m
aj

or
 a

lle
le

 f
re

qu
en

ci
es

, β
 is

 th
e 

un
st

an
da

rd
iz

ed
 r

eg
re

ss
io

n 
co

ef
fi

ci
en

t a
nd

 s
.d

. i
s 

fr
om

 th
e 

ph
en

ot
yp

e 
in

 th
e 

ab
se

nc
e 

of
 c

ov
ar

ia
te

co
rr

ec
tio

ns
. I

nt
ra

cr
an

ia
l v

ol
um

e 
ph

en
ot

yp
ic

 v
ar

ia
nc

e 
fr

om
 th

e 
E

N
IG

M
A

 d
is

co
ve

ry
 s

am
pl

e 
w

as
 u

se
d 

to
 c

al
cu

la
te

 p
er

ce
nt

 v
ar

ia
nc

e 
ex

pl
ai

ne
d 

in
 th

e 
C

H
A

R
G

E
 in

 s
ili

co
 r

ep
lic

at
io

ns
, a

s 
th

is
 in

fo
rm

at
io

n 
w

as
no

t a
va

ila
bl

e 
fr

om
 th

e 
C

H
A

R
G

E
 c

on
so

rt
iu

m
.

Nat Genet. Author manuscript; available in PMC 2013 May 01.


