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AIMS
To characterize the population pharmacokinetics of ranitidine in critically ill
children and to determine the influence of various clinical and demographic
factors on its disposition.

METHODS
Data were collected prospectively from 78 paediatric patients (n = 248 plasma
samples) who received oral or intravenous ranitidine for prophylaxis against
stress ulcers, gastrointestinal bleeding or the treatment of gastro-oesophageal
reflux. Plasma samples were analysed using high-performance liquid
chromatography, and the data were subjected to population pharmacokinetic
analysis using nonlinear mixed-effects modelling.

RESULTS
A one-compartment model best described the plasma concentration profile,
with an exponential structure for interindividual errors and a proportional
structure for intra-individual error. After backward stepwise elimination, the final
model showed a significant decrease in objective function value (-12.618; P <
0.001) compared with the weight-corrected base model. Final parameter
estimates for the population were 32.1 l h-1 for total clearance and 285 l for
volume of distribution, both allometrically modelled for a 70 kg adult. Final
estimates for absorption rate constant and bioavailability were 1.31 h-1 and
27.5%, respectively. No significant relationship was found between age and
weight-corrected ranitidine pharmacokinetic parameters in the final model, with
the covariate for cardiac failure or surgery being shown to reduce clearance
significantly by a factor of 0.46.

CONCLUSIONS
Currently, ranitidine dose recommendations are based on children’s weights.
However, our findings suggest that a dosing scheme that takes into
consideration both weight and cardiac failure/surgery would be more
appropriate in order to avoid administration of higher or more frequent doses
than necessary.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Ranitidine is routinely prescribed in

paediatric intensive care units as a
prophylactic treatment for stress ulcers,
gastrointestinal bleeding or to negate the
harmful effects of gastro-oesophageal reflux
and gastric aspiration.

• Despite the widespread use of ranitidine,
little is known about its pharmacokinetics in
paediatric patients.

WHAT THIS STUDY ADDS
• A population pharmacokinetic model has

been developed to evaluate the
pharmacokinetics of ranitidine in paediatric
patients who received the drug as part of
their therapy in the intensive care unit.

• The model showed that in addition to
weight, cardiac failure/surgery was a
significant covariate that affected ranitidine
clearance (reduced its value by a factor of
0.463).
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Introduction

Stress ulcers and upper gastrointestinal bleeding are fre-
quent complications of critical illness in children admitted
to paediatric intensive care units [1, 2], of whom up to 25%
develop gastrointestinal bleeding or perforation [3–5].

Gastro-oesophageal reflux (GOR) is also an important
disorder in children [6, 7]. During the first year of life, when
the oesophageal sphincter is still developing, GOR is
common and may cause oesophagitis [8]. In hospitalized
paediatric patients, GOR may complicate other underlying
conditions and increase the risk of life-threatening respira-
tory symptoms associated with gastric aspiration [9, 10].

A gastric pH below 2.5 is one of the risk factors for
development of stress ulcers and gastrointestinal bleeding
[11]. Ranitidine is therefore prescribed routinely in paedi-
atric intensive care units for prevention of stress ulcers [2,
12–14] and to negate harmful effects of GOR/gastric aspi-
ration or the erosive side-effects of certain drugs (e.g. cor-
ticosteroids). Despite widespread use of ranitidine, oral
administration is still unlicensed in children under 3 years
of age and parenteral administration is unlicensed in chil-
dren <6 months. Furthermore, pharmacokinetic-based
dosage guidelines are lacking in these patient groups.

The aim of the present study was to use sparse data to
investigate the population pharmacokinetic profile of
intravenous and oral ranitidine in critically ill children and
characterize potentially important factors that could lead
to variability in ranitidine concentrations.

Methods

Patients and data collection
Ninety-one children who received ranitidine as part of
their normal treatment while in the paediatric intensive
care unit at either the Royal Belfast Hospital for Sick Chil-
dren, Belfast or the Alder Hey Children’s Hospital, Liverpool
participated in the study, which was approved by the
Research Ethics Committee, Queen’s University Belfast.
Ranitidine was administered orally and/or intravenously
(bolus doses). Blood samples were taken opportunistically
when blood sampling was required as part of routine clini-
cal care. In addition to information on dosing and times of
sampling, the following data were collected for each child:
age, gender, weight, laboratory test results, concomitant
drug therapies and concomitant illness.

Blood samples (0.5 ml) were collected in EDTA collec-
tion tubes and centrifuged at 1800g for 10 min to separate
the plasma component. Plasma samples were stored at
-20°C prior to analysis.

Ranitidine assay
Plasma concentrations of ranitidine were determined by a
selective, reversed phase high-performance liquid chro-

matography assay that was developed and validated in our
laboratory using nizatidine as an internal standard. The
method utilized 200 ml of plasma, and sample preparation
involved solid phase extraction using Oasis® HLB car-
tridges (1 ml/30 g; Waters®, Dublin, Ireland). The method
was found to be linear over the concentration range
25–2000 ng ml-1 and was validated over that range. The
limit of quantification (LOQ) was 25 ng ml-1. The intra- and
interday variability ranged from 0.2 to 6.2% and from 1.3 to
1.9%, respectively. For pharmacokinetic analysis, concen-
trations that were detectable, i.e. peak present in chroma-
togram, but below the LOQ (n = 26, i.e. 10.4% of the final
data set) were replaced with LOQ/2 (12.5 ng ml-1) as sug-
gested by Hing et al. [15].

Population pharmacokinetic modelling
Population pharmacokinetic analysis was performed by
means of nonlinear mixed-effect modelling using NONMEM®
(version VI, level 1.0) [16] installed on a personal computer in
conjunction with DIGITAL Visual Fortran compiler (version
5.0.A) in combination with WFN (Wings For NONMEM®,
version 601) [17].Census® (version 1.0) was used for manage-
ment of data analysis [18] and Xpose® [19] for graphical visu-
alization of results. The first-order conditional estimation
method with interaction was used to estimate population
mean parameters, interindividual variability (IIV) in these
parameters and residual variability between measured and
predicted ranitidine concentrations.

The complete data set was used for development
of the pharmacokinetic model. Potential pharmaco-
kinetic models considered were linear one- and two-
compartment models with first order absorption. The IIV
for clearance (CL) and volume of distribution (V) param-
eters was modelled using an exponential scale because
they must be constrained to be greater than zero and their
distribution is often right skewed; however, the IIVs on
both bioavailability and absorption rate constant had to be
removed for the model to minimize successfully.

The statistical residual variability model considered
both the constant coefficient of variation (proportional)
and additive error models throughout the model develop-
ment, according to the following equation:

C Ci pred ij p ij A ij= × + +, , ,( )1 ε ε

where Cij is the measured and Cpred,ij is the model predicted
concentration of the ith individual at the jth sampling time
and eij is the residual error term, which is a random variable
with zero mean and variance of �2. Simplification of the
residual error model was considered during model build-
ing by removing the residual variance component that has
a value close to zero.

Regression model
Initial analysis of the population pharmacokinetics of rani-
tidine was conducted without including any patient cov-
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ariates in the model (BASE model). Individual Bayesian
estimates obtained for each pharmacokinetic parameter
were obtained from this BASE model and then plotted
against the continuous covariates (weight and age) and
the categorical covariates (disease state, concomitant
drugs, route of administration and gender), to help identify
potential relationships between the pharmacokinetic
parameters and covariates. Following that, direct covariate
testing within NONMEM was utilized to determine which
pharmacokinetic parameters were significantly related to
each candidate covariate and whether this relationship
was linear or nonlinear. The main criterion for comparing
models was change in the objective function value (OFV),
a statistic which measures goodness of fit of the model and
equals minus twice the log-likelihood of the data.However,
goodness of fit was also investigated by examining the
precision of parameter estimates (relative standard errors),
the decrease in interindividual and residual variability and
graphs of conditional weighted residuals and measured
ranitidine concentrations plotted separately against pre-
dicted concentrations.

Significant covariates were added into the model
simultaneously and tested for inclusion in the FINAL
model using backward stepwise elimination. Starting with
the least significant, covariates were then removed from
the model individually and difference in OFV tested for
significance at the 5% level of the stay criterion (an
increase in OFV �3.841 with one degree of freedom). If
the increase in OFV was <3.841, the covariate was then
omitted from the model and the process repeated for the
remaining covariates. At each stage of the process, covari-
ates outside of the model (excluding the last to be
removed) were then tested for inclusion into the model at
a more stringent entry criterion of 1% significance (a
decrease in OFV �6.635 with one degree of freedom) and
were retained in the model if found to be significant. The

process ended when there was no further significant
change in OFV of the model.

Model evaluation
The population pharmacokinetic model was evaluated
through nonparametric jack-knifing and bootstrap analy-
ses. Bootstrap analysis (n = 1000 model fits with resam-
pling) was performed twice, with or without gender as a
covariate in the final model. Conditional weighted residu-
als and measured ranitidine concentrations were plotted
separately against predicted concentrations to permit
visual assessment of the deviations of model-predicted
from observed concentrations. In addition, shrinkage esti-
mates were calculated using the method described by
Karlsson [20] and by Savic and Karlsson [21]. A visual
predictive check was also generated for the final model
and principal component analysis performed to investi-
gate any possible subgroups within the patient population
that were not identified during the model development.
Principal component analysis was performed using
SPSS® (version 17.0) for Windows (SPSS Inc., Chicago, IL,
USA).

Results

Seventy-eight subjects with a total of 248 samples (median
of two samples per patient, range 1–13) were included in
the final analysis. The relative distribution of patient
samples collected over time is shown in Figure 1. Thirteen
subjects (21 samples) were excluded from the study
because their ranitidine concentrations were all below the
LOQ. Examination of the records of excluded patients
revealed similar demographic and clinical characteristics
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Histogram plots demonstrating the distribution of patient samples over the study duration (A) and over the time relative to last dose administration (B)
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to the remainder of the population. The demographic and
clinical characteristics of the study participants are shown
in Table 1.

Pharmacokinetic modelling
The BASE model was best described by a one-
compartment model with first-order absorption and elimi-
nation (implemented using NONMEM subroutines
ADVAN2 and TRANS2). Pharmacokinetic parameters esti-
mated from this model were CL, V, bioavailability (F1) and
absorption rate constant (ka). Despite the fact that a
number of subjects had less than four observations, the
relatively larger number of patients recruited in the
present study (compared with conventional pharmacoki-
netic studies) allowed four structural parameters to be esti-
mated. Figure 1 suggested that the total numbers of
observations relative to last dose administration were suf-
ficiently abundant to allow the parameters to be estimated
unambiguously. Both CL and V were allometrically scaled
to an adult of 70 kg with power values of 0.75 and 1.0 for CL
and V, respectively. Investigation of models where the

power values were not fixed, but included as additional
thetas (qs), did not result in any significant improvement in
model fit. Inclusion of weight as an a priori covariate affect-
ing both CL and V resulted in a significant improvement in
goodness of fit and a 59.8 unit decrease in OFV. Population
parameter estimates for CL and V from the BASE model
were 32.4 l h-1 and 275 l, respectively.This model produced
an OFV of -934.588.

Addition of several covariates resulted in a reduction of
OFV �3.841 (P < 0.05). These covariates were age, gender,
cardiac failure/surgery, concomitant administration of Car-
obel® (carob seed flour) or Gaviscon® (a combination of
sodium alginate, sodium bicarbonate and calcium carbon-
ate) on CL, and gender, renal dysfunction, concomitant
administration of atenolol, Fucidin® (sodium fusidate), Pri-
macor® (milrinone) or prednisolone on V.These significant
covariates were then added to the BASE model and sub-
jected to backward stepwise analysis using the rationale
described above. None of the examined concomitant
medications was significant enough to remain in the FINAL
model. It is possible, however, that the small number of

Table 1
Demographic data of patients included in the study (n = 78)

Characteristic Value

Age (years), mean � SD (range) 4.57 � 4.48 (range 15 days to 15.51 years)
Weight (kg), mean � SD (range) 16.27 � 12.24 (range 1.3–47 kg)

Gender, n (male, female) 37, 41
Route of administration: Intravenous Oral Both

n (%) 16 (20.5%) 12 (15.4%) 50 (64.1%)
Dose (mg kg-1), mean � SD 1.18 � 0.43 2.15 � 1.32 2.10 � 0.80
Duration of treatment (days), mean � SD 15.48 � 34.49 24.09 � 42.15 41.62 � 85.04

Subjects with cardiac failure and/or surgery, n (%) 17 (21.8%)

Cardiac failure 14 (17.9%)

Cardiac surgery 10 (12.8%)
Indication for cardiac surgery, n*

Patent ductus arteriosus 2
Atrial/ ventricular septal defect 3
Hypoplasia of left ventricle 1
Bilateral pleural effusion 1
Other 3

Subjects with renal failure, n (%) 9 (11.5%)
Subjects receiving concomitant medications, n (%)

Atenolol 8 (10.3%)
Carobel® (carob seed flour) 9 (11.5%)
Cefotaxime 9 (11.5%)
Digoxin 9 (11.5%)
Fucidin® (sodium fusidate) 8 (10.3%)
Furosemide 17 (21.8%)
Gaviscon® (sodium alginate, sodium

bicarbonate and calcium carbonate)
11 (14.1%)

Primacor® (milrinone) 8 (10.3%)
Morphine 8 (10.3%)
Oxycarbazepine 16 (20.5%)
Paracetamol 20 (25.6%)
Potassium canreonate 8 (10.3%)
Prednisolone 11 (14.1%)
Spironolactone 10 (12.8%)

Continuous variables are presented as mean � SD (range). Categorical variables are presented as number (percentage). *Patients who had undergone cardiac surgery received only
intravenous therapy during the first week following surgery.
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patients in each category of concomitant medication was
not sufficient to test and quantify the true effect of these
covariates.Backward elimination resulted in a FINAL model
with gender as a significant covariate affecting CL and V,
and cardiac failure/surgery affecting CL. The final OFV for
this model was -960.61 (DOFV of -26.02, P value < 0.0005
compared with the BASE model).

Jack-knifing and bootstrapping were then performed
on the model. With the exception of two subjects, all
parameter estimates from the jack-knife analysis were
within �20% coefficient of variation (CV). Of the 1000
bootstrap runs, however, only 688 minimized successfully.
Jack-knifing and bootstrap analyses also resulted in signifi-
cant error regarding the covariate effect of gender on V
(qGEND), with the standard error being significantly larger
than 30% (70.8% for jack-knif and 63.6% for bootstrap-
ping), and confidence intervals overlapping zero for both
analyses. Therefore, this term was removed from the
model. The effect of gender on CL was then found to be
nonsignificant (DOFV = 0.10). Cardiac failure/surgery and
weight were therefore the only significant covariates
remaining in the model, with an OFV of -947.21.The struc-
ture of the FINAL model parameters was, therefore:

TVCL
WTi HEART( ) . .

.

in litres per hour = × ( ) ×32 1
70

0 463
0 75

TVV
WTi( )in litres = × ( )285
70

where WTi is the weight of the ith child and TVCL and TVV
are the typical parameter estimates of CL and V, respec-
tively.The parameter estimates for this model are shown in
Table 2. The FINAL model resulted in a decrease in IIV for
CL from 70.1 to 60.1% and for V from 86.3 to and 85.0%,
when compared with the BASE model.

Model evaluation and validation
Plots of observed against population and individual pre-
dicted concentrations in the FINAL model (Figure 2)
showed reasonable agreement around the line of identity,
although with a slight downward bias, particularly at
higher concentrations. The scatter plots of conditional
weighted residuals vs. model-predicted ranitidine concen-
trations showed that they were randomly distributed, and
weighted residuals lay within �2 units of the null ordinate
of perfect agreement (Figure 2). Estimates of h-shrinkage
(of parameters for which IIV was identified, i.e. CL (hCL,sh)
and V (hV,sh)) and e-shrinkage for the final model (esh) were
acceptable (hCL,sh = 0.18,hV,sh = 0.29 and esh = 0.10),with only
V having notable shrinkage [21]. h- and e-shrinkage values
can be defined as the deviation of individual parameter
estimates from their true values toward the population
mean or the typical parameter estimates. A shrinkage

Table 2
Ranitidine population parameter estimates from the BASE and FINAL models developed from the original data set of 78 patients, and mean parameter
estimates from the FINAL model fitted to the bootstrap and jack-knifed samples

Parameter

Original data set (n = 184) 1000 Bootstrap samples Jack-knifed samples
BASE model FINAL model Bootstrap Jack-knife

Estimate RSE% Estimate RSE% Mean RSE% %Diff Mean RSE% %Diff

CL (l h-1)

qCL 32.4 25.8 32.1 27.4 33.3 25.2 3.9% 32.1 25.7 0.1%
V (l)

qV 275 25.7 285 34.3 309.7 45.8 8.7% 285.4 41.7 0.1%

ka (h-1)

qka 0.429 23.5 1.31 26.1 1.305 52.6 -0.4% 1.309 36.2 -0.1%
F1

qF1 0.349 26.9 0.275 27.1 0.296 25.7 7.6% 0.275 28.8 0.0%
q(HEART,CL) — — 0.463 23.5 0.485 23.6 4.8% 0.463 25.4 0.0%

IIVCL (CV%)

wCL 70.1 28.5 60.1 33.0 57.8 19.6 -3.8% 60.0 20.4 -0.2%
IIVV (CV%)

wV 86.3 58.1 85.0 44.5 83.8 31.5 -1.4% 85.0 24.6 0.0%

Residual (CV%)

sprop 60.0 12.6 59.5 13.4 59.1 6.9 -0.7% 59.5 7.2 0.0%

The BASE model includes weight as a covariate on clearance and volume, as follows:

Final model: TVCL
WTi HEART( ) .

.
.

.

in litres per hour = × ( ) ×32 1
70 0

0 463
0 75

and TVV
WTi( )

.
in litres = × ( )285

70 0
Definitions are as follows: IIVCL is the interindividual variability in clearance (CL); IIVV is the interindividual variability in the volume of distribution (V); sprop is the residual variability
(proportional error model); RSE% is the percentage relative standard error of parameter estimates; and coefficient of variation (CV)% is the percentage coefficient of variation.

Percentage difference (%Diff)
Bootstrap or kack-knife mean estimate Final model 

=
− eestimate

Final model estimate
×100
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magnitude of zero corresponds to the situation when the
model is correct and individual data is sufficiently abun-
dant to estimate the true individual parameters.

The results of the visual predictive check performed on
the FINAL population pharmacokinetic model are pre-
sented in Figure 3, stratified by route of administration, i.e.
patients receiving intravenous vs. oral ranitidine.The visual
predictive check plots are presented as concentration vs.
time after administration of the dose. Individual predic-

tions were used to represent concentrations reported as
below the limit of quantification (n = 26). Results of the
bootstrap analysis (after eliminating gender from the final
model) are shown in Table 2. Of the 1000 bootstrap data
sets, 969 minimized successfully, with 31 failing to
minimize but not terminating abnormally. In addition,
there was a close agreement in mean parameter estimates
(FINAL model vs. bootstrap), with absolute differences of
less than 9%. The final estimates from the jack-knife analy-
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sis were in general concordance with bootstrapping, with
each data set being successfully minimized (see Table 2).
All mean parameter estimates from jack-knifing were
within �1% of those from the FINAL model, demonstrat-
ing robustness of the model.

Principal component analysis was then performed on
the final model for the full data set.This involved using the
final parameter estimates from the individual jack-knifed
data sets, ascertaining which subjects had the most influ-
ential effect, and also determining whether there were any
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correlations between individuals or parameters that were
not included in the final model. The use of principal com-
ponent analysis in this manner means that a lack of a posi-
tive result is desirable. Eigenvalues greater than one were
requested in the analysis; therefore, the first three compo-
nents were extracted. The three components explained
over 75% of the variance in parameter estimates, with less
than 25% of the final variability in parameter estimates not
being accounted for. The component loadings plot
(Figure 4A), which is a visual representation of the three
rotated components, did not reveal any significant corre-
lation between any of the parameters that was not
explained by the model. In addition, a scatter plot of each
principal component against the others was obtained and
examined for outliers (Figure 4B).Plots of the retained prin-
cipal components were also used to identify influential
subjects.The scatterplots did not reveal any groupings that
would indicate any significant correlation between indi-
viduals. A review of demographics of outlying subjects
failed to reveal any significant trends. Results of the princi-
pal component analysis therefore did not ascertain any
underlying trends not identified by the earlier analysis,
thus giving evidence for validity of the FINAL model.

Discussion

Although ranitidine is not licensed for oral administration
in children <3 years old or for parenteral administration in
children <6 months old [22], both routes are commonly
used for prophylaxis of stress ulcers and upper gastrointes-
tinal bleeding in critically ill children and the treatment of
gastro-oesophageal reflux disease in children [2]. When
used off-label, dosage regimens are largely derived from
data obtained in older children and adults, and
pharmacokinetic-based dosage recommendations are
lacking. The present study was undertaken, therefore, to
explore ranitidine pharmacokinetics and identify covari-
ates that explain the pharmacokinetic variability observed
in critically ill children.

Ranitidine is rapidly absorbed following oral adminis-
tration, with variable serum concentrations and a wide
range of oral bioavailability between individuals [23, 24].
The pharmacokinetic parameters determined after intra-
venous and oral ranitidine administration, however, are
remarkably similar when the two routes are compared at
the level of an individual patient [25]. Plasma protein
binding of ranitidine is approximately 15% [23] and, as it is
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hydrophilic [26, 27], it distributes primarily in total body
water [28,29].Small amounts of the drug undergo metabo-
lism in the liver [30]; however, renal excretion is the primary
route of elimination of ranitidine and accounts for approxi-
mately 70% of an intravenous dose excreted unchanged in
the urine [23].

The pharmacokinetic model developed in the present
study revealed considerable IIV in the CL and V of ranitidine
in critically ill children. This variability concurs with previ-
ously reported data obtained in critically ill adults and chil-
dren in the paediatric intensive care unit [31, 32]. The
estimated IIV (CV%) in the BASE model was 83.7 and 84.0%
for CL and V, respectively (data not shown). However, when
weight was allometrically incorporated into the model as a
covariate affecting CL and V there was a change to the IIV
(70.1 and 86.3% for CL and V, respectively) and a significant
reduction in the OFV (59.8 units). Allometric size adjust-
ment, with fixed exponents of 0.75 for CL and 1 for V, was
used as a priori inclusion of weight because the method is
well established, has a strong scientific and physiological
basis [33–35] and has been adopted by many researchers
during development of population pharmacokinetic
models in children [35–37].

Final estimates obtained in the present study were a
total CL of 32.10 l h-1 allometrically modelled for a 70 kg
adult (1.32 l h-1 for an individual with a theoretical weight
of 1 kg), V of 285 l (4.07 l for a 1 kg individual), ka of
1.31 h-1 and F1 of 27.5%. The final estimate of CL was com-
parable to values obtained from previous studies in criti-
cally ill children when adjusting for weight in an
allometric model similar to that developed in the present
study [32, 38]. The CL value reported by Orenstein et al.
[39] (41.40 l h-1; 77.20 l h-1 when scaled to a weight of
70 kg) in children suffering from GOR, but otherwise
healthy, was ~2.4 times higher than that reported in the
present study. However, this value was apparent clearance
(CL/F), i.e. CL value divided by the bioavailable fraction of
the drug (F), which accounts for the difference shown.
Conversely, Wells et al. [40] reported a value of 0.88 l h-1

for 13 term neonates with an average weight of 3.49 kg
(8.34 l h-1 when scaled allometrically to a weight of
70 kg), which is ~3.8 times lower than the predicted esti-
mate from the present study. This could be due to physi-
ological immaturity of the renal and hepatic functions of
neonates. Furthermore, neonates in that study were
undergoing extracorporeal membrane oxygenation and
would have been significantly more distressed than those
in the present study, which may help explain the
decreased clearance.

The covariate for renal dysfunction in the present study
was not significant after backward stepwise elimination,
and this resulted in marked differences to reported values
from adult populations with renal failure. Garg et al. [41]
reported a value of 9.14 l h-1 for 10 patients with a mean
age of 57 years, and Koch et al. [42] reported a value of
22.21 l h-1 for 41 adults with renal failure with ages ranging

from 20 to 69 years (when both values were scaled to a
weight of 70 kg). The reason for lack of significant effect of
renal dysfunction on ranitidine clearance in the present
study, however, is unclear but could be due to haemofiltra-
tion or dialysis being performed to combat the disease
state.This could be supported by the low serum creatinine
levels recorded in these patients at the time of blood sam-
pling; apart from one patient, serum creatinine levels did
not exceed 100 mmol l-1 (median 34, range 16–98 mmol l-1).
However, using the allometric model the final predicted
estimates from the present study were, on average, 67.5%
(range 34.2–98.5%) of those reported in healthy adults
[43–48]. This could be due to the reduced health status of
the critically ill paediatric population studied in the
present study.

The final estimate of V was different from previously
reported values in adults, being, on average, 1.86 times
greater.The higher estimate of V in the present study com-
pared with that observed in adults is to be expected
because ranitidine distributes mainly in total body water,
of which there is a higher percentage in children, and is not
highly bound within plasma (~15%) [26–29]. Furthermore,
given that the estimated value of V in the present study is
higher than the total body water expected in neonates,
infants or children, the data suggest that there is additional
binding or preferential accumulation within tissues in chil-
dren, similar to that reported in adults [23]. The limited
number of samples collected shortly (in the first 30 min)
after ranitidine administration, however, did not enable
accurate evaluation of the distribution phase; hence,a two-
compartment model did not provide a better fit to the
data. A one-compartment model was therefore chosen to
describe the data in the present study.

Of the five main clinical conditions exhibited by
patients in this study, namely renal dysfunction, cardiac
failure/surgery, cancer, stomach and blood disorders (leu-
copenia, thrombocytopenia), only the cardiac failure/
surgery covariate was found to be significant in the FINAL
model, reducing total CL by a factor of 0.463. Given the
relatively large value of this effect, further validation of the
developed model by large prospective studies is war-
ranted to eliminate the risk of covariate selection bias in
data sets of small size similar to the present study (which
can be associated with inflation of the estimated effect,
especially given that covariates are unevenly distributed
and variability is high) [49]. Once confirmed, the implica-
tions of altered ranitidine kinetics in paediatric patients
with cardiac failure/surgery could be clinically relevant,
affecting the doses necessary for safe and effective reduc-
tion of intragastric acidity and optimal control of symp-
toms. The decreased ranitidine CL found in the present
study was in line with the prolonged elimination rate of
other medications reported in similar studies of neonates
and children following cardiac surgery [50].

Cardiac failure/surgery is known to alter pharmacoki-
netics of many drugs due to physiological upset [51]. For
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instance, postoperative renal dysfunction is one of the
most severe complications of cardiac surgery, and is asso-
ciated with increases in mortality, morbidity and subse-
quent length of stay in the intesive care unit [52]. The
immature kidney of infants may be more susceptible to
renal failure [53]. In one study, 20% of cases of acute renal
failure in newborn infants were attributed to heart failure
[54]. There is also a decrease in hepatic blood flow propor-
tionate to the decrease in cardiac output [55] and an indi-
rect relationship between cardiac index and hepatic blood
flow [56]; therefore, both hepatic and renal blood flow
decrease in proportion to the decrease in cardiac output
[57], and this could account for the decreased CL of
ranitidine associated with cardiac failure/surgery in our
study. Ranitidine is one of the drugs most frequently
requiring dosage adjustment in paediatric patients under-
going cardiac surgery and, although adverse effects from
ranitidine are infrequent, the cost benefits of such an
adjustment (through reducing unnecessary treatment) are
significant [58]. In the present study, there was no evidence
to suggest a difference in the dosing regimens selected for
children with cardiac failure or those who had undergone
heart surgery. Our results suggest that a 50% reduction in
dose, coupled with careful monitoring, would be appropri-
ate for patients with cardiac failure or heart surgery who
require ranitidine.

Conclusion
This paper presents a study that investigated population
pharmacokinetics of ranitidine in critically ill children
receiving the drug either as multiple intravenous bolus
doses, oral doses or a combination of the two. A one-
compartment model best described the concentration
profile, with four parameters incorporated, i.e. CL, V, ka and
bioavailability. The model had an exponential structure for
the interindividual errors imposed on CL and V. A propor-
tional structure was used for the intra-individual error. The
final parameter estimates for the population were 32.1 l h-1

for total CL and 285 l for V, both allometrically modelled for
a 70 kg adult. The final estimates for ka and bioavailability
were 1.31 h-1 and 27.5%, respectively. Apart from weight,
the only other significant covariate was cardiac failure/
surgery, which reduced CL by a factor of 0.463.
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