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SUMMARY

In this paper, we consider estimation of survivor functions from groups of observations with
right-censored data when the groups are subject to a stochastic ordering constraint. Many meth-
ods and algorithms have been proposed to estimate distribution functions under such restrictions,
but none have completely satisfactory properties when the observations are censored. We pro-
pose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at
each time t by the estimates of the survivor functions subject to constraints applied at time t only.
We also propose an efficient method to obtain the estimator. The estimator of each constrained
survivor function is shown to be nonincreasing in t , and its consistency and asymptotic distribu-
tion are established. A simulation study suggests better small and large sample properties than
for alternative estimators. An example using prostate cancer data illustrates the method.

Some key words: Censored data; Constrained nonparametric maximum likelihood estimator; Kaplan–Meier estimator;
Maximum likelihood estimator; Order restriction.

1. INTRODUCTION

Stochastic ordering is an important concept and has a wide range of applications, in such
fields as biomedical research, economics and system reliability. We often encounter situations
where there is prior knowledge of stochastic ordering among distributions. For example, in a
cancer study, we expect patients with a lower stage of cancer at diagnosis to have lower death
rates at all times than those with a higher stage. In addition to the natural desire for estimators of
the distributions to satisfy the same expected ordering restrictions as the underlying distributions,
there is the potential for improved efficiency by applying the constraints in the estimation method.

For random variables T1 and T2 with corresponding survivor functions S1(t) and S2(t),
T1 is stochastically larger than T2, T1 �st T2, if S1(t) � S2(t) for all t (Lehmann, 1955).
For G groups, the concept can be generalized to partial ordering; specifically, we say that
Tg (g = 1, . . . , G) satisfy the partial-ordering constraints defined by the constraint set E ⊂
{1, . . . , G}2 if for any (i, j) ∈ E , Ti �st Tj . Special cases of this are simple ordering, in which
T1 �st · · · �st TG , for which E = {(1, 2), (2, 3), . . . , (G − 1, G)}; tree ordering, in which T1 �st
T2, T1 �st T3, . . . , T1 �st TG for which E = {(1, 2), (1, 3), . . . , (1, G)}; umbrella ordering, in
which T1 �st · · · �st Ti �st Ti+1 �st · · · �st TG for which E = {(1, 2), (2, 3), . . . , (i − 1, i), (i +
1, i), (i + 2, i + 1), . . . , (G, G − 1)}, and factorial ordering such as T1 �st T2 �st T4, T1 �st
T3 �st T4, for which E = {(1, 2), (2, 4), (1, 3), (3, 4)}.

We consider independent right-censored samples of the form (Ygi , �gi ) (g = 1, . . . , G; i =
1, . . . , ng), where Ygi is the observed time and �gi is the event indicator. We assume that the
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censoring mechanism is independent, so that the generalized likelihood is

L{S1(·), . . . , SG(·)} =
G∏

g=1

ng∏
i=1

{Sg(Ygi−) − Sg(Ygi )}�gi Sg(Ygi )
1−�gi . (1)

The E-constrained nonparametric maximum likelihood estimator maximizes (1) subject to the
partial-ordering constraint E . Brunk et al. (1966) studied the constrained nonparametric maxi-
mum likelihood estimator in the two-sample case without censoring. Dykstra (1982), as corrected
by Park et al. (2012), extended this result to right-censored data. In the case of three or more pop-
ulations with general partial-ordering constraints, Hoff (2003) and Lim et al. (2009) proposed
different computational methods for obtaining the constrained nonparametric maximum likeli-
hood estimator.

This estimator has the undesirable property that a violation of a constraint in the Kaplan–
Meier estimators (Kaplan & Meier, 1958) at an earlier time affects the estimator at a later time,
even if there is no violation at this later time. A number of authors have noted that the con-
strained nonparametric maximum likelihood estimator can have relatively large pointwise bias
and mean squared error at a fixed t and have suggested alternatives (Rojo & Ma, 1996; Rojo,
2004; El Barmi & Mukerjee, 2005) that can have better mean squared error properties. Park et al.
(2012) noted a correction to the constrained nonparametric maximum likelihood estimator pre-
sented by Dykstra (1982), which led to improved properties, but this corrected estimator still
often has poorer pointwise properties than other estimators, some of which are relatively sim-
ple to define. In the two-sample problem, Lo (1987) suggested swapping the Kaplan–Meier
estimates of the survivor functions when the constraint is violated. Rojo (2004) proposed esti-
mating both survivor functions as the weighted average of the two Kaplan–Meier estimators at
times when the constraint is violated, where the weights are based on the initial sample sizes.
El Barmi & Mukerjee (2005) extended Rojo’s estimators to the simple ordering situation using
isotonic regression. The simulation study in Park et al. (2012) shows that some of these estima-
tors have smaller mean squared error than the constrained nonparametric maximum likelihood
estimator when the censoring distributions are equal, but when the censoring distributions dif-
fer substantially between groups, the alternative estimators may have larger mean squared error
than the constrained nonparametric maximum likelihood estimator. Moreover, these alternative
estimators have not been explicitly extended to a general partial-ordering case.

When we consider finite sample properties of an estimator Ŝ(t), we typically consider point-
wise criteria, such as pointwise bias or pointwise mean squared error at each fixed t . In contrast
to pointwise estimators such as described in Rojo (2004) and Lo (1987), the constrained non-
parametric maximum likelihood estimator estimates the whole survival curve. So it is perhaps
not surprising that Rojo’s estimator typically has better properties when evaluated using metrics
such as pointwise mean squared error. On the other hand, these pointwise estimators do not adapt
well to unequal censoring distributions between groups, whereas the constrained nonparametric
maximum likelihood estimator does. This motivated us to propose a new constrained estimator,
a pointwise constrained nonparametric maximum likelihood estimator or pointwise constrained
estimator for convenience.

DEFINITION 1 (Pointwise constrained estimator). For each specified time x, let S̃g(t; x) be
the maximum likelihood estimator of Sg(t) under the constraint Si (x) � S j (x) for all (i, j) ∈
E. Then Ŝg(t) = S̃g(t; t) (g = 1, . . . , G) for all t is the pointwise constrained estimator of the
survivor function Sg under the partial stochastic ordering constraint E.
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2. ESTIMATION METHODS

2·1. Notation and likelihood

To obtain the pointwise constrained estimator as given in Definition 1, it is required to maxi-
mize the likelihood (1) subject to the constraints Si (x) � S j (x) for all (i, j) ∈ E for a fixed time
x . This will give the estimates of S̃1(t; x), . . . , S̃G(t; x) and the constrained maximization will
be repeated for all times x of interest.

Let Xgj ( j = 1, . . . , mg) be the distinct event times in group g and define Xg0 = 0 and
Xg(mg+1) = ∞ (g = 1, . . . , G). Let Ng(t) be the number at risk at time t in group g and let
Mg(t) be the number of distinct events in (0, t] in group g. Let dgj and ngj be, respectively, the
number of events and the number at risk in group g at time Xgj .

It is convenient to redefine the problem in terms of hazards. Let hg(t) = log{Sg(t)/Sg(t−)},
so that 1 − exp{hg(t)} is the discrete hazard in group g at time t . The loglikelihood of (1) is

log L(h1, . . . , hG) =
G∑

g=1

{ mg∑
i=1

(dgi log[1 − exp{hg(Xgi )}]

+(ngi − dgi )hg(Xgi )) + Ng(x)hδ
g(x)

}
, (2)

where hg = {hg(Xg1), . . . , hg(Xgmg ), hδ
g(x)} (g = 1, . . . , G). The corresponding constraints are∑Mp(x)

j=1 h p(X pj ) + hδ
p(x) �

∑Mr (x)
j=1 hr (Xr j ) + hδ

r (x), for all (p, r) ∈ E , and hδ
g(x) � 0. In this,

hδ
g(x) = I (x |= XgMg(x))hg(x), which is included to account for the fact that if x = XgMg(x), we

do not have the extra term Ng(x)hg(x) in the loglikelihood (2).

2·2. Linearly constrained convex minimization

There is a large literature on general approaches to linearly constrained convex minimization
problems. There are essentially three types of algorithms: interior point, primal active set and dual
active set methods. In general, our data contain many more observed event times than groups.
Interior point and primal active set methods simultaneously optimize over the large number of
quantities hδ

g(x) and hg(Xgi ) (g = 1, . . . , G; i = 1, . . . , mg) at each time x of interest, and so
are not computationally efficient in our setting. Dual active set methods may involve many fewer
parameters, but the dual function itself is difficult to express as a function of Lagrange multipliers
and the feasible range of these multipliers is difficult to specify in our problem. So the dual active
set method is also difficult to implement in our context.

In § 2·4, we transform the problem of maximizing the loglikelihood (2) subject to the lin-
ear constraints to another simple concave maximization problem subject to linear constraints by
using the profile likelihood. In preparation for this, we first discuss the constrained maximum
likelihood estimator of the survivor function in the one-sample case.

2·3. Maximum likelihood estimator of the survivor function subject to a single constraint

In the one-sample case without constraints, the maximum likelihood estimator has probability
mass only at the observed event times. The loglikelihood analogous to (2) is

log L(h) =
m∑

j=1

[d j log{1 − exp h(X j )} + (n j − d j )h(X j )], (3)
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where h = {h(X1), . . . , h(Xm)} and (3) is maximized at h(X j ) = log(1 − d j/n j ) ( j =
1, . . . , m), which corresponds to the Kaplan–Meier estimator.

Consider now the maximum likelihood estimator subject to the constraint S(x) = exp(q). The
maximum likelihood estimator of the survivor function will have positive probability mass at
event times Xi and nonnegative probability mass at time x . The optimization problem is to
maximize the loglikelihood of h = {h(X1), . . . , h(Xm), hδ(x)},

log L(h) =
m∑

i=1

[di log{1 − exp h(Xi )} + (ni − di )h(Xi )] + N (x)hδ(x),

subject to
∑M(x)

j=1 h(X j ) + hδ(x) = q and hδ(x) � 0.

Let K (q; x) = −N (x) if M(x) = 0, and otherwise let K (q; x) = max(−N (x), k̂), where k̂ is
the unique solution of the equation

∑M(x)
j=1 log{1 − d j/(n j + k)} = q. Here, k̂ = ∞ if q = 0 and

k̂ = dM(x) − nM(x) if q = −∞. Let ĥδ(q; x) = q −∑M(x)
j=1 ĥ(q; X j ), where

ĥ(q; Xi ) =

⎧⎪⎪⎨
⎪⎪⎩

log

{
1 − di

ni + K (q; x)

}
, i � M(x),

log

(
1 − di

ni

)
, i > M(x).

(4)

THEOREM 1. The maximum likelihood estimator of S(t) subject to constraint S(x) = exp(q)

at a given x is Ŝ(t) = exp
{∑

X j �t ĥ(q; X j ) + I (t � x)hδ(q; x)
}

(t � τ), where τ is the last
observed time.

Proof. See the Appendix. �

Thomas & Grunkemeier (1975) and Li (1995) considered the maximization problem des-
cribed above. However, Thomas & Grunkemeier (1975) solved the problem with the equality
constraint

∑M(x)
j=1 h(X j ) = q, which implicitly assumes that ĥ(x) = 0 if x is not an observed event

time, whereas Li (1995) mistakenly proved that ĥ(x) = 0 unless x is an observed event time.
In fact, the maximization problem described above involves two constraints:

∑M(x)
j=1 h(X j ) +

hδ(x) = q and hδ(x) � 0. It is possible that ĥδ(x) < 0 if K (q; x) = −N (x). The inequality con-
straint, hδ(x) � 0, has been neglected in these approaches. It is necessary, however, to apply the
Karush–Kuhn–Tucker conditions (Kuhn & Tucker, 1951) to all possible inequality constraints,
including the bounds on the parameters, and only omit the redundant constraints.

2·4. Reformulation of the problem using profile likelihood

The profile loglikelihood of S(x) = exp(q) at a given x is

�(q; x) = sup
h∈R

log L(h)

=
m∑

i=1

{di log[1 − exp{ĥ(q; Xi )}] + (ni − di )ĥ(q; Xi )} + N (x)ĥδ(q; x), (5)

where R = {h :
∑M(x)

i=1 h(Xi ) + hδ(x) = q}, and ĥ(q; Xi ) and ĥδ(q; x) are defined in (4).
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LEMMA 1. The derivative of the profile loglikelihood (5) with respect to q is −K (q; x).

Proof. See the Appendix. �

For given x , maximizing the loglikelihood (2) subject to the constraints in E can be redefined
as maximizing the profile loglikelihood �(q1, . . . , qG; x), which equals

G∑
g=1

�g(qg; x) =
G∑

g=1

⎛
⎝Mg(x)∑

i=1

[(ngi − dgi ) log{ngi + Kg(qg; x) − dgi }

− ngi log{ngi + Kg(qg; x)}] + I {Kg(qg; x) = Ng(x)}Ng(x)

×
⎡
⎣qg −

Mg(x)∑
j=1

log

{
1 − dgi

ngi + Kg(qg; x)

}⎤⎦
⎞
⎠ , (6)

subject to constraints qi � q j , for all (i, j) ∈ E and qg � 0 (g = 1, . . . , G). In this formula-
tion, only G parameters q = (q1, . . . , qG) need to be estimated, and Ŝg(x) = exp(q̂g), where
q̂ = (q̂1, . . . , q̂G) is the maximum likelihood estimator of q.

Any of the general methods described in § 2·2 can be used to maximize the profile loglikeli-
hood (6) under the corresponding linear constraints. The profile loglikelihood (6) and its deriva-
tive, d�(q; x)/dqT = {−K1(q1; x), . . . , −KG(qG; x)}T, are easily calculated.

To obtain the pointwise constrained estimator Ŝg(t) (g = 1, . . . , G) for all t , it is not necessary
to maximize the profile likelihood at every t . It can be seen that the pointwise constrained esti-
mator may jump only at observed event times and at times just after observed censoring times.
Let {X ′

j } be the union of all distinct times Ygi if �gi > 0 and Y +
gi if �gi = 0. Here, Y +

gi can be

taken as Ygi + ε for a small ε > 0. We calculate Ŝg(X ′
j ), and then Ŝg(t) is a step function with

jumps only at X ′
j , i.e., Ŝg(t) = Ŝg(a), where a = max{X ′

j : X ′
j � t}.

The following theorem shows that Ŝg(t) (g = 1, . . . , G) is a valid survivor function.

THEOREM 2. The pointwise constrained estimator Ŝg(t) obtained from maximizing the profile
likelihood (6) is a nonincreasing function in t for each g = 1, . . . , G. That is, for any 0 � x <

y � τg, Ŝg(x) � Ŝg(y).

Proof. See the Supplementary Material. �

2·5. Generalized pool-adjacent-violators algorithm in the simple ordering case

Suppose that G survivor functions satisfy the simple stochastic ordering constraint T1 �st
· · · �st TG , and we aim to estimate the pointwise constrained estimator at time x . A generalized
pool-adjacent-violators algorithm can be used as developed in Best et al. (1999), because the pro-
file loglikelihood is the sum of concave functions. The results of the generalized pool-adjacent-
violators algorithm lead to a set of blocks, B1, . . . , Br , where r � 1, Br = {ur−1 + 1, . . . , ur }
and 0 = u0 < · · · < ur = G. This is described in an algorithm in the Supplementary Material. The
final estimate of the survivor function for each group in a block Br takes a common value exp(q̂r ),
where q̂r maximizes the profile loglikelihood, �Br (q; x) =∑i∈Br

�i (q; x) and 0 � q̂1 > · · · > q̂r .
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3. CONSISTENCY AND ASYMPTOTIC DISTRIBUTION

Let S∗
g(t) be the Kaplan–Meier estimator of Sg(t) and let Sc

g(t) be the censoring survivor func-
tion for group g. Further, let τg = inf{t : Sg(t)Sc

g(t) = 0} (g = 1, . . . , G). Under the condition
that there are no common jumps between the event and censoring distributions, Stute & Wang
(1993) showed that the Kaplan–Meier estimator S∗

g(t) is uniformly consistent for Sg(t) on [0, τg).
A similar result holds for the pointwise constrained estimator. The following theorem is proved
in the Supplementary Material.

THEOREM 3. Let Ŝg(t) be the pointwise constrained estimator given in Definition 1. Under the
condition of no common jumps of Sg(t) and Sc

g(t), supt<τg
| Ŝg(t) − Sg(t) |→ 0 with probability

1 as ng → ∞ (g = 1, . . . , G).

Let Wg(Vg) be a Brownian motion on [0, ∞) with variance function Vg(t). As shown in
Gill (1983), ng

1/2(S∗
g − Sg)S−1

g → W (Vg) in distribution on [0, τg] as ng → ∞, where Vg(t) =
− ∫ t

0 {S2
g(x−)Sc

g(x−)}−1dSg(x). For a fixed time x , ng
1/2{S∗

g(x) − Sg(x)}→N {0, σ 2
g (x)} in dis-

tribution, where σ 2
g (x) = Vg(x)S2

g(x).

Let n =∑G
g=1 ng and assume that limn→∞ ng/n = cg > 0 and let Z∗

g(x) = n1/2{S∗
g(x) −

Sg(x)} (g = 1, . . . , G). Then {Z∗
1(x), . . . , Z∗

G(x)}T→{Z1(x), . . . , ZG(x)}T in distribution,
where Zg(x) ∼ N {0, σ 2

g (x)/cg} and Z1(x), . . . , ZG(x) are independent.

THEOREM 4. For a fixed time x < min{τk : Lg(x) � k � Ug(x)} and under the simple order-
ing constraint T1 �st · · · �st TG,

n1/2
g {Ŝg(x) − Sg(x)}→c1/2

g min
Lg(x)���g

max
g�u�Ug(x)

∑u
k=�{Zk(x)wk(x)}∑u

k=� wk(x)
(7)

in distribution, where wg(x) = cg/σ
2
g (x), Lg(x) = min{i : Si (x) = Sg(x)} and Ug(x) = max{i :

Si (x) = Sg(x)}.

Proof. See the Supplementary Material. �

In the Supplementary Material, the asymptotic distribution of the pointwise constrained esti-
mator is discussed for situations where the number at risk in some groups is zero.

Let Šg(x) be the estimate of Sg(x) by applying the isotonic regression algorithm to S∗
g(x) with

weights wg(x) (g = 1, . . . , G), subject to constraint S1(x) �st · · · �st SG(x). Then, Šg(x) has a
minimax form (Barlow et al., 1972)

Šg(x) = min
1���g

max
g�u�G

∑u
k=�{S∗

k (x)wk(x)}∑u
k=� wk(x)

.

From El Barmi & Mukerjee (2005, Theorem 2), it can be seen that

n1/2
g {Šg(x) − Sg(x)} → c1/2

g min
Lg(x)���g

max
g�u�Ug(x)

∑u
k=�{Zk(x)wk(x)}∑u

k=� wk(x)

in distribution. From (7), it follows that Ŝg(x) and Šg(x) are asymptotically equiva-
lent. We hypothesize that this equivalence to isotonic regression will also hold under the
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partial-ordering constraint. This yields the following conjecture for the asymptotic distribution
of the pointwise constrained estimator.

CONJECTURE 1. For a fixed time x,

n1/2
g {Ŝg(x) − Sg(x)} → c1/2

g fg

{
Z1(x), . . . , ZG(x); c1

σ 2
1

, . . . ,
cG

σ 2
G

, x

}

in distribution as n → ∞ for all x given Sg(x)Sc
g(x) > 0. Here �g(x) = {i : Si (x) = Sg(x)},

Eg(x) = {(i, j) ∈ E : i, j ∈ �g(x)} and fg(z1, . . . , zG; w1, . . . , wG, x) is the solution function

for μg that minimizes
∑G

i=1 wi (zi − μi )
2 subject to μi � μ j for all (i, j) ∈ Eg(x).

If this conjecture is correct, inference methods developed for isotonic regression could also
be useful for the pointwise constrained estimator.

4. COMPARISON WITH THE KAPLAN−MEIER ESTIMATOR WHEN SAMPLE SIZE IS LARGE

4·1. Simple ordering case

In the simple ordering case with no censoring, El Barmi & Mukerjee (2005) showed that their
isotonic regression estimator has smaller asymptotic mean squared error than the unrestricted
Kaplan–Meier estimator. A similar result holds for the pointwise constrained estimator compared
with the Kaplan–Meier estimator when there is right censoring.

THEOREM 5. Consider the simple ordering constraint T1 �st · · · �st TG. For a fixed x with
Sc

k (x)Sk(x) > 0 for all k = 1, . . . , G, let n1/2
k {Ŝk(x) − Sk(x)} → Ẑk and n1/2

k {S∗
k (x) − Sk(x)} →

Zk in distribution. If there exists at least one g′ with Sg′(x) = Sg(x), then E(Ẑ2
g) < E(Z2

g). If no

such g′ exists, then Ŝg(x) and S∗
g(x) are asymptotically equivalent.

Thus, the pointwise constrained estimator has smaller asymptotic mean squared error than the
Kaplan–Meier estimator. In fact, a stronger inequality relation holds. Namely pr(| Ẑg |� ε) >

pr(| Zg |� ε) for all ε > 0. In § 4·2, we calculate the asymptotic bias and asymptotic mean squared
error of the pointwise constrained estimator in the two-sample case.

4·2. The two sample case, G = 2

If S1(x) > S2(x), then, asymptotically, the constraint is irrelevant and n1/2
1 {Ŝ1(x) − S1(x)} →

σ1(x)Z̄1 and n1/2
2 {Ŝ2(x) − S2(x)} → σ2(x)Z̄2 in distribution, as n1, n2 → ∞, where Z̄1 and Z̄2

are independent standard normal random variables.
Let n2/n1 → c as n1, n2 → ∞. We consider asymptotic properties when S1(x) = S2(x). From

Theorem 4, we can show that

n1/2
1 {Ŝ1(x) − S1(x)} → σ1(x) max

{
Z̄1,

Z̄1 + c(x)1/2 Z̄2

1 + c(x)

}
,

n1/2
2 {Ŝ2(x) − S2(x)} → σ2(x) min

{
Z̄2,

c(x)Z̄2 + c(x)1/2 Z̄1

1 + c(x)

}
,

(8)
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in distribution, where c(x) = c σ 2
1 (x)/σ 2

2 (x). Direct calculation from (8) shows that the
asymptotic mean squared errors are

lim
n1→∞ E[n1{Ŝ1(x) − S1(x)}2] = {2 + c(x)}σ 2

1 (x)

2{1 + c(x)} ,

lim
n2→∞ E[n2{Ŝ2(x) − S2(x)}2] = {1 + 2 c(x)}σ 2

2 (x)

2{1 + c(x)} .

(9)

These are always smaller than the unrestricted counterparts σ 2
1 (x) and σ 2

2 (x).
Let S̃1(x) and S̃2(x) be the estimators of Rojo (2004) or El Barmi & Mukerjee (2005). On

the basis of definitions of their estimators, when S1(x) = S2(x), the asymptotic mean squared
errors are given by

E[n1{S̃1(x) − S1(x)}2] = σ 2
1 (x) + c{σ 2

2 (x) − (2 + c)σ 2
1 (x)}

2{1 + c}2
,

E[n2{S̃2(x) − S2(x)}2] = σ 2
2 (x) + c{σ 2

1 (x) − (1 + 2c)σ 2
2 (x)}

2{1 + c}2
.

(10)

It can be shown that the asymptotic mean squared error of Ŝg(x) is less than or equal to that
of S̃g(x) (g = 1, 2), with equality only when σ 2

1 (x) = σ 2
2 (x), in which case S̃g(x) and Ŝg(x)

are asymptotically equivalent. From (10) we see that when σ 2
2 (x)/σ 2

1 (x) > c2/c1 + 2, Rojo’s
estimator S̃1(x) is asymptotically less efficient than the Kaplan–Meier estimator S∗

1 (x) and when
σ 2

1 (x)/σ 2
2 (x) > c1/c2 + 2, S̃2(x) is asymptotically less efficient than S∗

2 (x).
From (8), the asymptotic biases of Ŝ1(x) and Ŝ2(x) are

lim
n1→∞ E[n1/2

1 {Ŝ1(x) − S1(x)}] = σ1(x)

∫ ∞

−∞

∫ ∞

c1/2(x)

c1/2z2 − c(x)z1

1 + c(x)
f Z̄2

(z2) f Z̄1
(z1)dz2dz1

= σ1(x)

[
c(x)

2π{1 + c(x)}
]1/2

< σ1(x)

(
1

2π

)1/2

,

lim
n2→∞ E[n1/2

2 {Ŝ2(x) − S2(x)}] = σ2(x)

[
1

2π{1 + c(x)}
]1/2

< σ2(x)

(
1

2π

)1/2

.

5. CONFIDENCE INTERVALS

5·1. Asymptotic approaches

While there is a substantial literature on the estimation of survivor functions under stochas-
tic ordering constraints, there has been little discussion of constructing confidence intervals for
ordered survivor functions. Rojo (2004) demonstrated weak convergence to a Gaussian process
of his estimator, from which confidence bands could be constructed. For the most part, however,
asymptotic results are not particularly useful since, if the true inequalities at time t are strict, then
the asymptotic distribution of Ŝg(t) is the same as that of the Kaplan–Meier estimator and the
corresponding approximate confidence interval would be unaffected by the restrictions. In our
opinion, the most promising approach to constructing confidence intervals in these problems
is through resampling methods that reflect the finite sample aspects. We consider some such
approaches in the next section.
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5·2. Bootstrap methods

We used a nonparametric resampling scheme, in which survival time and censoring indicator
pairs are drawn with replacement from the data separately for each group. For each bootstrap
sample, a bootstrap estimate Ŝb

g(t) (b = 1, . . . , B) is obtained by applying the pointwise con-
strained estimator. Simple confidence intervals based on these bootstrap estimates can be
constructed using the percentile or the basic bootstrap method (Efron & Tibshirani, 1993;
Davison & Hinkley, 1997). For a nominal level of (1 − 2α), the percentile confidence interval
for Sg(t) is {ŜB

g,α(t), ŜB
g,1−α(t)}, where ŜB

g,α(t) is αth percentile of the bootstrap distribution.
The basic bootstrap method utilizes ideas of pivotal statistics, and can also be improved by use
of transformations such as h(s) = arcsin(s1/2). The confidence interval for the basic bootstrap
method is given by (h−1[2h{Ŝg(t)} − h{ŜB

g,1−α(t)}], h−1[2h{Ŝg(t)} − h{ŜB
g,α(t)}]).

While these simple methods are easy to apply, a number of different methods have been deve-
loped which have improved properties. The work in Andrews (2000) suggests that the use of the
bootstrap for inference problems with order restrictions on the parameters may be particularly
challenging. We investigated a number of different alternatives to the two simple bootstrap meth-
ods and present below a method which had reasonably good properties for the cases considered.

For the restricted estimation problem, the distribution of Ŝg(t) − Sg(t) will generally not
be symmetric or centred around zero and will differ from one group g to the next. It is to be
expected that the bootstrap distribution Ŝb

g(t) − Ŝg(t) will be similarly biased. The method we
propose uses the bootstrap distribution to correct the bias, but is adjusted so as not to over-
correct. Consider pointwise estimators Ŝ1(t) and Ŝ2(t), where S1(t) � S2(t). Let S̄B

g (t) be the
mean of the bootstrap estimates Ŝb

g(t). The basic bootstrap method considers a pseudo esti-
mator given by [2h{Ŝg(t)} − h{ŜB

g,α(t)}]. While S̄B
1 (t) � S̄B

2 (t), the mean of the pseudo esti-
mator may not satisfy the order constraint, i.e., it is possible that 2h{Ŝ1(t)} − h{S̄B

1 (t)} <

2h{Ŝ2(t)} − h{S̄B
2 (t)}. This can be considered as an overcorrection and it might be expected that

the properties of the confidence interval could be improved if this overcorrection is modified.
Let S̃B

g (t, ag) = h{Ŝg(t)} + ag[h{Ŝg(t)} − h{S̄B
g (t)}], where 0 � ag � 1. Although S̃B

g (t, ag) will
satisfy the ordering constraint for ag = 0, for ag = 1, this may not be true. Given a set of ag

such that the S̃B
g (t, ag) (g = 1, . . . , G) satisfy the ordering constraints, the proposed adjusted

basic bootstrap confidence interval is (h−1[2h{Ŝg(t)} − h{ŜB
g,1−α(t)} + δg], h−1[2h{Ŝg(t)} −

h{ŜB
g,α(t)} + δg]), where δg = (ag − 1)[h{Ŝg(t)} − h{S̄B

g (t)}].
We propose the following method to obtain a set of ag that satisfy the constraints. Let a1 =

a2 = · · · = aG = a and find the largest a that does not result in a violation of an order restriction.
Use this value of a for the groups i and j for which S̃B

i (t, ai ) = S̃B
j (t, a j ). For the remaining

groups increase a until a new violation is about to occur, and use the new value of a for the
groups that have the active constraint for S̃B

i (t, a) and have not already had a fixed value of ai .
Continue in this way, gradually increasing a, using the value of a when constraints become active,
until all values of ag have been set or a = 1. An algorithm to obtain ag (g = 1, . . . , G) is given
in the Supplementary Material.

5·3. Confidence interval centred on a constrained estimator

Hwang & Peddada (1994) suggested a method in which a confidence interval is computed for
the unrestricted estimator and then shifted and centred on the constrained estimator. They showed
that, under fairly general conditions, the coverage probability for the shifted interval will exceed
the nominal level. For the survivor function, we apply this to intervals on a log transformed scale
and consider the approximate 100(1 − 2α)% confidence interval, Ŝg(x) exp{±zασ ∗

g (x)}, where
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Fig. 1. Difference of root mean squared errors of estimators compared with the pointwise constrained estimator.
Kaplan–Meier estimator (thin dashed); constrained nonparametric maximum likelihood estimator (thick solid);
Rojo’s estimator (thick dashed); pointwise constrained estimator (thin solid). Sample sizes are 80 in cases (a)–
(d) and 50 in cases (e) and (f) for both groups. Event distributions are exp(1) for group 1 and exp(1·1) for
group 2 in cases (a)–(d), and U (0, 1) for group 1 and U 1·1(0, 1) for group 2 in cases (e) and (f). The censoring
distributions are exp(1) and exp(1) in case (a), exp(1) and no censoring in case (b), exp(2) and no censoring in
case (c), U (0, 1·6) and no censoring in case (d), exp(3·2) and exp(1·6) in case (e) and exp(0·67) and exp(3·2)
in case (f) for groups 1 and 2, respectively. When event random variable follows a U (0, 1) distribution, the
censoring distributions exp(3·2), exp(1·6) and exp(0·67) give approximately 70, 50 and 30% censoring rates.

σ ∗
g (x) is the standard error estimate of log S∗

g(x) (Kalbfleisch & Prentice 2002, p. 17), and zα is
the αth percentile of the standard normal distribution.
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Fig. 2. Comparison of asymptotic relative efficiencies under the constraint T1 �st
T2. The underlying distributions are: S1(t) = S2(t) = exp(−t), Sc

1(t) = 1 and
Sc

2(t) = exp(−2t). Kaplan–Meier estimator (thin dashed); constrained nonparamet-
ric maximum likelihood estimator (thick solid); Rojo’s estimator (thick dashed);

pointwise constrained estimator (thin solid).

6. SIMULATION STUDIES

6·1. Two-sample case when sample size is small

We have conducted numerous simulation studies to compare the finite sample proper-
ties of three different constrained estimators, Rojo’s estimator (Rojo, 2004), the constrained
nonparametric maximum likelihood estimator (Park et al., 2012) and the pointwise constrained
estimator, and compared them to the unconstrained Kaplan–Meier estimator in the two-
sample case. In this paper, we show results for scenarios where G = 2 and S1(t) � S2(t)
for all t .

The upper and lower plots of each panel in Fig. 1 show differences of root mean squared
errors of estimators of S1(t) and S2(t) over a range of values of t , compared with the pointwise
constrained estimator. In cases with the same censoring distributions, Fig 1(a), Rojo’s estimator
and the pointwise constrained estimator have smaller root mean squared error than the other
estimators. However, if populations 1 and 2 have different censoring distributions, the pointwise
constrained estimator has smallest root mean squared error among all estimators at almost all
times. Rojo’s estimator does not adjust well to the unequal censoring distributions, Figs. 1(b)–
(f), even when the censoring rates are close to each other, Fig. 1(d). The pointwise constrained
estimator is the only estimator that dominates the Kaplan–Meier estimator at almost all times in
all situations considered. Each simulation is based on 10 000 replications.

6·2. Two-sample case: asymptotic properties

We define the asymptotic relative efficiency as the inverse ratio of the mean squared errors
and compare the asymptotic relative efficiency of the three constrained estimators to the
Kaplan–Meier estimator in the two sample case in Fig. 2. The underlying distributions are
S1(t) = S2(t) = exp(−t), Sc

1(t) = 1 and Sc
2(t) = exp(−2t). The constraint is asymptotically rel-

evant at all times. We set limn1,n2→∞ n1/n2 = 1. The asymptotic relative efficiency of the full
constrained nonparametric maximum likelihood estimator is based on simulated data with a very
large sample size. Asymptotic relative efficiencies of the pointwise constrained estimator and
Rojo’s estimator are calculated using (9) and (10).
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Fig. 3. Comparison of the Kaplan–Meier estimator and pointwise constrained estimator in the three sample case.
Comparison of the Kaplan–Meier estimates for groups 1 (black solid), 2 (thick solid) and 3 (thin solid) and

pointwise constrained estimator for group 1 (black dashed), 2 (thick dashed) and 3 (thin dashed) case.

The pointwise constrained estimator dominates all other estimators for all t , whereas Rojo’s
estimator could be inefficient for some t , as seen in Fig. 2(a). Compared with the Kaplan–Meier
estimator, the full constrained nonparametric maximum likelihood estimator is less efficient at
all times in this setting.

6·3. Simple ordering case

In this section, we compare finite sample properties of the pointwise constrained estimator
with the Kaplan–Meier estimator in the simple ordering case and investigate the confidence
intervals described in § 5. We consider three groups with underlying distributions T1 ∼ exp(1),
T2 ∼ exp(1·1) and T3 ∼ exp(1·4) and a uniform censoring distribution C ∼ U (0, 4·3), which
gives an overall censoring rate of about 20%. Sample sizes are n1 = n3 = 40 and n2 = 20. The
simulation is based on 10 000 replicates.

Figure 3 shows the mean squared error of the pointwise constrained estimator and the Kaplan–
Meier estimator. The figure shows efficiency gains for the pointwise constrained estimator at all
times for all groups, with the largest gains for the estimation of S2(t), where the mean squared
error of the pointwise constrained estimator is less than half of the mean squared error of the
Kaplan–Meier estimator at almost all times.

Bootstrap intervals are based on 1999 bootstrap estimates. We evaluate confidence intervals at
time 0·26 and 0·63, where the survival rates of group 2 are 0·75 and 0·5, respectively. In addition,
we also conducted a simulation study for additional two cases with different distributions; see
Table 1. The coverage rates and average widths of the confidence intervals described in § 5 are
shown in Table 1. As expected, the confidence interval centred on the pointwise constrained esti-
mator, Ŝg exp(±1·96σ ∗

g ), is overly conservative with large average width and has higher coverage
rate. The bootstrap methods give confidence intervals with significantly reduced widths, but the
coverage rates can be somewhat low for some groups, especially when using the percentile or
the basic bootstrap methods. The transformation and the adjusted methods described in § 5 both
give slightly better coverage rates. The overall best results are obtained with the combination of
the basic bootstrap with arcsin(s1/2) transformation and controlling for bias overcorrection.

7. EXAMPLE

The data are from prostate cancer patients who received radiation therapy at the University
of Michigan Hospital, a portion of the data used in Proust-Lima & Taylor (2009). Five hundred
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Table 1. Percent coverage, average width, of nominal 95% confidence intervals

t = 0·26 t = 0·63

Distribution exp(1) exp(1·1) exp(1·4) exp(1) exp(1·1) exp(1·4)

Percentile 91 (20·8) 95 (22·9) 95 (24·9) 94 (27·2) 95 (28·2) 94 (27·4)

Basic 89 (20·8) 90 (22·9) 91 (24·9) 91 (27·2) 88 (28·2) 90 (27·4)

With adjustment 90 (20·8) 92 (22·9) 93 (24·9) 92 (27·2) 91 (28·2) 91 (27·4)

arcsin(s1/2) 94 (22·5) 93 (23·1) 93 (24·4) 93 (27·3) 90 (28·0) 92 (27·8)

With adjustment 95 (22·4) 94 (23·2) 94 (24·5) 94 (27·3) 93 (28·1) 94 (27·8)

Ŝg exp{±1·96σ ∗
g } 92 (26·7) 98 (37·8) 97 (28·3) 95 (33·6) 99 (46·5) 97 (31·7)

Distribution exp(1) exp(1·05) exp(1·2) exp(1) exp(1·05) exp(1·2)

Percentile 90 (20·2) 96 (21·5) 94 (23·4) 92 (26·2) 96 (26·5) 94 (26·6)

Basic 90 (20·2) 92 (21·5) 93 (23·4) 92 (26·2) 91 (26·5) 92 (26·6)

With adjustment 91 (20·2) 94 (21·5) 94 (23·4) 92 (26·2) 93 (26·5) 93 (26·6)

arcsin(s1/2) 95 (21·9) 94 (21·8) 94 (22·7) 94 (26·4) 93 (26·4) 94 (26·8)

With adjustment 96 (21·7) 95 (21·9) 95 (22·9) 95 (26·4) 95 (26·4) 95 (26·8)

Ŝg exp{±1·96σ ∗
g } 93 (26·9) 98 (37·6) 98 (27·1) 95 (34) 99 (47·2) 98 (31·5)

Distribution exp(1) exp(1·2) exp(1·6) exp(1) exp(1·2) exp(1·6)

Percentile 92 (21·6) 95 (24·6) 95 (26·2) 94 (28·1) 95 (29·8) 94 (27·5)

Basic 90 (21·6) 87 (24·6) 90 (26·2) 91 (28·1) 86 (29·8) 89 (27·5)

With adjustment 91 (21·6) 90 (24·6) 92 (26·2) 92 (28·1) 89 (29·8) 91 (27·5)

arcsin (s1/2) 93 (23·2) 90 (24·7) 92 (25·8) 93 (28·2) 88 (29·6) 92 (28·0)

With adjustment 95 (23·1) 93 (24·8) 94 (25·9) 94 (28·2) 92 (29·7) 94 (28·0)

Ŝg exp{±1·96σ ∗
g } 93 (26·6) 98 (38·9) 96 (29·4) 95 (33·2) 99 (47·0) 96 (31·3)

Sample sizes are n1 = 40, n2 = 20 and n3 = 40 and censoring distribution is Un(0, 4·3). The five bootstrap confidence
intervals are the percentile method, and the basic bootstrap method with or without arcsin(s1/2) transformation and
with or without an adjustment for bias overcorrection. Ŝg exp{±1·96σ ∗

g } is the centred method of Hwang & Peddada
(1994). Results are based on 10 000 simulation samples.

and three patients without planned hormonal therapy are used to estimate the survivor function
of time to first recurrence of prostate cancer. For this analysis, recurrence is defined as the first
of local recurrence, distant metastasis or initiation of salvage hormone therapy.

It is expected that patients with higher baseline prostate-specific antigen levels have a higher
recurrence rate than those with lower baseline prostate-specific antigen values. The Gleason
grade is a measure of the aggressiveness of the tumour cells obtained from microscopic inspection
of a biopsy prior to the treatment. It is also expected that patients with a lower Gleason grade will
have a lower recurrence rate. In this example, we divided the patients into six groups labelled A1,
A2, A3, B1, B2 and B3 based on whether or not their baseline prostate-specific antigen is less
than 10, and whether their Gleason grade is �6, =7 or �8. Patients with baseline prostate-specific
antigen <10 and Gleason �6 are labelled as A1, patients with baseline prostate-specific antigen
<10 and Gleason =7 as A2 etc. The natural set of constraints for the survivor functions are
A1 � A2 � A3, B1 � B2 � B3, A1 � B1, A2 � B2 and A3 � B3.

The Kaplan–Meier estimates of each groups are shown in Fig. 4(a). The unrestricted Kaplan–
Meier estimates do not satisfy the stochastic ordering constraints. Specifically, between 1 and
2·5 years, the groups A2, B2 and B3 do not satisfy the ordering constraints and after 5 years the
orderings of A2 and A3, and B2 and B3 are incorrect.

The pointwise constrained estimates, shown in Fig. 4(b), satisfy the stochastic ordering con-
straints at all times. Between 1 and 2·5 years, the survivor functions take a common value in
groups A2, B2 and B3 and after 5 years, groups A2 and A3 and groups B2 and B3 have common
estimates. At around 12·5 years, there is a jump in the survivor function estimate for groups B2
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Fig. 4. Estimates in the University of Michigan prostate cancer example. The vertical bars in (a) are observed censor-
ing times. For the labels of the lines, A and B indicate, respectively, low and high baseline prostate-specific antigen;
and 1, 2 and 3 indicate, respectively, low, medium and high Gleason grade. (a) Kaplan–Meier estimator and (b)

pointwise constrained estimator.

Table 2. Estimates and confidence intervals (%) of survivor functions for some selected times in
the prostate cancer example

Time (years) 1·5 5 8

A1 Kaplan–Meier estimator 99·4 (97·6, 100) 93·9 (90·0, 97·2) 83·6 (76·4, 91·1)

Pointwise constrained estimator 99·4 (97·6, 99·9) 93·9 (90·0, 97·2) 83·6 (76·4, 90·2)

A2 Kaplan–Meier estimator 99·1 (96·6, 99·9) 83·4 (75·6, 90·2) 73·0 (63·2, 82·3)

Pointwise constrained estimator 99·1 (96·5, 99·9) 83·4 (76·6, 89·9) 73·0 (64·0, 83·0)

A3 Kaplan–Meier estimator 80·0 (36·0, 98·0) 70·0 (44·8, 92·7) 70·0 (44·8, 100)

Pointwise constrained estimator 88·7 (70·9, 94·9) 70·0 (53·2, 91·6) 70·0 (52·6, 93·6)

B1 Kaplan–Meier estimator 98·0 (92·2, 99·7) 78·3 (71·2, 86·1) 67·0 (57·8, 77·8)

Pointwise constrained estimator 98·0 (95·2, 99·7) 78·3 (71·2, 86·1) 67·0 (57·8, 77·8)

B2 Kaplan–Meier estimator 86·8 (79·6, 93·6) 48·8 (38·9, 62·2) 34·2 (22·9, 52·6)

Pointwise constrained estimator 88·7 (83·0, 93·9) 48·8 (39·6, 59·9) 39·8 (30·3, 54·0)

B3 Kaplan–Meier estimator 96·4 (86·2, 99·8) 47·9 (33·4, 67·5) 47·9 (33·5, 69·4)

Pointwise constrained estimator 88·7 (83·5, 93·8) 47·9 (38·4, 69·2) 39·8 (29·9, 54·2)

Nominal 95% bootstrap confidence intervals using arcsin(s1/2) transformation and controlling bias overcorrection are
shown in parentheses.

and B3, even though there are no observed events at that time. This happens because the num-
ber of individuals at risk in the stochastically smaller group B3 at time t = 12·5 changes, which
results in ĥδ(t) < 0, as discussed in § 2·3.

Detailed results of point estimates and corresponding confidence intervals for some selected
times are shown in Table 2.

8. DISCUSSION

The pointwise constrained estimator is a likelihood based pointwise estimator. Unlike the full
constrained nonparametric maximum likelihood estimator, the violation of a constraint at one
time does not affect the estimates at other times. The pointwise constrained estimator gives a



Pointwise constrained estimator 341

common estimate based on maximizing the likelihood when the constraints are violated and
compared with other estimators that use averaging based on initial sample sizes (Rojo, 2004;
El Barmi & Mukerjee, 2005), it has better properties when censoring exists.

When there is no censoring, Rojo’s estimator in the two-sample case and El Barmi and
Mukerjee’s estimator in the simple ordering case are identical to the pointwise constrained
estimator. However, if censoring exists, these estimators can be quite different, especially when
the censoring distributions differ significantly between groups. Another feature of El Barmi and
Mukerjee’s estimator is the range of times for which the estimator is defined. Specifically, it is
defined only until the minimum of the times of the last observations in all groups. Thus, if the
last observed time in one group is much earlier than in other groups, then estimates in all other
groups are undefined at subsequent times even though there may be a large number of observa-
tions at risk. On the other hand, the pointwise constrained estimator for a group is defined up to
the last observed time of that group.

The pointwise constrained estimator can have jumps at nonevent times. Thus, the likelihood
ratio statistics of the restricted survivor function, first introduced by Thomas & Grunkemeier
(1975) and discussed by Li (1995) and Murphy (1995) are not exactly correct, because they
assume the jumps can only occur at event times. Thus, the likelihood ratio test and confidence
interval based on the likelihood ratio test may need to be revised.

Methods to construct confidence intervals in order restricted problems are not well developed.
Bootstrap methods generally work better when the distributions are approximately normal after
some transformations. When constraints are present, it is not clear whether there exists any such
transformation. We proposed a method to control overcorrection of bias when using the basic
bootstrap methods and found improved properties of confidence intervals. Further investigation
of this approach on other applications could be useful.
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violators algorithm for the simple ordering case in § 2·5, proofs of Theorems 2–4, and an
algorithm to calculate ag described in § 5·2.

APPENDIX

Proof of Theorem 1. Let λ1 and λ2 be Lagrange multipliers. The corresponding Lagrangian function is

�(h, λ) =
m∑

i=1

[di log{1 − exp h(Xi )} + (ni − di )h(Xi )] + N (x)hδ(x)

+ λ1

⎧⎨
⎩

M(x)∑
j=1

h(X j ) + hδ(x) − q

⎫⎬
⎭− λ2hδ(x).

The Karush–Kuhn–Tucker conditions that must be satisfied at the solution ĥ are:

− di exp ĥ(Xi )

1 − exp ĥ(Xi )
+ (ni − di ) + λ̂1 = 0, i � M(x), (A1)
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− di exp ĥ(Xi )

1 − exp ĥ(Xi )
+ (ni − di ) = 0, i > M(x), (A2)

N (x) + λ̂1 − λ̂2 = 0, (A3)

M(x)∑
j=1

ĥ(X j ) + ĥδ(x) − q = 0, (A4)

ĥδ(x) � 0, (A5)

λ̂2ĥδ(x) = 0, (A6)

λ̂2 � 0. (A7)

From (A1), we have ĥ1(Xi ) = log{1 − di/(ni + λ̂1)} for i � M1(x). Either λ̂2 = 0 or ĥδ(x) = 0 from (A6).
If λ̂2 = 0, then λ̂1 = −N (x) from (A3), which is only valid when ĥδ(x) = q −∑M(x)

j=1 log[1 − di/{ni −
N (x)}] � 0; otherwise ĥδ(x) = 0 and λ̂1 is the solution of the equation, q−∑M(x)

j=1 log{1 − di/(ni + λ)}=0,

from (A4), which is only valid when λ̂1 � −N (x) from (A3). Since
∑M(x)

j=1 log{1 − di/(ni + k)} is an

increasing function in k, we can see that λ̂1 = max{k̂,−N (x)}, where k̂ is the solution of the equation∑M(x)
j=1 log{1 − di/(ni + k)} − q = 0. It follows that λ̂1 is exactly the same as K (q; x) defined in Theorem

1. Therefore, the unique solution from solving (A2)–(A7) is as given in Equation (4). �

Proof of Lemma 1. We consider separately two cases where K (q; x) > −N (x) and K (q; x) = −N (x).
If K (q; x) > −N (x), then ĥδ(x) = 0 and ĥ(q; Xi ) = log(1 − di/ni ) for i > M(x), which does not

depend on q. For any i � M(x),

d

dĥ(q; Xi )
[di log{1 − exp ĥ(q; Xi )} + (ni − di )ĥ(q; Xi )] = −di exp{ĥ(q; Xi )}

1 − exp{ĥ(q; Xi )}
+ ni − di

= ni − di

1 − exp ĥ(q; Xi )

= ni − {ni + K (q; x)} = −K (q; x).

Thus,

d

dq
plh(q; x) = d

dq

(
m∑

i=1

[di log{1 − exp ĥ(q; Xi )} + (ni − di )ĥ(q; Xi )] + N (x)ĥδ(x)

)

=
M(x)∑
i=1

−K (q; x)
dĥ(q; Xi )

dq
= −K (q; x)

d

dq

M(x)∑
i=1

ĥ(q; Xi ) = −K (q; x).

If K (q; x) = −N (x), then ĥ(q; Xi ) = log[1 − di/{ni − N (x)}] for i � M(x) and ĥ(q; Xi ) =
log(1 − di/ni ) for i > M(x) are not functions of q. It follows that

d

dq
�(q; x) = d

dq

(
m∑

i=1

[di log{1 − exp ĥ(q; Xi )} + (ni − di )ĥ(q; Xi )] + N (x)ĥδ(q; x)

)

= N (x) = −K (q; x).

�
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Lehmann Symposium: Optimality, Ed. V. Pérez-Abreu and J. Rojo, vol. 44, pp. 37–61. Beachwood, OH: Institute
of Mathematical Statistics.

ROJO, J. & MA, Z. (1996). On the estimation of stochastically ordered survival functions. J. Statist. Comp. Simul. 55,
1–21.

STUTE, W. & WANG, J.-L. (1993). The strong law under random censorship. Ann. Statist. 21, 1591–607.
THOMAS, D. R. & GRUNKEMEIER, G. L. (1975). Confidence interval estimation of survival probabilities for censored

data. J. Am. Statist. Assoc. 70, 865–71.

[Received January 2011. Revised December 2011]




