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SUMMARY

We propose a graphical measure, the generalized negative predictive function, to quantify the
predictive accuracy of covariates for survival time or recurrent event times. This new measure
characterizes the event-free probabilities over time conditional on a thresholded linear combi-
nation of covariates and has direct clinical utility. We show that this function is maximized at
the set of covariates truly related to event times and thus can be used to compare the predictive
accuracy of different sets of covariates. We construct nonparametric estimators for this function
under right censoring and prove that the proposed estimators, upon proper normalization, con-
verge weakly to zero-mean Gaussian processes. To bypass the estimation of complex density
functions involved in the asymptotic variances, we adopt the bootstrap approach and establish
its validity. Simulation studies demonstrate that the proposed methods perform well in practical
situations. Two clinical studies are presented.

Some key words: Censoring; Negative predictive value; Positive predictive value; Prognostic accuracy; Receiver
operating characteristic curve; Recurrent event; Survival data; Transformation model.

1. INTRODUCTION

In cohort studies, potentially censored times until the occurrence of a particular event, such as
death or disease recurrence, are often recorded, along with data on certain covariates, including
demographic, clinical and genetic factors. An important objective of such studies is to deter-
mine which set of covariates is most predictive of event times and thus can be used to select
patients for targeted therapy or to refine disease prevention strategies. For example, the gene
expression breast cancer study of van de Vijver et al. (2002) was designed to assess whether a
70-gene signature can improve the prediction of survival times and the selection of patients for
adjuvant chemotherapy over standard clinical factors. Clinicians are extremely interested in the
percentage of patients who can be spared adjuvant chemotherapy, and in the long-term survival
probabilities for those patients. To address this type of question, a statistical measure directly
related to survival probabilities is needed to quantify the predictive accuracy of covariates and to
compare the predictive accuracy of different sets of covariates.

Several methods exist for assessing the predictive accuracy of covariates for survival time or
a single event. One approach extends the proportion of variation explained by covariates, R2, for
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the linear regression model to the proportional hazards model (Korn & Simon, 1990; Schemper,
1990; Schemper & Henderson, 2000), and a second approach is to use a suitable loss function,
such as the Brier score, to measure residual variation (Graf et al., 1999). These measures, how-
ever, may lack clinical relevance. A more recent approach is to extend the receiver operating
characteristic curve for binary response to survival time (Heagerty & Zheng, 2005; Uno et al.,
2007). This measure is focused on classification rather than prediction and is not directly related
to survival probabilities.

For a binary disease status D and a binary covariate Z , each taking values 0 and 1, standard
measures of predictive accuracy include the positive predictive value and negative predictive
value, which are defined as PPV = pr(D = 1 | Z = 1) and NPV = pr(D = 0 | Z = 0), respectively.
The predictive values pertain to the probability of disease or nondisease given a positive or
negative result for a dichotomous test and are thus of direct interest to the end users of the
test. When Z is continuous and a larger value of Z corresponds to a higher risk of disease,
Moskowitz & Pepe (2004) defined the positive and negative predictive curves PPV(v)= pr{D =
1 | FZ (Z) > v} and NPV(v)= pr{D = 0 | FZ (Z)� v} (0 � v � 1), where FZ (·) is the distribution
function of Z . Using FZ (Z) instead of Z yields two appealing properties. First, the positive and
negative predictive curves do not depend on the scales upon which the continuous covariates
are measured and are thus comparable among different covariates. Second, it can be shown that
PPV(v)= 1 − {pr(D = 0)− vNPV(v)}(1 − v)−1, which means that a higher negative predictive
curve corresponds to a higher positive predictive curve, so either curve is sufficient to quan-
tify predictive accuracy. These measures were recently extended to survival data by Zheng et al.
(2008), who defined time-dependent predictive curves as PPV(t, v)= pr{T � t | FZ (Z) > v} and
NPV(t, v)= pr{T > t | FZ (Z)� v}, where T is the survival time; the extension pertains to a sin-
gle event with a single covariate. Uno et al. (2007) considered the predictive curves at a fixed
time-point for a single event with multiple covariates by standardizing the linear predictor with
a known transformation function and proposed inverse probability weighted estimators under
completely-at-random censoring.

In the present paper, we propose a new concept, the generalized negative predictive function,
to quantify the predictive accuracy of multiple covariates for both survival time and recurrent
event times. In the special case of a single event with a single covariate, our function reduces
to that of Zheng et al. (2008). We show that the proposed function is maximized at the set
of covariates that is truly related to event times and thus can be used to quantify and com-
pare the predictive accuracy of covariates. No such theoretical results are available even for a
binary outcome or a single event with a single covariate. We develop nonparametric estima-
tors for the proposed function, allowing censoring to depend on covariates, and establish their
large-sample properties. Because a linear combination of covariates is obtained from a possibly
misspecified working model to predict event times, the asymptotic distributions of the estima-
tors for the case of multiple covariates are considerably more complicated than the case of a
single covariate.

2. GENERALIZED NEGATIVE PREDICTIVE FUNCTION

Let N∗(t) be the counting process which records the number of events the subject has
experienced by time t . Let X be the vector of all potential covariates, and Z be a p × 1 sub-
set of X . We wish to quantify the ability of Z in predicting N∗(·).

We first consider the case where Z is a single covariate. Suppose that a larger value of Z
corresponds to a higher event rate. Then at each time-point u ∈ (0, t], we can define a negative
predictive curve, pr{dN∗(u)= 0 | Y ∗(u)= 1, FZ (Z)� v}, for the subjects who are at risk at that



Predictive accuracy of covariates for event times 617

time, where Y ∗(u) is a process indicating whether the subject is at risk for experiencing an event
at time u. By taking the product integral of these curves in the time interval (0, t], we define the
generalized negative predictive function of Z as

G(t, v)=
∏

0�u�t

pr{dN∗(u)= 0 | Y ∗(u)= 1, FZ (Z)� v}. (1)

For single-event data, N∗(·) has a single jump at the event time T and Y ∗(t)= I (T � t), so that
equation (1) reduces to NPV(t, v)= pr{T > t | FZ (Z)� v} of Zheng et al. (2008). For recurrent
event data, equation (1) is equivalent to

G(t, v)= exp

[
−
∫ t

0
E{dN∗(u) | Y ∗(u)= 1, FZ (Z)� v}

]
,

which can be rewritten as exp[−E{N∗(t) | FZ (Z)� v}] because Y ∗(·)= 1; therefore,
− log{G(t, v)} can be interpreted as the predictive number of events by time t in the subgroup
with FZ (Z)� v. If the counting process has a Poisson structure such that the occurrence of an
event is independent of the prior event history conditional on Z , then (1) can also be interpreted
as the probability of no event by time t in the subgroup with FZ (Z)� v.

We now consider the case that Z includes multiple covariates. To use Z to predict N∗(·), a
common approach is to obtain a linear combination of Z under a regression model. We consider
a semiparametric working model in the form of

E{N∗(t) | Z} = g(t, βT Z), (2)

where β is a p × 1 vector of unknown regression parameters, and g(t, v) is a strictly increas-
ing function of v for all t > 0. For single-event data, we can use the class of semiparametric
transformation models (Dabrowska & Doksum, 1988; Zeng & Lin, 2006), which includes the
proportional hazards and proportional odds models as special cases. For recurrent event data, we
can use the class of semiparametric transformation mean models (Lin et al., 2001).

Let β̂ be the estimator of β described in Zeng & Lin (2006). For single-event data and recurrent
events with a Poisson structure, β̂ is the nonparametric maximum likelihood estimator. For recur-
rent events without a Poisson structure, β̂ is viewed as a maximum pseudo-likelihood estimator.
It can be shown that β̂ converges to some constant vector β∗ under mild regularity conditions
even when model (2) is misspecified. The predictive accuracy of Z can be quantified by the
generalized negative predictive function of β∗T Z ,

G Z ,β∗(t, v)=
∏

0�u�t

pr{dN∗(u)= 0 | Y ∗(u)= 1, Fβ∗T Z (β
∗T Z)� v}, (3)

which is equal to pr{T > t | Fβ∗T Z (β
∗T Z)� v} for single-event data, and to exp[−E{N∗(t) |

Fβ∗T Z (β
∗T Z)� v}] for recurrent event data.

As a function of both t and v, the generalized negative predictive function can be plotted
against the cut-off percentage v for a specific t . By comparing such plots for two sets of covari-
ates, one can tell the difference in the event-free probability at time t between the two groups that
include v percentage of low-risk subjects as defined by the two sets of covariates. The low-risk
group defined by the more predictive set of covariates has a higher survival probability. As in
the case of the receiving operating characteristic curve, the area under the curve can be used as
a summary measure. One can set a cut-off of survival probability to define low risk. For breast



618 LI CHEN, D. Y. LIN AND DONGLIN ZENG

cancer patients, the low-risk group is usually defined to have a 5-year survival probability of at
least 0·95. Then drawing a horizontal line at 0·95 would yield the percentage of patients who can
be defined as low risk. For this type of application, the function is required to be monotone. The
proposed function can also be plotted against t for a specific v. By comparing such plots for two
sets of covariates, one can tell how the difference in the event-free probability changes over time
for the two low-risk groups defined by the two sets of covariates.

We now provide a formal justification for using the generalized negative predictive func-
tion to compare the predictive accuracy of different sets of covariates. Using Lemma A1 of
Appendix 1, we can obtain an optimality property of G Z ,β∗(t, v) that this function is maximized
at the true linear combination of covariates and that the maximization holds uniformly for all t
and v. Specifically, suppose that Z0 is the subset of X truly related to N∗(·) in that E{N∗(t) | X}
depends on Z0 only and that β0 is the true value of β associated with Z0 under model (2). Then
G Z0,β0(t, v)� G Z ,β(t, v) for all t > 0 and v ∈ (0, 1).

3. INFERENCE PROCEDURES

3·1. Preliminaries

Let C denote the censoring time. In the presence of censoring, the observed counting process
is N (t)= N∗(t ∧ C) and the at-risk process is Y (t)= Y ∗(t)I (C � t), where a ∧ b = min(a, b),
and I (·) is the indicator function. The data consist of n independent replicates {Ni (t), Yi (t), Xi :
t ∈ [0, τ ]} (i = 1, . . . , n), where τ is the endpoint of the study. We use the estimator β̂ from
the working model (2) to construct nonparametric estimators for G Z ,β∗(t, v). We consider the
situation that C is independent of N∗(·) and X , as well as the situation that C is independent of
N∗(·) conditional on X . We refer to these two censoring mechanisms as completely-at-random
censoring and covariate-dependent censoring, respectively.

3·2. Single-event data under completely-at-random censoring

Under completely-at-random censoring, pr{dN∗(u)= 0 | Y ∗(u)= 1, Fβ∗T Z (β
∗T Z)� v} =

pr{dN (u)= 0 | Y (u)= 1, Fβ∗T Z (β
∗T Z)� v}. Thus, we estimate G Z ,β∗(t, v) by

Ĝ(t, v)=
∏

0<u�t

[
1 −

∑n
i=1 I {Fn(β̂

T Zi )� v}dNi (u)∑n
i=1 I {Fn(β̂T Zi )� v}Yi (u)

]
,

where Fn(·) is the empirical distribution of β̂T Z . Note that Ĝ(t, v) is the Kaplan–Meier estimator
of the survival function in the subgroup with Fn(β̂

T Z)� v.
In Appendix 2, we show that the process n1/2{Ĝ(t, v)− G Z ,β∗(t, v)} converges weakly to a

zero-mean Gaussian process and is asymptotically equivalent to the process

n−1/2
n∑

i=1

ξ1i (t, v)+ n1/2{Ĝ(t; ĉv, β̂)− Ĝ(t; cv, β
∗)}, (4)

where

ξ1i (t, v)= −G Z ,β∗(t, v)I (β∗T Zi � cv)

∫ t

0

dNi (u)− Yi (u) d�(t; cv, β∗)
E{I (β∗T Z � cv)Y (u)} ,
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G(t; c, β)=
∏

0<u�t

[
1 − E{I (βT Z � c) dN∗(u)}

E{I (βT Z � c)Y ∗(u)}
]
,

Ĝ(t; c, β)=
∏

0<u�t

{
1 −

∑n
i=1 I (βT Zi � c) dNi (u)∑n

i=1 I (βT Zi � c)Yi (u)

}
,

cv = F−1
β∗T Z

(v), ĉv = F−1
n (v), and d�(t; c, β)= E{dN∗(t) | Y ∗(t)= 1, βT Z � c}. The second

term in (4) is asymptotically equivalent to n−1/2∑n
i=1 ξ2i (t, v), where ξ2i (t, v) is the value of

ξ2(t, v), defined in equation (A5) of Appendix 2, for the i th subject. Note that ξ2(t, v) involves
conditional density functions given multi-dimensional covariates, which are difficult to estimate
directly. To avoid this difficulty, we approximate the asymptotic distribution by bootstrapping the
observations {Ni (t), Yi (t), Xi : t ∈ [0, τ ]} (i = 1, . . . , n). We recommend using 1000 bootstrap
samples. The validity of the bootstrap is proved in Appendix 4.

3·3. Single-event data under covariate-dependent censoring

When censoring is not completely at random, the Kaplan–Meier type estimator for the general-
ized negative predictive function presented in § 3·2 is no longer consistent because pr{dN∗(u)=
0 | Y ∗(u)= 1, Fβ∗T Z (β

∗T Z)� v} |= pr{dN (u)= 0 | Y (u)= 1, Fβ∗T Z (β
∗T Z)� v}. We decom-

pose the set of all potential covariates X into two parts, U and W , where U is known to
be independent of C , and C is independent of N∗(·) conditional on W . Let q be the num-
ber of continuous components in W . Note that pr{T > t | Fβ∗T Z (β

∗T Z)� v} = E[E{I (T >
t, β∗T Z � cv) | W }]/v = E{S(t; cv, β∗,W )I (β∗T Z � cv)}/v, where S(t; c, β,w)= pr(T > t |
βT Z � c,W =w). Since the cumulative hazard function corresponding to S(t; c, β,w), denoted
by �(t; c, β,w), is equal to

∫ t
0 E{dN (u)I (βT Z � c) | W =w}/E{I (βT Z � c)Y (u) | W =w},

we propose to estimate S(t; c, β,w) by a kernel-smoothed Kaplan–Meier type estimator

Ŝ(t; c, β,w)=
∏

0<u�t

[
1 −

∑n
i=1 K {(Wi − w)/h}I (βT Zi � c) dNi (u)∑n

i=1 K {(Wi − w)/h}I (βT Zi � c)Yi (u)

]
,

where K (x)= K̃ (‖ xc ‖)I (xd = 0), xd and xc are the discrete and continuous components of x ,
respectively, ‖ · ‖ is the Euclidean norm, K̃ (·) is a kernel function for which there exists some
integer l such that

∫
y j K̃ (y) dy = 0 ( j = 1, . . . , l − 1),

∫
yl K̃ (y) dy |= 0 and 2l − q > 0, and h is

a bandwidth such that nhq → ∞ and nh2l → 0 as n → ∞. When q � 3, we can use a symmetric
smooth probability density function as the kernel function. In light of the relationship between
S(t; cv, β∗,W ) and G Z ,β∗(t, v), we can then estimate G Z ,β∗(t, v) by

G̃(t, v)= v−1n−1
n∑

i=1

Ŝ(t; ĉv, β̂,Wi )I (β̂
T Zi � ĉv).

In Appendix 3, we show that the process n1/2{G̃(t, v)− G Z ,β∗(t, v)} converges weakly to a
zero-mean Gaussian process. As in § 3·2, the asymptotic distribution can be approximated by the
bootstrap method.

Due to the curse of dimensionality and the difficulty in choosing an appropriate kernel function
for q > 3, the proposed method may not be very useful when q is large. For q > 3, we suggest
obtaining a linear combination of W under a proportional hazards model for the censoring time
and then applying the proposed method to the linear combination of W .
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3·4. Recurrent event data

Under completely-at-random censoring, the inference procedures developed in § 3·2 can be
readily applied to recurrent event data because the formulae do not involve specific forms of
single-event data. Under covariate-dependent censoring, the fact that Y ∗(·)= 1 for recurrent
event data yields

G Z ,β∗(t, v)= exp[−v−1 E{μ(t; cv, β
∗,W )I (β∗T Z � cv)}],

where μ(t; c, β,w)= ∫ t
0 E{dN∗(u) | W =w, βT Z � c}, which can be consistently estimated by

μ̂(t; c, β,w)=
∫

u�t

∑n
i=1 K {(Wi − w)/h}I (βT Zi � c) dNi (u)∑n

i=1 K {(Wi − w)/h}I (βT Zi � c)Yi (u)
.

Thus, we propose to estimate G Z ,β∗(t, v) by

G̃(t, v)= exp

{
−v−1n−1

n∑
i=1

μ̂(t; ĉv, β̂,Wi )I (β̂
T Zi � ĉv)

}
.

We show in Appendix 3 that the process n1/2{G̃(t, v)− G Z ,β∗(t, v)} converges weakly to a
zero-mean Gaussian process. The asymptotic distribution can again be approximated by the
bootstrap method.

4. SIMULATION STUDIES

The first set of simulation studies concerns the performance of the proposed estimators
under completely-at-random censoring. To mimic the breast cancer data of § 5·1, we generated
survival times from the Weibull regression model λ(t | X)= kλ−1(t/λ)k−1 exp(βT X), where
λ(t | X) is the conditional hazard function of T given X , X is zero-mean trivariate normal
with a covariance matrix that is the sample covariance matrix of age, tumor size and gene
score of the breast cancer data, and the parameters k, λ, β are estimated from the breast can-
cer data. We also generated recurrent event times from the random-effect intensity model:
λ(t | X, ξ)= ξkλ−1(t/λ)k−1 exp(βT X), where λ(t | X, ξ) is the conditional intensity function of
N∗(t) given X and ξ , and ξ is a gamma random variable with mean 1 and standard deviation 0·5.
For completely-at-random censoring, we generated censoring times from a Weibull distribution
whose parameters are estimated from the breast cancer data. Table 1 summarizes the results for
the estimator Ĝ(t, v) at v = 0·25, 0·5, 0·75 and 1·0 for t = 5 years with n = 300. The parameter
estimator has little bias. The standard error estimator reflects the true variability very well, and the
confidence intervals have proper coverage probabilities. We also evaluated G̃(t, v), the estima-
tor allowing covariate-dependent censoring, and found it to be nearly as efficient as Ĝ(t, v). For
survival data, we also evaluated the inverse probability weighted estimator of Uno et al. (2007).
The relative efficiencies of Ĝ(t, v) to Uno et al.’s estimator were found to be 3·80, 2·02, 1·34 and
1·0 for v = 0·25, 0·5, 0·75 and 1·0, respectively.

To assess the performance of the proposed estimators under covariate-dependent censoring,
we adopted the above set-up but generated censoring times from the transformation model
�(t | X)= H{0·1t exp(βc

∑m
i=1 Xi )}, where �(t | X) is the cumulative hazard function of C

conditional on X , H(·) is a specific increasing function, and X1, . . . , Xm are standard normal
variables with 0·3 correlations with the gene score. To compare the estimators under completely-
at-random censoring and covariate-dependent censoring, we chose H(x)= x , m = 3 and βc =
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Table 1. Simulation results for the estimator Ĝ(t, v) for data under completely-at-random
censoring

Survival data Recurrent event data
v True Bias SE SEE CP True Bias SE SEE CP

0·25 97·0 0·1 2·0 2·0 93 97·0 −0·0 2·1 2·0 91
0·50 94·9 0·1 1·8 1·9 96 94·8 −0·0 1·9 1·9 96
0·75 92·0 0·1 1·8 1·9 96 91·9 −0·0 1·9 2·0 96
1·0 85·6 −0·0 2·1 2·1 94 83·8 −0·0 2·5 2·5 94

True, the true value (×100) of G(t = 5 years, v); Bias, the sampling bias (×100); SE, the sampling standard
error (×100); SEE, the sampling mean (×100) of the standard error estimator; CP, the coverage probability
(×100) of the 95% confidence interval. Each entry is based on 2000 replicates.

Table 2. Simulation results for the estimators G̃(t, v) and Ĝ(t, v) for survival data under
covariate-dependent censoring

G̃(t, v) Ĝ(t, v)
n v True Bias SE SEE CP Bias SE SEE CP

300 0·25 97·0 −0·1 3·3 2·9 96 −0·1 2·7 2·6 87
0·50 94·9 −0·0 2·7 2·6 96 −0·2 2·4 2·4 96
0·75 92·0 −0·1 2·5 2·5 96 −0·4 2·3 2·4 96
1·0 85·6 −0·2 2·6 2·5 94 −1·5 2·5 2·5 92

500 0·25 97·0 −0·0 2·5 2·2 95 −0·1 2·1 2·1 93
0·50 94·9 −0·0 2·1 2·0 95 −0·2 1·8 1·9 96
0·75 92·0 0·0 2·0 1·9 95 −0·5 1·8 1·8 96
1·0 85·6 −0·1 2·1 2·0 94 −1·4 2·0 2·0 90

True, the true value (×100) of G(t = 5 years, v); Bias, the sampling bias (×100); SE, the sampling standard error
(×100); SEE, the sampling mean (×100) of the standard error estimator; CP, the coverage probability (×100) of
the 95% confidence interval. Each entry is based on 2000 replicates.

0·5 to produce a censoring rate of 70·2%, which is close to that of the breast cancer data. We
used the 3-dimensional independent Gaussian kernel density and set the bandwidth to σn−7/24,
where σ is the maximum of the standard deviations of X1, X2 and X3. As shown in Table 2,
the estimator G̃(t, v) has very small bias; the variance estimator is accurate and the confidence
intervals have proper coverage probabilities. In contrast, the estimator Ĝ(t, v) has severe bias and
improper confidence intervals. We also evaluated the inverse probability weighted estimator of
Uno et al. (2007), which turned out to be severely biased and inefficient, the bias being −0·239,
−0·138, −0·066, and −0·009 for v = 0·25, 0·5, 0·75 and 1·0, respectively, and the corresponding
standard errors being 0·086, 0·052, 0·033 and 0·025.

Finally, we considered the situation that censoring depends on a large number of covariates. We
increased the number of covariates in the above censoring model to 10 or 20 and set H(x)= x or
H(x)= log(1 + x). We used the one-dimensional Gaussian kernel density and set the bandwidth
to σn−1/3, where σ is the standard deviation of the linear predictor in the proportional hazards
model for the censoring time. The results for βc = 0·1 and m = 10 and 20 are summarized in the
Supplementary Material. The proposed method performs well even when the censoring model is
incorrectly specified.
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Fig. 1. Estimation of G(t, v) at t = 5 years in the breast cancer data. The black solid, dashed
and dotted curves pertain to the combination of the gene signature, age and tumor size, gene
signature alone, and the combination of age and tumor size, respectively. The grey curves are

the 95% pointwise confidence limits corresponding to the black solid curve.

5. EXAMPLES

5·1. Gene expressions in breast cancer patients

van de Vijver et al. (2002) developed a database of 295 breast cancer patients. In this dataset,
the time to death along with a 70-gene signature and some clinical factors were recorded. A
total of 276 patients had complete information on the gene signature and clinical factors, and
the survival times for 73·6% of them were censored. The main purpose of this study was to
determine whether the 70-gene signature can improve the prediction of survival times above the
clinical factors and thus be used to guide the selection of patients for adjuvant chemotherapy. We
use this dataset to illustrate the generalized negative predictive function.

For our illustration, we compare three sets of covariates: the combination of age and tumor
size, the 70-gene signature alone, and the combination of the gene signature, age and tumor size.
We consider the proportional hazards models with these three sets of covariates. Because the
censoring time depends on tumor size, the p-value being 0·0009, we allow censoring to depend
on tumor size in our analysis. Figure 1 displays the 5-year negative predictive curves for the
three sets. The gene signature indeed improves predictive accuracy above clinical factors and
the gene signature alone is enough for prediction. If clinicians wish to spare 50% of the breast
cancer patients adjuvant chemotheraphy, then those patients selected by the combination of the
gene signature, age and tumor size will have a 5-year survival probability of 0·962, with a 95%
confidence interval of (0·920, 0·992), whereas those patients selected by age and tumor size will
have a 5-year survival probability of only 0·89. The area under the curve for the combination
of the gene signature, age and tumor size is 0·945, which is significantly larger than that of
the combination of age and tumor size and is very close to that of the gene signature alone,
the two differences being 0·050 and 0·001, respectively, and the corresponding 95% confidence
intervals being (0·020, 0·083) and (−0·008, 0·013). Because the effect of dependent censoring
is fairly small in this case, the curves under completely-at-random censoring are very similar to
their counterparts in Fig. 1 and are omitted.

We now demonstrate how to use the negative predictive curve to guide the selection of patients
for adjuvant chemotherapy. Because of the toxicity of chemotherapy, low-risk patients should be
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(a) (b)

Fig. 2. Estimates of the NPV (t = 5 years, v) of Uno et al. (2007) in the breast cancer data. The
black solid, dashed and dotted curves pertain to the combination of the gene signature, age and
tumor size, gene signature alone, and the combination of age and tumor size, respectively. (a)
is based on the inverse probability weighted estimator of Uno et al. (2007); (b) is based on the

Kaplan–Meier type estimator.

spared adjuvant chemotherapy. Suppose that we define low risk to be a 5-year survival probability
of at least 95%. Then what percentage of patients will be assigned to the low-risk group and
thus spared adjuvant chemotherapy based on the 70-gene signature? The answer is given by
G−1 (t = 5, 0·95) = 58·0%, with a 95% confidence interval of (34·4%, 70·7%). In contrast, this
percentage is only 10·5%, with a 95% confidence interval of (1·1%, 31·2%) based on age and
tumor size. Thus, the use of the 70-gene signature can spare substantially more patients adjuvant
chemotherapy.

Finally, we compare our negative predictive curves with those of Uno et al. (2007). Figure 2
displays the estimates of the curves of Uno et al. (2007), for which the linear predictor is
standardized by the transformation function g(y)= 1 − exp{− exp(y)}. Figure 2 shows that the
x-values of the curves for different linear predictors have different ranges, although the transfor-
mation function restricts the linear predictors to the interval (0, 1). In contrast, the x-values of our
curves, as shown in Fig. 1, always have the range (0, 1). In Fig. 2, the curve for the combination
of the gene signature, age and tumor size is considerably lower than that of the gene signature
alone. This is not sensible because the combination of the gene signature, age and tumor size
should at least have the same predictive accuracy as the gene signature alone. Therefore, the
negative predictive curves standardized by a known transformation function cannot be used to
directly compare the predictive accuracy of different covariates. Figure 2 also shows that the
inverse probability weighted estimator can yield inappropriate estimates for small cut-off values.

5·2. Exacerbations of respiratory symptoms in patients with cystic fibrosis

Patients with cystic fibrosis often suffer from repeated exacerbations of respiratory symptoms.
A randomized clinical trial was conducted to evaluate the efficacy of rhDNase, a highly purified
recombinant enzyme, in reducing the rate of of exacerbations (Therneau & Hamilton, 1997). By
the end of the trial, 139 of 324 untreated patients and 104 of 321 treated patients had experi-
enced at least one exacerbation; 42 untreated patients and 39 treated patients had at least two
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Fig. 3. Estimates of G(t, v) at v= 0·498 in the rhDNase study. The black solid and black
dash-dotted curves pertain to the point estimates for the model with forced expiratory volume
and treatment and the model with treatment alone, respectively. The grey curves pertain to

the 95% pointwise confidence limits associated with the black solid curve.

exacerbations. In addition to the times to exacerbations, the baseline level of forced expiratory
volume in 1 second was recorded for each patient.

We use the proposed methods to evaluate the importance of forced expiratory volume in pre-
dicting the number of exacerbations. We compare the predictive accuracy of forced expiratory
volume and treatment to that of treatment alone. We consider the class of transformation mean
models for these two sets of covariates. The choices of the Box–Cox transformations H(x)=
{(1 + x)ρ − 1}/ρ with ρ = 0·5, 1, 2 and logarithmic transformations H(x)= log(1 + r x)/r with
r = 0·5, 1, 2 yield highly similar estimates for G(t, v). Since treatment is binary, G(t, v) for the
two sets of covariates are comparable only at the threshold v = 0·498, the proportion of treated
patients. Figure 3 displays the estimated G(t, v) versus t at v = 0·498 based on the proposed
estimator under completely-at-random censoring. The model with forced expiratory volume and
treatment has much higher generalized negative predictive values than the model with treatment
alone, especially for large t , indicating that forced expiratory volume plays an important role in
predicting the number of exacerbations. The results based on the estimator allowing the censoring
to depend on forced expiratory volume and treatment are virtually the same and omitted.

6. REMARKS

In the proposed methods, the working model is used only to obtain the coefficients for the
linear combination of multiple covariates. The estimation of the generalized negative predictive
function itself is purely nonparametric, so the predictive accuracy of different sets of covariates
can be compared in a fair manner. Additional simulation studies revealed that the performance
of the proposed methods is robust to misspecification of the transformation function. In real
studies, the estimates of the proposed function, especially the relative magnitudes of the estimates
for different sets of covariates, have been found to be similar under different transformation
functions.

We have focused on the class of transformation models and its nonparametric maximum like-
lihood estimators (Zeng & Lin, 2006). We can also consider other survival models and other
estimators provided that the influence functions for the regression parameters exist. Indeed, our
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methods are designed to assess the predictive accuracy of any model, whether it holds or not.
If there is only a single covariate or the regression parameters are estimated from a previous
study, then the influence functions for the regression parameters are set to zero in the proposed
methods. Our work was partly motivated by the desire to compare the predictive accuracy of
five gene-expression signatures for breast cancer (Fan et al., 2006), in which case the coeffi-
cients for each linear predictor were determined by a previous study and thus considered fixed
in our estimation of the generalized negative predictive function; the results will be reported
elsewhere.

Uno et al. (2007) considered the positive and negative predictive curves by thresholding the
linear predictor with a known transformation function. As shown in § 5·1, such curves can-
not be used to directly compare the predictive accuracy of different covariates. In addition, the
inverse probability weighted estimator requires completely-at-random censoring and can yield
severe bias under covariate-dependent censoring. Even under completely-at-random censoring,
the inverse probability weighted estimator is less efficient than our Kaplan–Meier type estima-
tor, especially for small cut-off values. Our proposed function thresholds the linear predictor by
its distribution function and can be used to compare the predictive accuracy of different covari-
ates. The use of the distribution function of the linear predictor creates additional challenges in
deriving the asymptotic properties since the distribution function needs to be estimated and the
additional variation needs to be accounted for.

The proposed function has nice connections with the receiving operating characteristic curve
and overall misspecification rate. It can be shown that, for a given time t if the predictive curve of
βT

1 Z1 is uniformly higher than that of βT
2 Z2, then the corresponding receiving operating charac-

teristic curve is also uniformly higher, and vice versa. In addition, a uniformly higher predictive
curve implies a lower overall misspecification rate. The key difference of the predictive curve
from the receiving operating characteristic curve is that it depends on the patient’s survival prob-
abilities and is thus more relevant for prediction. A main purpose of developing a prediction rule
is to divide patients with low versus high survival probabilities. The prediction rule based on the
receiving operating characteristic curve is not directly connected to survival probabilities, so it
is difficult to determine whether the low/high risk groups determined by the prediction rule have
high/low survival probabilities. As for the overall misspecification rate, it has the same problem
as the receiving operating characteristic curve and does not distinguish between false positive
and false negative errors.

There is a growing interest in assessing the predictive accuracy of time-dependent covari-
ates. Henderson et al. (2002) proposed a modification of the explained variation mea-
sure of Schemper & Henderson (2000), Schoop et al. (2008) extended the Brier score, and
Zheng & Heagerty (2007) extended the receiving operating characteristic method. All these
extensions are confined to single-event data. The generalized negative predictive function pro-
posed in this paper can easily incorporate time-dependent covariates by replacing Z in (3) by
Z(u). It is straightforward to extend the two estimators for recurrent event data and the estima-
tor for single-event data under completely-at-random censoring to the setting of time-dependent
covariates, but the extension is difficult for single-event data under dependent censoring because
our estimator relies on the equation G Z ,β∗(t, v)= pr{T > t | Fβ∗T Z (β

∗T Z)� v}, which does not
hold for time-dependent covariates.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional simulation results
and Lemma S1 of Appendix 4.

APPENDIX 1

Optimality of the generalized negative predictive function

LEMMA A1. Let ξ(·) be a stochastic process, and Z0 and Z be subvectors of the random vector X.
Assume that the linear combinations βT

0 Z0 and βT Z are continuous and that E{ξ(t) | X} = g0(t, βT
0 Z0),

where g0(t, v) is a strictly decreasing function of v for all t > 0. Then E{ξ(t) | FβT
0 Z0
(βT

0 Z0)� v} � E{ξ(t) |
FβT Z (β

T Z)� v} for all t > 0 and v ∈ (0, 1). In addition, if there exists some t such that the equality holds
for all v, then pr{FβT

0 Z0
(βT

0 Z0)= FβT Z (β
T Z)} = 1.

Proof. Let Y0 = FβT
0 Z0
(βT

0 Z0), Y = FβT Z (β
T Z), and f (t, y)= g0{t, F−1

βT
0 Z0
(y)}. Then E{I (Y0 � v)} =

E{I (Y � v)} = v, E{ξ(t) | X} = f (t,Y0), and f (t, y) is strictly decreasing in y for all t > 0. Clearly,
vE{ξ(t) | FβT

0 Z0
(βT

0 Z0)� v} = E{ f (t,Y0)I (Y0 � v)}, which can be written as

E{ f (t,Y0)I (Y0 � v,Y � v)} + E{ f (t,Y0)I (Y0 � v,Y > v)}. (A1)

Since f (t, y) is strictly decreasing in y for all t > 0, the second term in (A1) is greater than or equal
to f (t, v)E{I (Y0 � v,Y > v)}, where the equality holds if and only if pr(Y0 � v,Y > v)= 0. Since
E{I (Y0 � v)} = E{I (Y � v)} = v, we have E{I (Y0 � v,Y > v)} = E{I (Y0 > v,Y � v)}. This equality,
together with the fact that f (t, y) is strictly decreasing in y for all t > 0, implies that the second term
in (A1) is greater than or equal to E{ f (t,Y0)I (Y0 > v,Y � v)}. Thus, (A1) is greater than or equal to
E{ f (t,Y0)I (Y � v)} or vE{ξ(t) | FβT Z (β

T Z)� v}. Hence, the results in Lemma A1 hold. �

Remark 1. If βT
0 Z0 or βT Z is not continuous, then E{ξ(t) | FβT

0 Z0
(βT

0 Z0)� v} � E{ξ(t) | FβT Z (β
T Z)�

v} for all t > 0 and v in the common range of the distribution functions of βT
0 Z0 and βT Z .

APPENDIX 2

Weak convergence of n1/2{Ĝ(t, v)− G Z ,β∗(t, v)}
In this section, we prove the weak convergence of n1/2{Ĝ(t, v)− G Z ,β∗(t, v)} for single-event data.

The proof for recurrent events is similar and is omitted.
Let Pn and P denote the empirical measure and the distribution under the true model, respectively.

For a measurable function f and measure Q, the integral
∫

f dQ is abbreviated as Q f . We assume that
there exists a continuous covariate in Z , denoted as Z (k). Let Z (−k) be the remaining components of Z ,
and βk and β(−k) be the components of β corresponding to Z (k) and Z (−k), respectively. Let h1(t, x; y)
and h2(x; y) be, respectively, the conditional densities of (T, Z (k)) and Z (k) given Z (−k) = y. We require
that h1(t, x; y) and h2(x; y) are continuously differentiable. Let ψ be the influence function of β̂ in that
n1/2(β̂ − β∗)= n1/2Pnψ + op(1).

Clearly,

n1/2{Ĝ(t, v)− G Z ,β∗(t, v)} = n1/2{Ĝ(t; cv, β
∗)− G(t; cv, β

∗)} + n1/2{Ĝ(t; ĉv, β̂)− Ĝ(t; cv, β
∗)}.

(A2)
The first term in (A2) pertains to the Kaplan–Meier estimator among the subjects with β∗T Z � cv and is
asymptotically equivalent to n1/2(Pn − P)ξ(t; cv, β∗), where

ξ(t; c, β)= −
[

G(t; c, β)I (βT Z � c)

∫ t

0

dN (u)− Y (u) d�(u; c, β)

E{I (βT Z � c)Y (u)}
]
.



Predictive accuracy of covariates for event times 627

By the result of Exercise 14 of van der Vaart & Wellner (1996, p. 152), the class of functions
x 	→ I (βTx � c) with β and c ranging over Rp and R, respectively, is VC-subgraph and is
thus P-Donsker by Theorems 2.6.7 and 2.5.2 of van der Vaart & Wellner (1996). In addition, the
classes of functions {N (t) : t ∈ [0, τ ]}, {Y (t) : t ∈ [0, τ ]}, and {�(t; c, β) : t ∈ [0, τ ]} are P-Donsker
by Lemma 4.1 of Kosorok (2008). Thus, {ξ(t; c, β) : t ∈ [0, τ ], c ∈R, β ∈Rp} is a P-Donsker class
by the preservation properties of P-Donsker classes (van der Vaart & Wellner, 1996, § 2.10). This
result, together with the fact that n1/2{Ĝ(t; ĉv, β̂)− Ĝ(t; cv, β∗)} = n1/2{G(t; ĉv, β̂)− G(t; cv, β∗)} +
n1/2{Ĝ(t; ĉv, β̂)− G(t; ĉv, β̂)} + n1/2{Ĝ(t; cv, β∗)− G(t; cv, β∗)}, implies that the second term in (A2)
is asymptotically equivalent to

n1/2{G(t; ĉv, β̂)− G(t; cv, β
∗)} + n1/2(Pn − P){ξ(t; ĉv, β̂)− ξ(t; cv, β

∗)}. (A3)

As to be shown later, n1/2(ĉv − cv) is weakly convergent. Thus, the second term in (A3) converges uni-
formly to zero in probability by Lemma 19.24 of van der Vaart (1998). The first term in (A3) is asymptot-
ically equivalent to

∂G(t; c, β∗)
∂c

∣∣∣∣
c=cv

n1/2(ĉv − cv)+ ∂G(t; cv, β)

∂β

∣∣∣∣
β=β∗

n1/2(β̂ − β∗),

where ∂G(t; c, β)/∂β can be obtained as follows, and ∂G(t; c, β)/∂c in the same manner. Let g1(t, β, c)=
E{I (T > t)I (βT Z � c)}, and g2(β, c)= E{I (βT Z � c)}. Then for βk > 0, g1(t, β, c)= E[E{I (T >

t)I (βT Z � c)|Z (−k)}] = E
∫ β−1

k (c−β(−k)Z (−k))

−∞
∫∞

t h1(s, x; Z (−k)) dsdx . Simple algebraic manipulations yield

∂G(t; c, β)

∂β
= ∂g1(t, β, c)/∂β − E{I (T > t)|βT Z � c}∂g2(β, c)/∂β

E{I (βT Z � c)} ,

where

∂g1(t, β, c)

∂βk
= −cβ−2

k E

∫ ∞

t
h1{s, β−1

k (c − β(−k)Z
(−k)); Z (−k)} ds,

∂g1(t, β, c)

∂β(−k)
= −β−1

k E

[
Z (−k)

∫ ∞

t
h1{s, β−1

k (c − β(−k)Z
(−k)); Z (−k)} ds

]
,

∂g2(β, c)

∂βk
= −cβ−2

k E
[
h2{β−1

k (c − β(−k)Z
(−k)); Z (−k)}] ,

∂g2(β, c)

∂β(−k)
= −β−1

k E[Z (−k)h2{β−1
k (c − β(−k)Z

(−k)); Z (−k)}].

We now establish the weak convergence of n1/2(ĉv − cv). Clearly,

n1/2{Fn(c)− Fβ∗T Z (c)} = n1/2(Pn − P)I (β∗T Z � c)+ n1/2P{I (β̂T Z � c)− I (β∗T Z � c)}
+ n1/2(Pn − P){I (β̂T Z � c)− I (β∗T Z � c)}. (A4)

The second term on the right-hand side of (A4) is asymptotically equivalent to ∂g2(β
∗, c)/∂β n1/2(β̂ − β∗),

and the third term converges to zero in probability. It then follows from Lemma 12.8 of Kosorok (2008)
that n1/2(ĉv − cv) is asymptotically equivalent to −{dFβ∗T Z (c)/dc|c=cv }−1n1/2(Pn − P){I (β∗T Z � cv)+
∂g2(β

∗, cv)/∂βψ}.
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Combining the above results, we conclude that n1/2{Ĝ(t, v)− G Z ,β∗(t, v)} is asymptotically equivalent
to n1/2Pn{ξ1(t, v)+ ξ2(t, v)}, where ξ1(t, v)= ξ(t; cv, β∗) and

ξ2(t, v)= −{I (β∗T Z � cv)− v} ∂G(t; c, β∗)/∂c

dFβ∗T Z (c)/dc

∣∣∣∣
c=cv

−
{
∂G(t; c, β∗)/∂c

dFβ∗T Z (c)/dc

∣∣∣∣
c=cv

∂g2(β, cv)

∂β

∣∣∣∣
β=β∗

− ∂G(t; cv, β)

∂β

∣∣∣∣
β=β∗

}
ψ. (A5)

APPENDIX 3

Weak convergence of n1/2{G̃(t, v)− G Z ,β∗(t, v)}
In this section, we prove the weak convergence of n1/2{G̃(t, v)− G Z ,β∗(t, v)} for single-event data.

The proof for recurrent events is similar and is omitted. We express vn1/2{G̃(t, v)− G Z ,β∗(t, v)} as

n1/2(Pn − P){S(t; cv, β
∗,W )I (β∗T Z � cv)}

+ n1/2P[{Ŝ(t; cv, β
∗,W )− S(t; cv, β

∗,W )}I (β∗T Z � cv)]

+ n1/2P{Ŝ(t; ĉv, β̂,W )I (β̂T Z � ĉv)− Ŝ(t; cv, β
∗,W )I (β∗T Z � cv)}

+ n1/2(Pn − P)[{Ŝ(t; ĉv, β̂,W )− S(t; ĉv, β̂,W )}I (β̂T Z � ĉv)]

+ n1/2(Pn − P){S(t; ĉv, β̂,W )I (β̂T Z � ĉv)− S(t; cv, β
∗,W )I (β∗T Z � cv)}. (A6)

To study the second to the fourth terms in (A6), we first study

�̂(t; c, β,w)=
∫ t

0

∑n
i=1 K {(Wi − w)/h}I (βT Zi � c) dNi (s)∑n

i=1 K {(Wi − w)/h}I (βT Zi � c)Yi (s)
.

Write T̃ = T ∧ C and �= I (T � C). Then �̂(t; c, β,w)−�(t; c, β,w) can be written as

Pn

[
K (W−w

h )I (βT Z � c)�I (T̃ � t)

Pn{K (W−w
h )I (βT Z � c)Y (u)}|u=T̃

]
− P

[
I (βT Z � c)I (T̃ � t)

P{I (βT Z � c)Y ∗(u) | W }|u=T̃

∣∣∣∣∣W

]

= (Pn − P)
[

K (W−w
h )I (βT Z � c)�I (T̃ � t)

Pn{K (W−w
h )I (βT Z � c)Y (u)}|u=T̃

]

− P
[

K (W−w
h )I (βT Z � c)�I (T̃ � t)(Pn − P){K (W−w

h )I (βT Z � c)Y (u)}|u=T̃

P{K (W−w
h )I (βT Z � c)Y (u)}Pn{K (W−w

h )I (βT Z � c)Y (u)}|u=T̃

]

+
(
P
[

K (W−w
h )I (βT Z � c)�I (T̃ � t)

P{K (W−w
h )I (βT Z � c)Y (u)}|u=T̃

]
− P

[
I (βT Z � c)I (T̃ � t)

P{I (βT Z � c)Y ∗(u) | W }|u=T̃

∣∣∣∣∣W

])
. (A7)

The third term on the right-hand side of (A7) is O(hl) by a simple transformation and Tay-
lor expansion, together with the fact that

∫ t
0 E{dN (u)I (βT Z � c) | W }/E{I (βT Z � c)Y (u) | W } =∫ t

0 E{dN ∗(u)|Y ∗(u)= 1, βT Z � c,W }. Thus, by the Duhamel equation and the condition that nh2l = o(1),
the second term in (A6) is asymptotically equivalent to n1/2(Pn − P)ξn(N ,Y, Z ,W ; t, cv, β∗), where

ξn(N ,Y, Z ,W ; t, c, β)= −I (βT Z � c)
(PZ ,W

[
I (βT Z � c)S(t; c, β,W )h−q K {(w − W )/h}

×Mn(N ,Y ; t, c, β,W )]) |w=W ,

Mn(N ,Y ; t, c, β,w)=
∫ t

0

dN (u)− Y (u) d�(u; c, β,w)

Pn [h−q K {(W − w)/h}I (βT Z � c)Y (u)]
,
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and PZ ,W denotes the expectation with respect to Z and W . By the condition that nhq → ∞, it can be
shown that, uniformly in t , c and β, ξn(t; c, β) converges in probability to

ξ(t; c, β)= −E{I (βT Z � c)|W }S(t; c, β,W )I (βT Z � c)

∫ t

0

dN (u)− Y (u) d�(u; c, β,W )

E{I (βT Z � c)Y (u)|W } .

This result, together with the fact that the class of functions ξn(N ,Y, Z , w; t, c, β) indexed byw, t , c and β
is P-Donsker, implies that, conditional on W1, . . . ,Wn , the process n1/2(Pn − P)ξn(t; c, β) is asymptot-
ically equivalent to n1/2(Pn − P)ξ(t; c, β) by Theorem 2.11.1 of van der Vaart & Wellner (1996), which
further implies the unconditional asymptotic equivalence. Therefore, the second and third terms in (A6)
are asymptotically equivalent to n1/2(Pn − P)ξ(t; cv, β∗) and

n1/2P[S(t; ĉv, β̂,W )I (β̂T Z � ĉv)− S(t; cv, β
∗,W )I (β∗T Z � cv)]

+ n1/2(Pn − P){ξ(t; ĉv, β̂)− ξ(t; cv, β
∗)}, (A8)

respectively. By the arguments of Appendix 2, (A8) is asymptotically equivalent to

v ×
{
∂G(t; c, β∗)

∂c

∣∣∣∣
c=cv

n1/2(ĉv − cv)+ ∂G(t; cv, β)

∂β

∣∣∣∣
β=β∗

n1/2(β̂ − β∗)

}
.

As in the case of n1/2P[{Ŝ(t; ĉv, β̂,W )− S(t; ĉv, β̂,W )}I (β̂T Z � ĉv)], we can show
that n1/2Pn[{Ŝ(t; ĉv, β̂,W )− S(t; ĉv, β̂,W )}I (β̂T Z � ĉv)] is asymptotically equivalent to
n1/2(Pn − P)ξ(t; ĉv, β̂), which implies that the fourth term in (A6) converges uniformly to zero in
probability. The fifth term in (A6) converges uniformly to zero in probability by Lemma 19.24 of
van der Vaart (1998).

Combining the above results, we obtain the weak convergence of n1/2{G̃(t, v)− G Z ,β∗(t, v)}.

APPENDIX 4

Validity of the bootstrap method

In this section, we prove the validity of the bootstrap method for Ĝ(t, v) for survival data. The proofs
for other cases are similar and thus omitted. Define

Ĝ(b)(t; c, β)=
∏

0<u�t

{
1 −

∑n
i=1 Mni I (βT Zi � c) dNi (u)∑n

i=1 Mni I (βT Zi � c)Yi (u)

}
,

where Mni is the number of times that {Ni (t),Yi (t), Xi : t ∈ [0, τ ]} is redrawn from the original
sample. Let ĉ(b)v and β̂(b) be the bootstrap counterparts of ĉv and β̂. Our goal is to show that
the distribution of n1/2{Ĝ(t, v)− G Z ,β∗(t, v)} can be approximated by the conditional distribution of
n1/2{Ĝ(b)(t; ĉ(b)v , β̂

(b))− Ĝ(t, v)} given the data.
By the arguments of Appendix 2, n1/2{Ĝ(b)(t; ĉ(b)v , β̂

(b))− Ĝ(t, v)} is equal to

n1/2{Ĝ(b)(t; ĉv, β̂)− Ĝ(t; ĉv, β̂)} + n1/2{Ĝ(b)(t; ĉ(b)v , β̂
(b) − Ĝ(b)(t; ĉv, β̂)}. (A9)

Lemma S1 of the Supplementary Material implies that, given the data, the first term in (A9) has the
same asymptotic distribution as n1/2(Pn − P)ξ(t; cv, β∗), where ξ(t; c, β) is defined in Appendix 2. It
can also be shown that, given the data, n1/2(β̂(b) − β̂)= n1/2(P̂n − Pn)ψ + op(1) under mild regular-
ity conditions, where P̂n is the bootstrap empirical distribution (van der Vaart & Wellner, 1996, p. 345).
Combining the arguments of Appendix 2 with those of Lemma S1, we can show that the limiting dis-
tribution of n1/2{Ĝ(b)(t; ĉ(b)v , β̂

(b))− Ĝ(t, v)} given the data is the same as the limiting distribution of
n1/2(Pn − P){ξ1(t, v)+ ξ2(t, v)}, where ξ1(t, v) and ξ2(t, v) are defined in Appendix 2.
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