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AIM
To predict simultaneously the area under the concentration-time curve
during one dosing interval [AUC(0,12 h)] for mycophenolic acid (MPA)
and tacrolimus (TAC), when concomitantly used during the first month
after transplantation, based on common blood samples.

METHODS
Data were from two different sources, real patient pharmacokinetic (PK)
profiles from 65 renal transplant recipients and 9000 PK profiles
simulated from previously published models on MPA or TAC in the first
month after transplantation. Multiple linear regression (MLR) and
Bayesian estimation using optimal samples were performed to predict
MPA and TAC AUC(0,12 h) based on two concentrations.

RESULTS
The following models were retained: AUC(0,12 h) = 16.5 + 4.9 ¥ C1.5 +
6.7 ¥ C3.5 (r2 = 0.82, rRMSE = 9%, with simulations and r2 = 0.66, rRMSE =
24%, with observed data) and AUC(0,12 h) = 24.3 + 5.9 ¥ C1.5 + 12.2 ¥
C3.5 (r2 = 0.94, rRMSE = 12.3%, with simulations r2 = 0.74, rRMSE = 15%,
with observed data) for MPA and TAC, respectively. In addition, Bayesian
estimators were developed including parameter values from final
models and values of concentrations at 1.5 and 3.5 h after dose. Good
agreement was found between predicted and reference AUC(0,12 h)
values: r2 = 0.90, rRMSE = 13% and r2 = 0.97, rRMSE = 5% with
simulations for MPA and TAC, respectively and r2 = 0.75, rRMSE = 11%
and r2 = 0.83, rRMSE = 7% with observed data for MPA and TAC,
respectively.

CONCLUSION
Statistical tools were developed for simultaneous MPA and TAC
therapeutic drug monitoring. They can be incorporated in computer
programs for patient dose individualization.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Tacrolimus and mycophenolate

pharmacokinetics are characterized by a
very high variability particularly in the first
month after transplantation. Some statistical
tools have been proposed to perform
separately their dose individualization. Since
these drugs are very often concomitantly
used, there is still a need for practical tools
for simultaneous dose adjustment for both
drugs based on common sampling times,
during this critical period for renal
transplant outcome.

WHAT THIS STUDY ADDS
• Two types of statistical tools are proposed

for simultaneous dose adjustment of
mycophenolate and tacrolimus early after
renal transplantation: multiple linear
regression models and optimal designed
Bayesian estimators.
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Introduction

Mycophenolic acid (MPA) and tacrolimus (TAC) are both
used as immunosuppressive drugs to prevent graft rejec-
tion after solid organ transplantation. MPA is an inhibitor
of inosine monophosphate dehydrogenase, an enzyme
involved in de novo biosynthesis of guanine nucleotide,
whereas TAC inhibits calcineurin, an enzyme involved in
the transcription and biosynthesis of the nucleic factor of
activated T cells (NFAT). The actions of both MPA and TAC
result in the inhibition of the life cycle of lymphocyte T
cells.

Even though there are no standard guidelines for
immunosuppressive therapy after solid organ transplanta-
tion, in several clinical centres, mycophenolate and/or TAC
are often concomitantly used early after renal transplanta-
tion, sometimes in combination with corticosteroids.

Although TAC therapeutic drug monitoring (TDM) has
been strongly recommended in the last report of the Euro-
pean consensus conference on tacrolimus optimization [1]
and by numerous reports, mycophenolate’s manufacturer
guidelines recommend a standard dose for all patients
within a transplant group, e.g. 0.5 to 1.0 g given twice daily
in adult renal, hepatic and cardiac transplant recipients.
The pharmacokinetics (PK) of MPA and TAC, however, are
characterized by considerable inter- and intra-patient vari-
ability and a significant correlation has been demonstrated
between both of these drugs’ exposure and the risk of
rejection and side effects [2, 3]. In addition, MPA and
TAC have a rather narrow therapeutic window. As a
consequence, dosing based on patients’ characteristics
(demographics, genetic polymorphism for key enzymes,
haematologic, liver and kidney function biomarkers)
and/or therapeutic drug monitoring to determine the
actual exposure and accordingly adjust the dose may
improve the efficacy and tolerability of these drugs
[4–6].

Previously published studies on both MPA and TAC
have shown that a safer and more effective dosing
regimen could be achieved for these drugs by clustering or
correcting the doses based on patient characteristics that
have been shown to influence significantly and therefore
reduce the variability in their PK. Several relevant covari-
ates on different PK parameters have been reported for
each immunosuppressive drug and sometimes they vary
with trials and settings [1–6].

To estimate an individual patient’s area under the
concentration–time curve during one dosing interval
[AUC(0,12 h)] based on its own drug exposure marker(s)
without measuring the full concentration–time profile, two
different methods can be used, linear or non-linear regres-
sion models and maximum a posteriori Bayesian estima-
tion. The so-called limited sampling strategy (LSS) based
on multiple linear regression (MLR) models and using a
small number of blood samples, preferably obtained in the
early post-dose period, have often been applied to predict

the full AUC(0,12 h) [7–9]. This approach, however, can be
inconvenient in that it requires strict adherence to the
blood sampling times which in practice may not be easy.
Maximum a priori (MAP) Bayesian estimation is also based
on a limited number of plasma concentration measure-
ments preferably in the early post-dose period, but
involves more complex calculations and requires a ‘phar-
macostatistic’ model to be implemented. Unlike LSS based
on MLR, however, which requires strict adherence to the
time of blood sample collection, the MAP Bayesian proce-
dure can be flexible in the blood sample timing.

Targeting an MPA AUC(0,12 h) of 30–60 mg ml-1 h and a
TAC AUC(0,12 h) of 150–210 ng ml-1 h have been proposed
to minimize the risk of acute rejection and to reduce hae-
matologic or nephrologic toxicity in the first month after
transplantation [1, 6, 10].

The main objective of the present study was to
develop multiple linear regression models and flexible and
optimal MAP Bayesian estimators to predict simultane-
ously MPA and TAC AUC12 in the first month after renal
transplantation using limited number of samples per
patient with the aim to individualize simultaneously the
dosage regimen of both TAC and MPA.

Methods

Sources of data
Patient data Real patient data were from a study
designed to recruit 65 adult renal allograft patients from
one Belgian university hospital (Cliniques universitaires
Saint Luc, Brussels). Patients were treated with TAC, myco-
phenolate and corticosteroids (1 g methylprednisolone at
day 1, progressively decreased to 12 mg at day 15). Oral
MPA [1 g of Mycophenolate mofetil (MMF) or 720 mg of
Enteric coated mycophenolate sodium (EC-MPS)] and TAC
were given twice daily, i.e. at 08.00 h and 20.00 h. The initial
dose of TAC was 0.1 mg kg-1 of bodyweight and doses
were daily adjusted as part of TDM based on trough con-
centrations.TAC concentrations were at steady-state at the
time of the PK study. Full PK profiles during one dosing
interval were determined after the morning dose on day
15 after transplantation. For the determination of TAC and
MPA full PK profiles, 2 ml blood samples were collected in
EDTA tubes: 1 ml was immediately frozen at -20°C until
TAC quantification and the remaining blood samples were
immediately centrifuged and the supernatant (plasma)
kept frozen at -20°C until MPA quantification. Sampling
times were as follows: before (0) and at 0.5, 1.5, 3, 4, 8 and
12 h following the morning MPA and TAC doses.

The patients’ MPA samples were analyzed by ultra per-
formance liquid chromatography as described elsewhere
[11]. The limits of detection and quantification were 0.1
and 1 mg ml-1, respectively. The immunoassay used to
determine TAC blood concentrations was the Microparticle
Enzyme ImmunoAssay (MEIA) performed on the IMx ana-
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lyzer from Abbott Diagnostics (Wiesbaden, Germany). The
limits of detection and quantification were 0.1 and
1 ng ml-1, respectively with coefficient of variation <15%.
More details are also given elsewhere [12].

The protocol was approved by the local ethics commit-
tee and all patients agreed to sign an informed consent
form.

Simulated data A literature review was performed and all
the previously published models on MPA or TAC in the first
month after transplantation in patients concomitantly
treated with TAC and MPA were recorded. The models
developed by our group on real patient data were also
considered giving a total of nine models, five models for
MPA and four for TAC [5, 13–20]. These models were devel-
oped using PK data from patients at different times after
transplantation (from 3 days to 1 month) within the first
month. Each of these models was used to simulate full PK
profiles including samples at pre-dose and every 30 min
until 12 h after the dose. One hundred simulations were
performed for each model resulting in 9000 PK profiles. R
(http://www.r-project.org) and NONMEM Version VI.2
(double precision, Icon Development Solutions, Ellicott
City, MD, USA) were used for this purpose. Reliability of
the simulation process was assessed by comparing the
simulated data with the observed data.

Data analysis
The statistical approach used for data generation and
analysis is schematized in Figure 1. Development, valida-
tion and comparison of MLR and Bayesian estimators are
described below.

MLR models The simulated dataset was successively and
randomly split in two groups: (1) a model building sub-
group (test group) comprising 2/3 of patients and a valida-
tion subgroup of the remaining patients. This procedure
was repeated 20 times. Mean values of regression coeffi-
cients estimated during this process were considered as
final parameters. Limited sampling strategies were devel-
oped to predict MPA and TAC AUC(0,12 h) values, calcu-
lated based on the full PK profiles by MLR (JMP/SAS
software, SAS, Cary, NC, USA) using various combinations of
at most two MPA plasma and TAC blood concentrations
determined during the 4 h interval following dosing in the
test group. The predicted AUC(0,12 h) from each model
was compared with the reference AUC(0,12 h) in the vali-
dation subgroup as described below. The reference
AUC(0,12 h) was considered to be the AUC(0,12 h) com-
puted by the linear trapezoidal rule [non-compartmental
analysis (NCA)].The best model was additionally evaluated
by generating 1000 bootstraps around each estimated
parameter [intercept and slope(s)] and calculating the 90%
confidence interval (CI) around each parameter, as well as
percentiles. Moreover the ability of the final model to
predict AUC(0,12 h) computed from observed data was
also assessed.

Development of flexible Bayesian estimators
Pop PK modelling Non-linear mixed effects modelling
was performed on the simulated PK profiles by using
NONMEM and PsN-toolkit for the modelling process [20],
and R for graphical analysis. First order (FO) and first order
conditional estimation methods with interaction (FOCEI)
were used when fitting simulated MPA plasma and TAC
blood concentrations. Different structural models were
also tested: one, two and three compartment models with
first order or zero order absorption, with or without lag
time, transit compartment and Erlang absorption models.
Pharmacokinetic parameters were estimated by NONMEM

in terms of zero order (K0) or first order absorption rate
constant (K12), clearance (CL), volumes of distribution (V) of
the various compartments and inter-compartmental
clearance (Q) using conventional equations. Since oral bio-
availability (F) could not be determined, values for CL, V
and Q correspond to the ratios CL/F, V/F and Q/F.

The inter-individual variability in the PK parameters
(IIV) was modelled using an exponential model and all
parameters were initially tested. The value of a parameter
in the ith individual (Pi) was a function of the typical value of
the parameter (q) and of the individual deviation initially
given by hi, representing the inter-patient variability for
the ith patient. The h terms in the population were sup-
posed to be symmetrically distributed, zero-mean random
variables with a variance that is estimated as part of the
model estimation from Equation 1:

Pi i= ×θ ηexp( ) Equation 1

h terms were maintained in the structural model only
when they improved the model based on the decrease of
the Bayesian information criterion (BIC) computed as
described below.

Additive, proportional and mixed error models were
tested for the residual error as shown in equations 2–4:

Y IPRED add= + ε Equation 2

Y IPRED prop= × +( )1 ε Equation 3

Y IPRED prop add= × + +( )1 ε ε Equation 4

where Y represents the observed concentration, IPRED is
the individual predicted concentration and eadd and eprop

are the additive and the proportional error terms on MPA
or TAC concentrations, respectively. e′S were supposed to
be symmetrically distributed, zero-mean random variables
with variance terms that are estimated as part of the popu-
lation model-fitting process from equations 2–4.

Model selection only referred to models for which the
NONMEM minimization process was successful and was
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based on the following three criteria: (1) the BIC, (2) the
plausibility and the precision of parameter estimates and
(3) the graphical analysis. The BIC was computed on the
model objective function value (OFV), the number of
observations used during the modelling process (Nobs) and
the number of parameters used (NPAR) as follows:

BIC OFV LnN NPARobs= + ×( ) Equation 5

The models with the lowest BIC were further evaluated.
Precision of parameter estimates, expressed as standard
error of estimates, was generated by the covariance

option within the NONMEM program. Goodness of fit
plots including predictions and individual predictions vs.
observed concentrations, as well as conditional weighted
residuals (CWRES) vs. time after dose, were used for model
diagnostic purposes.

Selection of the optimal sampling times for Bayesian
estimation This step was performed using Population
Experiment Design (PopED) [21]. The criterion to be opti-
mized here is the expected information provided by an
experiment i.e. the expectation, over all the possible
observations, of the information provided by the experi-
ment performed with a given design in an individual.

Studies on TAC and MPA the 1st month after tx

Reports on MPA and/or TAC

Reports on MPA and/or TAC in adults 1st month after tx

Nine models with related parameters

Simulated PK profiles

Pop PK model

Optimal samples for
Bayesian estimation

Bayesian estimators based
on optimal sampling times

MLR models

Practial MLR models

Validated and practical
MLR for TDM Validated and practical

Bayesian estimators for TDM

Literature review

Exclusion of

Inclusion of the POP study on real data

Simulations

NLME analysisMLR analysis

Exclusion of model with
samples collected >4h

Optimal design

Development of the
Bayesian estimators

rRMSE, RPE, r2

- Bootstrap

- Cross-validation

- rRMSE, RPE, R2

- Studies on children

- >1 month after transplantation

- with other co-medications

Figure 1
Schema of the statistical approach used for data generation and analysis
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The optimality criterion was first optimized with
regards to sampling schedule in terms of discrete optimal
sampling times in a first time, and optimal sampling
windows were estimated around each sampling time sub-
sequently to allow flexibility in the practical clinical use. A
loss of efficiency of less than 20% was considered to be an
acceptable cost regarding parameter Bayesian estimation
[21].

With this approach we studied only one- and two-
point designs in each group with sampling times varying
between 0 h and 4 h by increments of at least 0.5 h. The
three-point design has not been investigated for practical
(patient comfort and logistics) reasons.

MAP Bayesian estimation Bayesian estimation (by the
POSTHOC and MAXEVAL = 0 option of the NONMEM estima-
tion subroutine) was performed by using the developed
POP PK model. The optimal sampling times obtained from
the previous step were used. Reference AUC(0,12 h)
(obtained by NCA) values were compared with
AUC(0,12 h) computed using the Bayesian estimators
including optimized sampling times as described below.

Evaluation of predictive performance of
AUC(0,12 h) predictors using patients data
Linear regression was performed to evaluate the strength
of the correlation between the AUC(0,12 h) values pre-
dicted by the various LSS/ Bayesian estimators and the
reference AUC(0,12 h) values. The Pearson coefficient of
determination r2 was one of the criteria to select the best
LSS. In addition, predictive performance of the various LSS
and agreement between predicted and reference
AUC(0,12 h) were assessed as described by Sheiner & Beal
[22] and Bland & Altman [23], respectively. Sheiner & Beal
described two parameters: (1) the root mean square error
(RMSE) to characterize the precision of the model, and the
prediction error (PE) to estimate the bias on each differ-
ence between predicted and reference AUC(0,12 h). The
lower the RMSE and PE values, the better the mode is.
Bland & Altman used the 95% CI around the mean relative
prediction error (RPE) to assess the predictive performance
of the LSS. Equations 6 and 7 display expressions of esti-
mation of relative root mean squared error (rRMSE), RPE
and mean relative prediction error (MRPE), respectively.
Finally, during the evaluation of predictive performance in
this study, a model was considered to display a good pre-
dictive performance when, in the validation sample set,
the 95% CI around the mean RPE was included between
-20% and +20% [7] of the reference MPA AUC(0,12 h)
values.

rRMSE
N

AUC AUC

AUC
pred ref

ref

=
−( )∑100 2

Equation 6

MRPE
N

AUC AUC

AUC
ref pred

ref

=
−

×( )∑1
100 Equation 7

where AUCref represents the reference AUC(0,12 h) and
AUCpred the AUC(0.12 h) predicted by the model.

Results

Histograms of distributions of simulated and PK profiles for
MPA and TAC are shown in Figure 2. A good concordance
between simulations and observations has been obtained
showing that the simulation processes were properly
performed.

Stepwise multiple linear regression analysis was used
to select MPA and TAC concentration–time points within
the 0 to 4 h post-dose interval that best predicted total
exposure. Best model equations in terms of predictive per-
formances [correlation (Pearson r2), accuracy and precision
(MRPE, RMSE and bootstraps)] are shown in Tables 1 and 2.

Model equation 1, with samples drawn at 1.5 and 3.5 h
post-dosing, showed not only the best fit to the MPA
AUC(0,12 h) (r2 = 0.82), but also better prediction precision
and accuracy compared with the other models. Residuals
were normally distributed (P values of Shapiro Wilk test
were >0.10 for all the parameters).

For TAC, samples drawn at 3 and 3.5 h post-dosing,
(model equation 1) were the best predictor of AUC(0,12 h)
(r2 = 0.97) and also had the better prediction precision and
accuracy compared with the other models.As the aim of the
study was to monitor simultaneously MPA and TAC expo-
sure during TDM,the second model (model 2) with samples
drawn at 1.5 and 3.5 h post-dose was retained because the
sampling times were the same as those of the best model
for MPA. Additionally, the predictive performances of this
second model were very close to those of the first model.

In order to evaluate the predictive performances of
these retained models on the observed patient data, the
sample at 3.5 h (not drawn) was considered to be the arith-
metic mean of the samples drawn at 3 and 4 h post-dose.
The retained models for MPA and TAC also showed accept-
able predictive performances for AUC(0,12 h) computed
from observed data: r2 = 0.66, rRMSE = 24%, MRPE = 17%
(95% CI 16.1, 18.4%) and r2 = 0.74, rRMSE = 15%, MRPE = 9%
(95% CI 8.5, 9.8%) for MPA and TAC, respectively. These
performances were also assessed separately for the two
different pharmaceutical formulations of MPA and the fol-
lowing results were obtained: r2 = 0.62, rRMSE = 29.4%, RPE
= 19% (95% CI 18, 20.3%) and r2 = 0.71, rRMSE = 17%, RPE =
13% (95% CI 12.2, 14%) for ECMPS and MMF, respectively.

Two compartment disposition models with first order
absorption were used to describe MPA and TAC profiles.
Parameter values are presented in Table 3. Basic goodness
of fit plots are presented in Figures 3 and 4 for MPA and
TAC, respectively.
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Histograms of simulated (white) and observed (black) mycophenolate (A) and tacrolimus (B) concentrations
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The simultaneous optimal sampling times for MPA and
TAC Bayesian estimation obtained from optimal sampling
design were 1.5 and 3.5 h post-dose.

The results of the estimation of sampling windows
around the optimal sampling times showed that drawing
samples within the 30 min around the optimal samples did
not result in a significant loss of efficiency (>20%) in indi-
vidual parameter estimation.

Bayesian estimation of PK parameters using the final
model parameters as prior information and the optimal
sampling times obtained from the preceding step enabled
the best prediction of individual MPA and TAC AUC(0,12 h),

with satisfactory accuracy and precision as compared with
the reference values (r2 = 0.90, rRMSE = 11% for MPA and r2

= 0.97, rRMSE = 5% for TAC). The Bayesian estimators could
therefore be considered to have good predictive perform-
ance with regards to the reference AUC(0.12 h). Regres-
sions and Bland & Altman plots for comparisons between
reference and Bayesian-predicted AUC(0,12 h) are pre-
sented in Figures 5 and 6 for MPA and TAC, respectively.
The Bayesian estimators for MPA and TAC also showed
acceptable predictive performances for AUC(0,12 h) com-
puted from observed data: r2 = 0.75, rRMSE = 11%, MRPE =
12.2% (95% CI 11.5, 12.8%) and r2 = 0.83, rRMSE = 7%, MRPE
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Figure 4
Goodness of fit plots of the population pharmacokinetic model for TAC. (A) observed vs. predicted concentrations, (B) observed vs. individual predicted
concentrations, (C) weighted residuals vs. observations and (D) weighted residuals vs. time

Table 1
Multiple linear regression models for MPA

Model Sampling times (h) Model equation r2 rRMSE (%) MRPE (%)

1 1.5, 3.5 16.5 + 4.9 ¥ C1.5 + 6.7 ¥ C3.5 0.82 9 14
2 2, 2.5 21.3 + 6.7 ¥ C2 + 3.3 ¥ C2.5 0.77 11 25

3 1.5, 3 20.6 + 4.7 ¥ C1.5 + 5.5 ¥ C3 0.77 11 27
4 2, 3 23.1 + 6.9 ¥ C2 + 3.7 ¥ C3 0.77 13 29

5 2, 3.5 27.8 + 6.23 ¥ C2 + 4.2 ¥ C3.5 0.77 13 32

MPA, mycophenolic acid; MRPE, mean relative prediction error; rRMSE, relative root mean squared error.
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= 8% (95% CI 5.7, 9.4%) for MPA and TAC, respectively. The
same performances were also assessed separately for the
two different pharmaceutical formulations of MPA and
the following results were obtained: r2 = 0.71, rRMSE =
13.4%, MRPE = 13.9% (95% CI 12.7, 14.4%) and r2 = 0.77,
rRMSE = 9.4%, MRPE = 10% (95% CI 8.5, 11.1%) for ECMPS
and MMF respectively.

With the Bayesian estimators only 13 and 5% of the
patients had an AUC(0,12 h) < -20% or >+20% of the ref-
erence value for MPA and TAC, respectively whereas these
levels were 16 and 9% for the corresponding MLR models.

Discussion

Multiple linear regression models and Bayesian estimators
have been developed for simultaneous MPA and TAC
monitoring within the 4 h following dose administration.
The particularity of the tools presented hereby is in their

suitability to be used first all along the first month
after transplantation, irrespective of the exact post-
transplantation period concomitantly or separately for TAC
and MPA and secondly their suitability to be used in the
absence of additional information on patients’ specificity
such as genetic polymorphism, bodyweight, markers of
kidney or liver function values, other co-medications etc.
This is because these tools were developed based on
covariate-free models using data from different post-
transplantation periods and very heterogeneous groups
regarding patient characteristics. Some of the patients’
characteristics have been included in the previously pub-
lished final forms of these models [13–20] and can be used
as correction factors or clusters for group dosing. The
results regarding covariate selections are, however, not
always consistent across trials showing that more research
is need to confirm their suitability for clinical use.Therefore
the fact that the tools presented here are independent of
these characteristics could be perceived as an advantage
and at least render them easier to be used in clinical
practice.

Several MLR models have been previously published
for separate TDM of TAC or MPA [7, 8]. The use of these
models could be very demanding for the patients if a TDM
is needed for both TAC and MPA since they include differ-
ent sampling times increasing the number of required
samples for both drugs. Since MPA and TAC are often used
concomitantly after renal transplantation, there is an inter-
est to find estimators with shared sampling times for MPA
and TAC allowing simultaneous dose adjustment for both
of the drugs.To the best of our knowledge only one report
has presented simultaneous prediction of MPA and TAC
AUC(0,12 h) using the MLR approach and it concerns
stable patients more than 3 months after transplantation
[9].The present study is, therefore, to the best of our knowl-
edge, the first report proposing tools for simultaneous
dose adjustment of MPA and TAC during the first month
after kidney transplantation based on their PK.

In the present study, the MLR equations based on
plasma/blood concentrations of MPA and TAC obtained 1.5
and 3.5 h post-dose showed the best predictive perform-
ance as compared with other sampling times during the
validation on simulation data and were in the range of
previously published MLR for both MPA and TAC. As

Table 2
Multiple linear regression models for TAC

Model Sampling times (h) Model equation r2 rRMSE (%) MRPE (%)

1 3, 3.5 34.1 + 6.1 ¥ C3 + 11.9 ¥ C3.5 0.97 11.5 1.2
2 1.5, 3.5 24.3 + 5.9 ¥ C1.5 + 12.2 ¥ C3.5 0.94 12.3 4.2

3 1.5, 4 26.3 + 6.6 ¥ C1.5 + 11.6 ¥ C4 0.94 12.5 5.4
4 2, 4 25.5 + 8.1 ¥ C2 + 4.5 ¥ C4 0.94 13.1 6.6

5 1, 3.5 31.4 + 5.4 ¥ C1 + 3.5 ¥ C3.5 0.94 13.1 6.7

MPA, mycophenolic acid; MRPE, mean relative prediction error; rRMSE, relative root mean squared error.

Table 3
Population pharmacokinetic model characteristics

Parameters
MPA model
estimates [RSE]

TAC model
estimates [RSE]

qKa (h-1) 2.65 [0.16] 1.68 [0.01]
qTLAG (h) – 0.045 [0.09]

qV1 (l) 133 [0.18] 221 [0.14]
qV2 (l) 995 [0.13] 520.8 [0.02]

qQ (l h-1) 28.2 [0.06] 21.9 [0.08]
qCL (l h-1) 6.83 [0.05] 3.85 [0.09]

IIV on Ka (%) 142 [0.17] 199 [0.19]
IIV on V1 (%) 108 [0.19] 133 [0.15]

IIV on V2 (%) 168 [0.21] 144 [0.19]
IIV on Q (%) – –

IIV on CL (%) 246 [0.19] 185 [0.11]
IIV on TLAG (%) – 350 [0.24]

eprop 0.49 [0.24] 0.01 [0.23]
eadd (ng ml-1) 0.6 [0.15] 0.97 [038]

CL, clearance; IIV, inter-individual variability; MPA, mycophenolic acid; Q, inter-
compartmental clearance; RSE, relative standard error of estimates; TLAG, lag
time; V1, volume of central compartment; V2, volume of peripheral compartment;
q population parameter. eprop, coefficient of variation on the proportional term of
the residual error. eadd, standard deviation on the additive term of the residual
error.
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expected, these performances were found to be less good
when applied to observed data: this can be explained by
the fact that the observed data were all collected at day 15
after transplantation whereas simulations were performed
from models developed using data collected at different
times during the first month after transplantation.

If the model equation based on sampling times at 1.5
and 3.5 h after the dose was found to fit the data well
from both formulations of MPA taken together, when con-
sidered separately, the predictive performances were
more interesting for MMF than EC-MPS when assessed
either on simulated data or on observed data. This is con-
sistent with the higher variability in MPA PK after admin-
istration of the EC-MPS formulation as compared with the
MMF formulation.

The performances for MLR were lower than those of the
corresponding Bayesian estimator but still acceptable for
both MPA and TAC. Less than 20% of patients had their
predicted AUC(0,12 h) outside the acceptable range of
�20% of the reference value. However, unlike MAP Baye-
sian estimation of AUC(0,12 h), LSS based on MLR require
strict adherence to sampling times. Nevertheless, the MLR
approach is less demanding regarding statistical compu-
tations for its implementation in routine practice than the
Bayesian estimation method.

The model equations were validated and the sam-
pling times were restricted to the 4 h time period follow-

ing immunosuppressant administration. A shorter interval
was not possible due to the high variability in the MPA
absorption profiles, particularly in the case of EC-MPS
administration.

Assuming linear PK for both MPA and TAC the use of
the proposed tools for dose adjustment can be done as
described in Figure 7 when targeting an exposure in the
middle of the therapeutic window i.e. 45 mg ml-1 h for
MPA [10] and 180 ng ml-1 h for TAC [1], equations 8 and 9
should be used for MPA and TAC dose adjustment,
respectively:

Adjusted dose
Current dose g ml h

AUCpred

= × −45 1μ
Equation 8

Adjusted dose
Current dose ng ml h

AUCpred

= × −180 1

Equation 9

In case of need for dose titration, the targeted exposure
should be reached after a time delay of around five half-
lives (2–5 days for MPA and 2–4 days for TAC), the time
delay needed to reach steady-state conditions. A new
TDM should not be performed before this delay, which
confirms the results of a recently published study on fea-
sibility of MPA TDM early after transplantation and
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Figure 5
Linear regression (top) and Bland & Altman (bottom) plots of reference AUC(0,12 h) vs. AUC(0,12 h) predicted by the best MLR model (left) and the Bayesian
estimator (right) for MPA. : regression line; : identity line
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showing an added value for MPA TDM performed every
week during the first month after transplantation [24, 25].

Currently, various computer programs are used for
dose individualization based on patient concentrations.
They generally use algorithms based on MLR or Bayesian
estimators. These algorithms vary from one software to
another and given that they are based not only on empiri-
cal models developed in different settings and groups
of patients but also the studies used to develop them
were sometimes relatively small and therefore could lack

power, their adequate use should only be based on inter-
polation i.e. each algorithm should only be applicable in
the specific case of the patients and settings used to
develop it. It can therefore happen that different tools
provide conflicting results and the choice between these
results will not always be easy. This issue is addressed here
since we propose unique tools that can be incorporated in
TDM dedicated software and can be appealing in that they
are applicable for various settings and patients and can
allow MPA and TAC TDM from the same sampling times.
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Linear regression (top) and Bland & Altman (bottom) plots of reference AUC12 vs. AUC(0,12 h) predicted by the best MLR model (left) and the Bayesian
estimator (right) for TAC. : regression line; : identity line
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Schematic representation of the procedure for dose adjustment based on the target exposure
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This study was performed using data collected in the
first month after transplantation and it is known that in this
period after transplantation patients are generally not
stable, and the PK variability has been reported to be the
highest for MPA and TAC [2, 3]. TDM is therefore of impor-
tance in this period for both drugs and the estimators
developed in this study could be included in TDM dedi-
cated PK computer programs. Models developed in paedi-
atrics, models for MPA in patients not co-medicated with
TAC or for TAC in patients not co-medicated with MPA and
models developed for periods later than 1 month after
transplantation were not retained because the focus of
this study was to develop help for dose individualization in
adult patients co-medicated with TAC and MPA based on
shared samples (same sampling times) in the early period
after transplantation. We considered this period to be the
first month after transplantation. Moreover, patient age,
co-medications and time post-transplantation have been
reported to influence both TAC and MPA PK.

In conclusion, multiple linear regression models and
Bayesian estimators have been developed for simultane-
ous MPA and TAC TDM in the 4 h following dose adminis-
tration. The MLR models were validated by bootstrap and
cross-validation. The Bayesian estimator was designed
based on optimality and also validated. They could there-
fore be used for routine TDM.
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