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Abstract: Three-dimensional optical tomographic imaging plays an
important role in biomedical research and clinical applications. We in-
troduce spectral tomographic imaging (STI) viaspectral encoding of
spatial frequency principle that not only has the capability for visualizing
the three-dimensional object at sub-micron resolution but also provid-
ing spatially-resolved quantitative characterization of its structure with
nanoscale accuracy for any volume of interest within the object. The theo-
retical basis and the proof-of-concept numerical simulations are presented
to demonstrate the feasibility of spectral tomographic imaging.
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1. Introduction

Following the seminal work by Wolf [1, 2], visualizing the internal structure of scattering ob-
jects such as biological samples has been the subject of intense research, especially in the
past few decades. Within the ballistic optical regime this has led to the development of optical
tomographic approaches for weakly scattering objects based on the Born approximation [3]
that establishes a one-to-one correspondence between the far-field scattering amplitude and the
three-dimensional (3D) Fourier transform of the scattering potential of the object. The theory
has formed the basis of two widely adopted optical tomographic techniques: optical diffrac-
tion tomography (ODT) [1–4] (described by a suite of techniques categorized as tomographic
diffractive microscopy (TDM) [5]) and optical coherence tomography (OCT) [6–10]. Experi-
mental implementation of ODT has utilized spectral [11–14], illumination and collection an-
gular diversities [15, 16] to reconstruct the 3D scattering potential of biological samples by
increasing the frequency support in K-space. It has been shown that the biological samples
can be reconstructed with an experimental lateral resolution that is in-line with theoretically
predicted values [17, 18]. The increase in frequency support in ODT has also been achieved
by relaxing the Born approximation for highly diffractive samples, and applying a non-linear
inversion algorithm to achieve 3D nanoscale resolution [19]. On the other hand, OCT accesses
the axial (one-dimensional (1D)) direction in K-space resulting in optical sectioning along the
axial direction [20]. Recently, novel computed-imaging based methods applied to OCT have
achieved significantly improved axial resolution beyond the focal point [21–23].

Complementing the visualization of a 3D object is the quantitative characterization of the
object structure via various spectroscopy approaches. These techniques focus on quantifica-
tion of structure of the scattering object through spectroscopic analysis of elastically scattered
light. For example, light-scattering spectroscopy (LSS) utilizes spectral or angular elastic scat-
tering dependencies and Mie theory [24–29] to quantify the structure of a scattering object
with sub-micron accuracy. LSS has also been combined with confocal imaging to develop con-
focal light absorption and scattering spectroscopic (CLASS) microscopy [30, 31], which uses
confocal imaging to locate individual organelle whose structural characterization at the sub-
micron scale is then performed using LSS. The direct analysis of the Fourier spectrum of a
scattering object has been reported to achieve nanoscale sensitivity for two-dimensional (2D)
periodic structure [32,33]. We have recently developed a novel approach, based on the spectral
encoding of spatial frequency (SESF) principle, to characterize the internal structure of an ob-
ject [34, 35] by constructing the axial spatial period profile of the object over the entire depth
for each image point. Most notably, we showed, both numerically and experimentally, that this
characterization is achieved with nanoscale sensitivity and accuracy.

Despite these significant advances, tomography-basedsimultaneous visualization of a 3D ob-
ject and quantitative characterization of its 3D structure at nanoscale accuracy, for any volume
of interest (VOI) within the object, remains a significant challenge. In this paper, we present a
simulation-based proof-of-concept of a new tomographic approach, which we refer to as spec-
tral tomographic imaging (STI). STI is an integrated approach that is able to simultaneously
reconstruct the 3D tomographic object with sub-micron resolution, and quantify its axial struc-
ture with nanoscale accuracy in a spatially-resolved manner for each VOI within the object.
This is realized through the application of SESF principle – which encodes spatial frequency
through spectral diversity – at the Fourier plane, resulting in both reconstruction and structural
characterization of the scattering object. The structural characterization is achieved by quanti-
fying the axial spatial period profile of the VOI. We emphasize that the STI characterization
of the internal structure is 3D spatially-resolved, that is, for any VOI within the object, STI
can construct the axial spatial period profile with nanoscale accuracy. This is a critical im-
provement over our earlier work, where the structural characterization was performed for 2D
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imaging system over the entire imaging depth for a given image point of the object without any
depth sectioning capability. This approach is applicable to any technique that has the ability to
acquire the complex amplitude of the scattered waves, such as diffraction tomography, digital
holographic microscopy and optical coherence tomography.

In the next section, utilizing the mathematical development in [3], the theoretical basis for
this K-space construction is laid out in the context of STI for reflection-mode configuration,
with the formalism developed for this configuration. Section 3 describes how STI can be used to
perform 3D spatially-resolved structural characterization of the object. In section 4, we present
numerical simulations to demonstrate the feasibility of STI for 3D object reconstruction, and
validate the nanoscale accuracy of its structural characterization at different VOIs within the
object. Finally, we present our conclusions in section 5.

2. STI-based object reconstruction: theoretical basis

Consider a scalar time-harmonic plane-wave parameterized by the wavenumberk,

Ei(r, t;k) = A(k)ei(k0·r−ωt), (1)

incident on an object of interest that is centered at the origin of a Cartesian coordinate system.
(We assume the conditions under which the scalar representation is valid are met [36]. We
also ignore polarization effects.) The object is represented through its scattering potentialF(r),
given by the relationF(r) = k2

4π [n
2(r)− 1], wheren(r) is the refractive index of the object.

Assuming the plane-wave is incident at an oblique angleα0, the incident wavevector is given
by k0 = k(sinα0 cosφ0x̂+sinα0sinφ0ŷ−cosα0ẑ) = k0x x̂+ k0y ŷ− k0z ẑ,, wherek0x , k0y andk0z

are the incident spatial frequencies andφ0 is the incident azimuthal angle. The unit vectors ˆx, ŷ,
and ẑ point in the positivex,y, andz directions. The negative sign of thez-component along
with α0 ∈ [0,π/2) indicates that the wave is incident on the object located at the center of the
coordinate system.

Reducing Eq. (1) to its phasor representation results in

Ui(r;k) = A(k)ei(k0xx+k0y y−k0z z), (2)

wherex,y andz are the cartesian components of a pointr within the object. Under the Born
approximation, reference [3] showed that the scattered wave at some pointr′ is given by

Ubs(r
′) =

∫

V
F(r)Ui(r;k)G(r′− r;k)dr, (3)

with G(r′− r;k) representing the Green’s function chosen to be

G(r′− r;k) =
eik|r′−r|

|r′− r|
dr. (4)

When we substitute Eq. (2) and Eq. (4) in Eq. (3) the scattered wave becomes

Ubs(r
′) = A(k)

∫

V
F(r)eik0·r eik|r′−r|

|r′− r|
. (5)

We realize the reflection-mode geometry that collects the back-scattered waves by imposing
the conditionz′− z > 0 on Eq. (5). Under this condition, the Weyl’s representation [37]

eik|r′−r|

|r′− r|
=

i
2π

∞
∫∫

−∞

1
kz

ei[kx(x′−x)+ky(y′−y)+kz(z′−z)]dkxdky, (6)
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of the Green’s function in Eq. (4), allows us to simplify Eq. (5) to

Ubs(r
′) =

i
2π

∫∫ ∞

∞

(

A(k)
∫

Z

1
kz

˜̃F(kx,ky;z,k0x ,k0y)e
−i(k0z+kz)zdz

)

eik·r′dkxdky, (7)

whereZ is the axial depth range of the object and˜̃F(kx,ky;z,k0x ,k0y) is the angular spectrum
[36] of the complex wave back-scattered by thex−y cross-section of the object located at depth
z. This angular spectrum is explicitly given by the Fourier transform relation,

˜̃F(kx,ky;z,k0x ,k0y) =

∫

X

∫

Y
F(r)e−i((kx−k0x )x+(ky−k0y )y)dxdy. (8)

We see from the above equation that the angular spectrum is centered around the lateral spatial
frequency componentsk0x andk0y , which implies that the angle of incidence defined by the pair
(φ0,α0) controls the centering of the angular spectrum. Returning to Eq. (7), we are interested
in the integral within the inner parenthesis given by,

F̃1(K)≡ F̃1(kx − k0x ,ky − k0y,k0z + kz) = A(k)
∫

Z

1
kz

˜̃F(kx,ky;z,k0x ,k0y)e
−i(k0z+kz)zdz. (9)

This integral, which represents the integration of the angular spectrum of the complex back-
scattered waves centered at (k0x ,k0y) from all depths within the object, gives us access to the
entire 3D structure of the scattering object. It depends on the spatial frequency vector triad
(kx − k0x,ky − k0y,k0z + kz) that represents the spatial frequency vector,

K = ks −ki, (10)

whereki andks respectively are the incident and scattering wavevectors given byki = k0 =
k0x x̂ + k0y ŷ − k0z ẑ and ks = kxx̂ + kyŷ + kzẑ. On imposing the normal incidence restriction

Fig. 1. Construction of the muffin-shaped K-space support for STI-based object reconstruc-
tion under the reflection-mode configuration.
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(see Fig. 1(i)) on the reflection geometry (this work focuses on reflection geometry with nor-
mal incidence, with all the following equations developed for this setup), and noting that
under this restrictionk0z = k, the spatial frequency vector triad reduces to(kx,ky,k + kz),
and therefore, the integration of back-scattered wavesF̃1(kx,ky,k+ kz) ≡ F̃1(K) gives the 3D
frequency pointK in K-space shown in Fig. 1(ii). Furthermore, for a given wavelengthλ
(k = 2πn/λ ;n is the refractive index of the object, andλ is the wavelength in free space), the
expressionk+ kz, when expanded as

k+ kz = k+
√

k2− k2
x − k2

y , (11)

is a function ofkx andky. Since back-scattered waves are collected through an objective, the

homogenous wave condition
√

k2
x + k2

y < k is met because the numerical aperture NA< 1 when

the imaging medium is free-space. (Note, NA= sinα, with α being the back-scattering angle.)
Therefore, the frequency vectorK for wavelengthλ , 0 < φ ≤ 2π andα ≤ arcsinNA forms
the NA-restricted Ewald sphere cap as shown in Fig. 1(ii). By varying the wavelength (spec-
tral diversity) we get a succession of Ewald sphere caps that define a muffin-shaped region of
spatial frequency support in K-space for reflection geometry, which is illustrated in Fig. 1(iii).
To construct the muffin-shaped support in K-space, for a given wavelength, we collect the in-
tegrated complex angular spectrum of the back-scattered waves on the two-dimensional (2D)
Fourier plane and then spectrally extend it into 3D K-space as shown in Fig. 2. By repeating
the procedure for the entire spectral range, we getF̃1(K), which is then used to obtain the 3D
tomographic image of the object via the inverse Fourier transform

F(r) =
1

(2π)3

∫

VK

F̃1(K)eiK·rdK. (12)

For a broadband light source with spectral bandwidth∆λ = λ2−λ1 and an optical system with
an objective with a certain numerical aperture (NA) to collect the back-scattered waves, the 3D
volumetric resolution of the reconstructed object is given by

∆V =
3
4

λ 2
1 λ 2

2

πn3∆λ

((

1− cos4
(

arcsinNA
2

))(

(λ1+λ2)
2

λ1λ2
−1

))−1

. (13)

For the complex amplitude of spatial frequencies collected within the muffin-shaped support
in K-space, assuming a uniform spectrum, the axial and lateral resolutions of the reconstructed
object are inverse functions of the corresponding spatial-frequency ranges in K-space. The axial
and lateral spatial frequency ranges respectively are2n∆λ

λ1λ2
and 4nNA

λ1+λ2
resulting in average axial

and lateral resolutions of

∆rz =
λ1λ2

2n∆λ
, (14)

and

∆rl =
λ1+λ2

4nNA
. (15)

respectively. Equation Eq. (13) relates to Eq. (14) and Eq. (15) through

∆V = ∆ra∆r2
l . (16)

Figure 3 shows the dependence of lateral and axial resolution on the NA of the optical system.
As can be seen, the axial resolution does not depend on the NA of the optical system, but only
depends on the spectral bandwidth; while the lateral resolution is diffraction-limited, which is
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the same as conventional microscopy. For example, for a broadband light source with a spectral
bandwidth of∆λ = 300nm (400nm–700nm) and NA = 0.5, the axial and lateral resolutions of
the recontructed object with refractive index of 1.5 are 311nm and 367nm respectively. In com-
parison, for conventional microscopy with the same NA and wavelength, the axial resolution
is 3.8µm with the same lateral resolution. This indicates that a high axial resolution can be
achieved with a wide spectral bandwidth and low-to-moderate NA optics, which is similar to
other low-coherence interferometric microscopy.

The lateral and axial extent of the reconstructed object is impacted by Fourier plane and
wavenumber sampling. A uniform sampling of the complex Fourier image, results in a uniform
sampling along the lateral spatial frequenciesKx = kx andKy = ky. To get uniform sampling in
Kz we can sampleλ as

λ =
2Kz

K2
z +(K2

x +K2
y )
. (17)

Fig. 2. Fourier plane spectral extension.

Fig. 3. Axial and lateral resolutions as a function of NA forλ = 550nm andn = 1.
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Therefore, if we sample wavelengthλ according to Eq. (17) we get a uniformly sampled 3D K-
space. Alternatively, a uniformly-sampled3D K-space can be achieved numerically by perform-
ing a one-dimensional (1D) interpolation alongKz for a given pair of(Kx,Ky) (corresponding
to a single point location in the Fourier plane) and re-sampling according to Eq. (17). Assum-
ing this axial re-sampling is done atNz = ∆λ/δλ points, withδλ being the spectral resolution
of the spectral device, and noting that complex amplitude is obtained at the Fourier plane, the
sampling interval along the axial direction is given by

∆Kz =
2πnδλ
λ1λ2

. (18)

Due to Fourier relation between K-space and object-space, this axial sampling interval controls
the axial extent of the object. Specifically, the axial extent of the reconstructed object is given
by π/∆Kz. Assuming the sampling in the lateral direction isN×N (pixels), the lateral sampling
step-size is

∆Kx = ∆Ky =
4πnNA

λ1N
. (19)

The above equation implies that given the same lateral spatial frequency range, ifN increases
then the sampling step-size becomes finer resulting in the reconstruction of an object with a
larger lateral extent. It is, however, important to note that the minimum possible sampling step-
size is limited by the resolution on the Fourier plane, which is controlled by the point spread
function at the back focal plane (Fourier plane) of the lens performing the Fourier transform
within the optical system.

As an example, again assuming a broadband source(400−700nm), an objective with NA =
0.5,N = 1000,δλ = 1nm, and the object with an average refractive indexn = 1.5, the linear
axial and lateral sampling step-sizes respectively are 5.36 lp/mm and 3.75 lp/mm, resulting
in our ability to reconstruct an object with axial and lateral extents of 93.3µm and 133.3µm
respectively.

3. Spatially-resolved structural characterization of the scattering object

We have shown that obtaining the complex amplitude of 3D spatial frequencies at the Fourier
plane allows tomographic reconstruction of the 3D object with resolution down to sub-micron
level. Morphological and image processing methods can then be applied to obtain quantita-
tive structural characterization of the object. The accuracy of such structural characterization,
however, is limited by the resolution of the reconstructed 3D object, which is at best a few
hundred nanometers. Consequently, the structure of the object at tens of nanometers is difficult
to be accurately quantified. Our STI approach has the capability to quantitatively characterize
the internal structure of the object with nanoscale accuracy. Note that the nanoscale accuracy
describes the precision to quantify the structural characteristics for a given VOI of the image
and should not be confused with nanoscale resolution. Furthermore, this structural character-
ization is ‘spatially-resolved’, indicating that the structural characterization of the object can
be performed at any given VOI within the object. To the best of our knowledge this is the first
tomographic imaging approach that couples 3D object reconstruction (with resolution down to
sub-micron level) with spatially-resolved structural characterization (with nanoscale accuracy).

According to the Abbe’s theory of image formation [36], any complex, irregular object can be
represented by a superposition of diffraction gratings with different orientations, frequencies,
and amplitudes. In other words, the structural characteristics of any complex object can be
rigorously described by a distribution of its spatial frequencies.

As discussed in Section 2, once the complex amplitude of the back-scattered waves obtained
at the Fourier plane is embedded in K-space, the corresponding 3D tomographic reconstruc-
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Fig. 4. Dependence of axial spatial frequencies on scattering angle, for NA = 0.5,λ =
550nm, andn = 1.

tion of the object is obtained by a 3D Fourier transform. With the information about both 3D
K-space and reconstructed object space, we can perform structural characterization for a given
VOI within the object with nanoscale accuracy using a simple approach utilizing the char-
acteristics of the muffin-shaped spatial frequency support in K-space. As shown in Fig. 4(i),
for reflection geometry and low-to-moderate NA, the axial spatial frequency – corresponding
to the NA-restricted Ewald sphere cap defined by a single wavelength – is weakly dependent
on the back-scattering angle. As a result, each axial spatial frequencyKz (axial spatial period
Hz = 2π/Kz) can be encoded by a unique wavelength (corresponding to a single NA-restricted
Ewald sphere cap) with a small uncertainty without precisely locating the corresponding back-
scattering angle, as illustrated in Fig. 4(ii). The maximum uncertainty, expressed here in terms
of axial spatial period, is given by

∆Hz =
λ tan2

(

arcsinNA
2

)

2n
. (20)

Since the scattering angle is limited by 0≤α ≤ arcsinNA, we define the error due to uncertainty
∆Hz for a single NA-restricted Ewald sphere cap to be±∆Hz

2 , corresponding to the optimal
back-scattering angle given by

αm = arccos

(

cos2
(

arcsinNA
2

))

, (21)

as indicated in Fig. 4(i). Equation (20) shows that the accuracy defined by the maximum uncer-
tainty in axial spatial period depends on the NA of the optical system. For example, with NA
= 0.5,λ = 550nm, andn = 1, the maximum uncertainty is∆Hz = 20nm. A smaller NA results
in a higher accuracy. On the other hand, the lateral spatial frequency (or spatial period) has a
strong dependence on the scattering angle and requires the knowledge of all scattering angles
for a given VOI. This information is not available in the reconstructed object space. It should
be noted that, as shown in Fig. 5, there is an NA-dependent trade-off between the lateral reso-
lution of the reconstructed object, and the accuracy of axial structural characterization, with the
optimal choice being application specific.

Given that wavelength is spatially invariant, by encoding each axial spatial frequency (or
period) with one unique wavelength, the spectrally encoded axial spatial period can be carried
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Fig. 5. Lateral resolution of the reconstructed object and accuracy of axial spatial period
characterization as a function of NA forn = 1.

from the K-space to the reconstructed object space without compromising accuracy. By map-
ping the energy contribution of the spectrally encoded axial spatial period to each VOI within
the object, we are able to perform structural characterization of every VOI with nanoscale ac-
curacy. Specifically, as shown in Fig. 6, we first decompose the muffin-shaped K-space support
into slices along the z-axis of symmetry. This is achieved by decomposing the source spec-
trum into multiple spectral sub-bands. Noting that each wavelength defines a unique Ewald
sphere cap, each K-space slice (shown in Fig. 6) is defined by the set of Ewald-sphere caps
corresponding to wavelengths in those spectral sub-bands. Supposing that we haveL spectral
sub-bands, with each sub-band labelled by its mean wavelengthλℓ, ℓ = 0, . . . ,L−1, the spatial
period corresponding toλℓ for reflection configuration is expressed as

Hzℓ =
λℓ

n(1+ cosαm)
, (22)

whereαm is the optimal back-scattering angle defined in Eq. (21). We can now label the volume

Fig. 6. Flow diagram showing the steps for reconstructing the 3D object, and structural
characterization via the axial spatial period profile for a given VOI within the object.
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Fig. 7. Error in quantifying axial spatial period for a spectral sub-band, for NA = 0.5 and
n = 1.

of the K-space slice corresponding to theℓth spectral sub-band by the spatial periodHzℓ . We
also divide the object space into multiple VOIs that are indexed bym with m = 0, . . . ,M−1. To
construct the axial spatial period profile for themth VOI, we calculate the energy contribution
of theℓth spectral sub-band to the spatial period profile of themth VOI at Hzℓ through

Em(Hzℓ) =

∫

Vm

|Fm,ℓ(r)|
2dr, (23)

whereVm represents the integration volume of themth VOI, andFm,ℓ(r) is the inverse Fourier
relation given by

Fm,ℓ(r) =
1

(2π)3

∫

Kℓ

F(K)ei2πK·rmdK, (24)

with rm in the integrand indicating that the contribution of theℓth spectral sub-band is consid-
ered only for themth VOI. By computing the energy contributionEm(Hzℓ) for all the spatial
periodsHzℓ , ℓ = 0, . . . ,L−1 (calculated using Eq. (22)), we obtain axial spatial period profile
for themth VOI to be

Im(Hzℓ) =
E1/2

m (Hzℓ)
(

∑
ℓ

Em(Hzℓ)

)1/2
. (25)

The denominator is the normalization term that ensures that the axial spatial period profiles
from different VOIs can be compared.

It is important to note that the spectral sub-band range also impacts the accuracy of axial
spatial period. If the spectral sub-band range is∆Λ, the error in quantifying axial spatial period

due to the presence of spectral sub-band is modified to∆Ez = ±

(

∆Hz+
∆Λ
2n

2

)

, as indicated in

Fig. 7. For example, if∆Λ = 20nm, andλℓ = 550nm, then forn = 1.5 and NA = 0.5, the error
∆Ez is±(6.5+3.3)nm=±9.8nm.

The axial length of a VOI within the object isL∆rz, where∆rz is defined by Eq. (14). Con-
tinuing the above structural-characterization example, the axial length of VOI is 5µm. Note, in
the extreme case of the smallest axial length of VOI (∆rz = 311nm), the corresponding error in
determining axial spatial period is±56.5nm. Therefore, there is a trade-off between the axial
length of VOI and the accuracy of the axial spatial period, with the optimal choice again be-
ing application specific. On the other hand, the smallest lateral size of the VOI is intrinsically
defined by the diffraction-limited lateral resolution of the reconstructed 3D object as shown in
Eq. (15).

4. Results

To demonstrate the feasibility of STI for 3D tomographic imaging and spatially-resolved struc-
tural characterization, we present results from two numerical simulations. For these simulations
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we consider collimated light from a broadband light source normally incident on the object,
with the resulting back-scattered waves collected by an objective (NA = 0.5), and their com-
plex amplitude obtained at the Fourier plane withN = 200.

4.1. Simulation 1: Reconstruction of 3D object with random scatterers, and its spatially-
resolved structural characterization

We begin by considering a scattering object, 625µm3 in volume, with average refractive index
of 1.59 shown in Fig. 8(i), which is illuminated by a broadband light source with spectral band-
width of 300nm (400–700nm) and spectral resolution of 1 nm. It consists of random scatterers
with one octant having higher scatterer density than the rest of the object. The choice of this
model is motivated by the fact that nanosphere aggregates are one of the most commonly used
cell and tissue models to mimic scattering in both simulation and experiment. Furthermore,
changes in scatterer density are one of the most common structural changes in biological cells
and tissue, such as cell proliferation and carcinogenesis.

We characterize the structure of this object by its axial spatial period profile that is directly
dependent on the inter-scatterer distance. Specifically, any scatterer within the object is sur-
rounded by other scatterers at different distance from it. For any chosen direction from the
chosen scatterer, we define the inter-scatterer distance in that direction as the distance between
the scatterer under consideration and the first scatterer in that direction. This is done for all
directions within the 3D object for the chosen scatterer, and then repeated for all scatterers.
The set of inter-scatterer distances thus generated is used to construct a histogram to show
the distribution of the inter-scatterer distance as the spatial period profile. Figure 8(ii) shows
spatial period profiles of three VOIs highlighted within the object. The VOIm1, shaded or-
ange, is located in the less-dense region. As expected, its spatial period profile skews towards
larger values. The VOIm2 shown in pink is located within the more-dense region. The corre-
sponding spatial period profile is concentrated near smaller values. Finally, VOIm3, shown in
black, straddles the two regions and its corresponding profile shows that both more-dense and
less-dense regions contribute to it.

Fig. 8. The simulated 3D object consisting of a mixture of high and low scatterer density.
Three VOIs have been indicated along with their corresponding spatial period profiles.
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STI-based 3D tomographic reconstruction is performed by spectrally extending the NA-
restricted back-scattered angular spectrum collected at the Fourier plane to the K-space, and
re-sampling along theKz direction (Nz = 300). The Fourier-transform relation in Eq. (12) then
gives us the reconstructed object shown in Fig. 9. The volumetric visualization of the recon-
structed object is shown in Fig. 9(i). To better visualize the details of the reconstruction we also
show the cross-sectional view of the three VOIs described above. Figure 9(ii) shows them1

VOI from the less-dense region of the object and Fig. 9(iii) shows its STI-based reconstruction.
They have been color-coded to be consistent with their location-label within the volumetric
visualization. Figure 9(iv) shows them2 VOI within the more-dense region of the object with
its corresponding reconstruction shown in Fig. 9(v). Finally, the cross-sectional visualization of
them3 VOI and its reconstruction are shown in Fig. 9(vi) and Fig. 9(vii) respectively. The the-
oretical axial and lateral resolutions of this reconstruction are 294nm and 346nm respectively.
Figure 10 shows an example 1D cross-section profile, along with its reconstruction, within the
3D object for the scatterer size of approximately 240nm. This example demonstrates the ability
of STI to perform high-fidelity reconstruction of 3D objects with sub-micron axial and lateral
resolutions. We note, however, that the absolute value of each reconstructed voxel does not
correspond to the exact scattering potential due to the practical limitation of accessing lower

Fig. 9. (i) Volumetric visualization of the STI-based reconstruction of the object. (ii)-(vii)
The cross-sectional view of the reconstructions of the three VOIs identified in (i) and in
Fig. 8.

Fig. 10. Original and reconstructed 1D cross-section profile from within the 3D object.
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Fig. 11. Reconstructed axial spatial period profiles of the three VOIs.

Table 1. Comparison of peak locations from the actual and reconstructed spatial period
profiles of the three VOIs.

Sub-region Actual spatial period
of the object (in nm)

Reconstructed axial spatial
period (in nm)

m1 240, 319, 345 247, 318, 350
m2 209, 232 212, 230
m3 209, 247, 288, 337 214, 252, 288, 339

spatial-frequencies, which requires a different configuration for collecting the scattered waves.

Having demonstrated the capability of STI to perform 3D object reconstruction, we now
use STI to characterize the axial structure within the three VOIs:m1,m2, andm3. Following
spatially-resolved structural characterization outlined in section 3, we divide the muffin-shaped
K-space support along the z-axis intoL = 15 spectral sub-bands. (The K-space z-axis is the axis
of symmetry for the reflection-mode configuration.) For each of the three VOIsmi, i = 1,2,3
we compute the contributionsFmi,ℓ(r), ℓ= 0, . . . ,L−1 and their corresponding energyEmi(λℓ).
Emi(λℓ) allows us to compute the contribution of spatial periodHz(λℓ) to the axial spatial period
profile of VOI mi of the object given by Eq. (25). The result for structural characterization is
presented in Fig. 11. Comparing Figs. 8(ii) and 11(iii) we see that the reconstructed axial spatial
period profiles closely resemble the actual spatial period profiles of the three VOIs of the 3D
object. To better quantify the accuracy of structural characterization, Table 1 lists the peak
locations of the actual spatial period profiles (as these peak locations are distinct and dominant
features of the spatial period profiles) of the three VOIs within the object and the corresponding
reconstructed axial spatial period profiles. The result shows that the largest discrepancy between
the original and reconstructed spatial period peak is within 7nm. In fact, for most peak locations,
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Fig. 12. Cross-section view of two sections of the reconstructed 3D object consisting of
nanospheres of four different sizes.

the discrepancy is≤ 5nm, well within the maximum theoretical error of∆Ez =±11nm for NA
= 0.5,n = 1.59, andλ = 700nm.

4.2. Simulation 2: Reconstruction of 3D object with periodic structure, and its spatially-
resolved structural characterization

In the previous example we considered a 3D object with random scatterers, and demonstrated
the ability of STI to capture the distinct and dominant structural features of VOIs within this
object. When the scattering object has a periodic or quasi-periodic structure, STI can estimate
the size of the features generating the periodicity. To illustrate this idea, we consider a 3D object
shown in Fig. 12 that consists of nanospheres (n = 1.59) of four different sizes: 340nm, 360nm,
380nm, and 400nm. This object is illuminated by a light source with spectral bandwidth of
350nm (450nm−800nm) and spectral resolution of 1 nm. The specifications for collecting the
back-scattered light are the same as the above example. Figure 12 shows two cross-sections

Fig. 13. (i) 3D object consisting of nanospheres of four different sizes. The color-coded
VOIs indicate the four nanosphere stacks. (ii) The corresponding STI-based axial spatial
period profiles shown with the same color code.
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of the reconstructed 3D object. The average theoretical axial and lateral resolutions of recon-
struction are 323nm and 393nm respectively. Although the given lateral resolution results in
slight blurring along the lateral direction, the STI approach shows good reconstruction fidelity.
It should be noted that the nanoscale difference in the sizes of the nanospheres is hard to discern
visually, but the STI-based spatially-resolved structural characterization distinctly characterizes
the nanosphere sizes due to the periodicity in the nanosphere arrangement, as demonstrated
in Fig. 13. Figure 13(i) shows the stacking of the nanospheres and the color-coded cuboidal
VOIs overlaid on the object. The VOI dimensions (lateral×lateral×axial) are approximately
1µm× 1.5µm× 9µm. Figure 13(ii) shows the reconstructed axial spatial period profiles of
these four VOIs. The profiles have distinct peaks at spatial periods corresponding to the size of
the objects. Specifically, the peak locations are at 345nm, 363nm, 378nm, and 397nm, result-
ing in a maximum discrepancy of 5nm, which is well within the maximum theoretical error of
∆Ez =±12nm for NA = 0.5,n = 1.59,L = 20, andλ = 800nm.

4.3. Effect of phase noise

Having laid out the physical basis of the STI approach and demonstrated its feasibility through
simulations, we now consider the effect of errors in phase measurements, which is important
when considering experimental implementation. As noted in the introduction, the STI approach
can be implemented using any technique with the ability to collect the complex amplitude of the
back-scattered waves at the Fourier plane. Such an ability requires careful and precise measure-
ment of the phase of the back-scattered waves. In this context, we evaluate the performance of
the STI approach by numerically simulating the effect of phase noise on the resolution of the
reconstructed 3D object and the accuracy of its structural characterization. Random phase noise
is generated by assuming a uniform distribution with a mean of zero degree and a standard devi-
ation ofσp degrees around the mean. This random phase error is then numerically added to the
simulated complex amplitude of the back-scattered waves obtained at the Fourier plane. Utiliz-
ing basic Fourier theory, we expect that random phase shifts (due to phase errors) in 3D K-space
will cause random 3D spatial-shifts in the reconstructed object space, resulting in smearing (or
resolution loss) of the reconstructed object. As shown in Fig. 14, this is what we observe. The

Fig. 14. VOI: nanospheres of size 360nm. (i) Reconstructed VOI withσp = 0.5◦. (ii) Re-
constructed VOI withσp = 1.5◦. (iii) Reconstructed VOI withσp = 3◦. (iv) Reconstruction
error (relative to the no noise case) and peak position of the dominant structure as function
of σp.
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figure shows cross-sectional visualizations of the reconstruction of a VOI (within the object pre-
sented in Section 4.2) consisting of nanospheres of size 360nm whose complex measurements
at the Fourier plane have been affected by phase noise. As visualized in Figs. 14(i) through
14(iii), the resolution loss increases with increasingσp. To quantify this loss, Fig. 14(iv) shows
the image reconstruction error due to the presence of phase noise relative to the ideal case when
the reconstruction is performed with the absence of phase noise. We see that the error increases
proportionally to the increasing standard deviation of the uniformly distributed phase noise,
indicating that the resolution of the image reconstruction of the 3D object is affected by phase
noise and an accurate phase measurement at the Fourier plane is required. Most interestingly
though the high accuracy (or precision) of the spatially-resolved structural characterization is
robust to phase noise. This robustness, we think, follows from Eq. (23), which shows that the
spatially-resolved structural characterization results from the mapping of the energy (and not
the complex amplitude) from each K-space slice to the VOI under investigation. Despite the
presence of the phase noise, the bulk of this energy – especially the energy corresponding to
dominant structural features within the VOI – is retained, suggesting that the structural charac-
terization has robustness to phase noise. This is illustrated in Fig. 14(iv), where the accuracy of
structural characterization of the VOI (quantified by the peak position of the dominant struc-
ture) is retained despite the large increase in phase error.

5. Conclusion

We have presented the theoretical basis of STI, and demonstrated via numerical simulation that
given the complex amplitude of 3D spatial frequencies of the back-scattered waves collected
at the Fourier plane, we can obtain 3D tomographic reconstruction of the object with reso-
lution down to sub-micron level and simultaneously perform 3D spatially-resolved structural
characterization with nanoscale accuracy for any given VOI within the object. Our numerical
simulations confirm the technical performance of STI, especially the nanoscale accuracy of
structural characterization of 3D complex objects, suggesting its potential application in bio-
logical systems. Furthermore, preliminary analysis of the effect of phase noise via numerical
simulation suggests that STI-based structural characterization is robust to phase noise. STI re-
quires the collection of complex amplitude of multi-wavelength backscattering waves at the
Fourier plane, which can be obtained using techniques such as the phase-shifting method in
the settings of wavelength-scanning digital holography and frequency-domain interferometry.
The STI approach can also benefit many other imaging techniques, such as optical coherence
tomography, digital holographic microscopy and diffraction tomography.
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