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SUMMARY

We study estimation in quantile regression when covariates are measured with errors. Exist-
ing methods require stringent assumptions, such as spherically symmetric joint distribution of
the regression and measurement error variables, or linearity of all quantile functions, which
restrict model flexibility and complicate computation. In this paper, we develop a new estima-
tion approach based on corrected scores to account for a class of covariate measurement errors in
quantile regression. The proposed method is simple to implement. Its validity requires only lin-
earity of the particular quantile function of interest, and it requires no parametric assumptions on
the regression error distributions. Finite-sample results demonstrate that the proposed estimators
are more efficient than the existing methods in various models considered.

Some key words: Corrected loss function; Laplace distribution; Measurement error; Normal distribution; Quantile
regression; Smoothing.

1. INTRODUCTION

In problems relating to econometrics, epidemiology and finance, the covariates of interest are
often measured with errors. The measurement error, if ignored, often leads to bias in estimating
the mean and quantile functions (Carroll et al., 2006; Wei & Carroll, 2009).

Less attention has been paid to quantile regression than to mean regression with a covariate
measurement error. There are two main difficulties for correcting the bias in quantile regres-
sion caused by measurement error. First, a parametric regression-error likelihood is usually not
specified in quantile regression. Second, unlike the mean, quantiles do not enjoy the additiv-
ity property, that is, the quantile of the sum of two random variables is not necessarily the sum
of the two marginal quantiles. He & Liang (2000) proposed an estimation procedure that mini-
mizes the quantile loss function of orthogonal residuals. This method assumes that the random
errors in the response variable y and the measurement errors in the covariate x are independent
and follow the same symmetric distribution. Assuming the existence of an instrumental variable,
Hu & Schennach (2008) and Schennach (2008) proposed methods that require nonparametric
modelling of densities such as that of y given x , and that of x given the instrumental variable.
Wei & Carroll (2009) developed an iterative estimation procedure that requires estimating the



406 HUIXIA JUDY WANG, LEONARD A. STEFANSKI AND ZHONGYI ZHU

conditional density of y given x via modelling the entire quantile process, and this complicates
the computation. In addition, Wei & Carroll’s method relies on a strong global assumption, that
is, estimation of the τ th conditional quantile of y given x depends on the assumption that all the
conditional quantiles below the τ th are linear. In this paper, we propose a simple and consistent
estimation procedure assuming a class of measurement error distributions. The proposed method
avoids the symmetry assumption used in He & Liang (2000), and requires estimation only at the
quantile of interest.

Whatever the approach taken, one must resolve the identifiability issue in measurement error
models. In the proposed method, it is resolved by assuming a parametric form for the measure-
ment error distribution whose parameters such as variance can be estimated. However, we leave
the quantile regression error distribution completely unspecified.

We consider the linear quantile regression model

Qτ (y j | x j )= xT
jβ0(τ ) ( j = 1, . . . , n), (1)

where Qτ (y j | x j ) denotes the τ th conditional quantile of the response variable y j given by the
covariate x j , β0(τ ) ∈Rp is the coefficient vector and τ ∈ (0, 1) is the quantile level of interest.
Our main interest is in estimating β0(τ )when x j is measured with an error. We assume an additive
measurement error model, w j = x j + u j , relating the surrogate w j and x j , where the u j ∈Rp

are the independent and identically distributed measurement errors. Throughout, we assume that
u j is independent of x j and y j , and we drop τ in β0(τ ) for notational simplicity.

2. PROPOSED METHODS

2·1. Corrected-loss estimator

When x j is measured without an error, β0 can be estimated consistently by

β̂x = argmin
β∈Rp

n∑
j=1

ρ(y j , x j , β), (2)

where ρ(y, x, β)= ρτ (y − xTβ), ρτ (ε)= ε{τ − I (ε < 0)} is the quantile loss function and I (·)
is the indicator function. The estimator β̂x also satisfies

n−1
n∑

j=1

ψ(y j , x j , β̂x )= op(1), (3)

where ψ(y, x, β)= x{I (y − xTβ < 0)− τ }. Under model (1), pr(y < xTβ0 | x)= τ . Therefore,
E{ψ(y, x, β0)} = 0, and ψ(y, x, β) is an unbiased estimating function for β0.

When x j is subject to error and we observe only a surrogatew j , naively replacing x j withw j in
(2) or (3) usually leads to inconsistent estimators, because E{ψ(y, w, β0)} = 0 may not hold. To
account for the measurement error, we construct corrected score functions ofw that are unbiased
for β0 (Stefanski, 1989; Nakamura, 1990). However, in practice, it is challenging to determine
the corrected scores, especially in quantile regression, as the quantile loss function ρτ (ε) is not
differentiable at ε = 0. To overcome this difficulty, we approximate ρτ (ε) by a smooth function
ρ(ε, h) depending on a positive smoothing parameter h.

Let E∗ denote the expectation with respect to w given y and x . Unless otherwise spec-
ified, we use E to denote the global expectation. We aim to find a corrected loss function
ρ∗(y, w, β, h) such that E∗{ρ∗(y, w, β, h)} = ρ(y, x, β, h)→ ρ(y, x, β) pointwise in (y, x, β)
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as h → 0. Under some regularity conditions, β0 is the unique minimizer of E{ρ(y, x, β)}. There-
fore, minimizing the sample analog of E{ρ∗(y, w, β, h)} leads to a consistent estimator of β0,
if h goes to zero at a suitable rate. Motivated by this idea, we define the corrected-loss quantile
estimator as

β̂w = argmin
β∈Rp

n∑
j=1

ρ∗(y j , w j , β, h).

In the next two subsections, we develop corrected-loss estimators for two measurement error
models, normal and Laplace, because these two measurement error distributions provide reason-
able error models in many applications. Our simulation study in § 3 suggests that the proposed
estimators are robust against misspecification of the measurement error distribution. The exten-
sion to a wider class of distribution families is discussed in § 5.

2·2. Normal measurement error

Assume {y j , w j }n
j=1 is a random sample with w j = x j + u j , where u j ∼ N (0, �) is a

p-dimensional normal random vector that is independent of y j and x j ; see Fuller (1987) and
Carroll et al. (2006) for reviews on normal measurement errors in mean regression models.

We first review a useful result for normal random variables. Suppose that ε ∼ N (μ, σ 2)

and that g(·) is a sufficiently smooth function. Let u ∼ N (0, 1) be independent of ε.
Stefanski & Cook (1995) showed that E[E{g(ε + iσu) | ε}] = g(μ), where i = √−1, the outer
expectation is with respect to ε and the inner one is with respect to u given ε.

Motivated by the above result, we propose to approximate the quantile loss function ρτ (ε) by
an infinitely smooth function

ρN (ε, h)= ε
{
τ − 1/2 + G N (ε/h)

}
,

where G N (x)= π−1Si(x)= π−1
∫ x

0 sin(t)/t dt is the sine integral function, which satisfies
lim

x→∞ Si(x)= π/2 and lim
x→−∞ Si(x)= −π/2. By such an approximation, we have the following

theorem.

THEOREM 1. Suppose that ε ∼ N (μ, σ 2). Define A(ε, σ 2, h)= E{ρN (ε + iσu, h) | ε},
where u ∼ N (0, 1) is independent of ε. Then

(i) A(ε, σ 2, h)= ε(τ − 1/2)+ π−1
∫ 1/h

0 {y−1ε sin(yε)− σ 2 cos(yε)} exp(y2σ 2/2) dy;
(ii) E{A(ε, σ 2, h)} = ρN (μ, h).

Since (y − wTβ) | (y, x)∼ N (y − xTβ, βT�β), we define the corrected quantile loss
function as

ρ∗
N (y, w, β, h)= A(y − wTβ, βT�β, h).

By Theorem 1, E∗{ρ∗
N (y, w, β, h)} = ρN (y − xTβ, h)

.= ρN (y, x, β, h)→ ρ(y, x, β) pointwise
in (y, x, β) as h → 0. Let B denote a compact subset of Rp that contains β0. The corrected
quantile estimator is then defined as

β̂N = argmin
β∈B

n∑
j=1

ρ∗
N (y j , w j , β, h).

In applications, often only one or two covariates are measured with an error. Our proposed
method accommodates such scenarios as special cases. Throughout the paper, we let the first
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component of x be 1, corresponding to the intercept, so there is no measurement error in the first
component. For example, if we assume that only the pth component of x is subject to measure-
ment error u ∼ N (0, σ 2), then we have

� =
(

0q×q 0q

0T
q σ 2

)
(q = p − 1),

where 0q and 0q×q denote a q-dimensional vector and a q × q matrix with zero elements, respec-
tively. Consequently, the corrected quantile loss function becomes ρ∗

N (y, w, β, h)= A(y −
wTβ, β2

pσ
2, h), where βp is the pth element of β. The same parameterization applies to the

correction for a Laplace measurement error described in § 2·3.

2·3. Laplace measurement error

We consider the situation where the measurement error follows a multivariate Laplace distri-
bution. The Laplace distribution is often used for modelling data with tails heavier than nor-
mal. We refer to Stefanski & Carroll (1990), Hong & Tamer (2003), Richardson & Hollinger
(2005), Purdom & Holmes (2005), Visscher (2006) and McKenzie et al. (2008) for discussions
of Laplace measurement errors. We first introduce a multivariate Laplace distribution adopted
from Kotz et al. (2001, Ch. 6), and give a lemma stating some related properties.

DEFINITION 1. A random vector X ∈Rp has a multivariate asymmetric Laplace distribution
if its characteristic function is 
(t)= (1 + tT�t/2 − iμTt)−1 for t ∈Rp, where μ ∈Rp and �
is a p × p nonnegative definite symmetric matrix. In the following, we write X ∼ ALp(μ,�).
If μ= 0, then ALp(0, �) corresponds to a symmetric multivariate Laplace distribution. In
addition,AL1(0, σ 2) is the classical univariate Laplace (1774) distribution L(μ, σ 2) if and only
if μ= 0.

LEMMA 1. Let X ∼ ALp(μ,�). Then

(i) the mean and covariance matrix of X are E(X)=μ, and cov(X)=� + μμT;
(ii) if μ= 0, then for any constant a and vector b ∈Rp, the random variable a + bT X ∼

L(a, σ 2),where σ 2 = bT�b, and L(a, σ 2) is the standard univariate Laplace distribution
with mean a and variance σ 2.

Suppose that the measured covariates are w j = x j + u j , where u j ∼ ALp(0, �), independent
of x j and y j . Our corrected loss function is based on the following theorem.

THEOREM 2. Suppose that the random variable ε follows the univariate Laplace distribution
L(μ, σ 2). If g(ε) is a twice-differentiable function of ε, then

E{g(ε)− (σ 2/2)g(2)(ε)} = g(μ),

where g(2)(ε) is the second derivative of g(ε).

Let K (·) denote a kernel density function and define GL(x)=
∫

u<x K (u) du. In our numer-
ical studies, we choose K (·) as the probability density function of N (0, 1). We consider the
smoothed quantile loss function ρL(ε, h)= ε{τ − 1 + GL(ε/h)}. For Laplace measurement
error, by Lemma 1, (y − wTβ) | (y, x)∼ L(y − xTβ, σ 2), where σ 2 = βT�β. Let ε = y − wTβ.
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Define the corrected quantile loss function as

ρ∗
L(y, w, β, h)= ρL(ε, h)− σ 2

2

∂2ρL(ε, h)

∂ε2

= ε(τ − 1)+ εGL

( ε
h

)
− σ 2

2

{
2

h
K
( ε

h

)
+ ε

h2
K ′
( ε

h

)}
. (4)

By Theorem 2, E∗{ρ∗
L(y, w, β, h)} = ρL(y − xTβ, h)

.= ρL(y, x, β, h)→ ρ(y, x, β) pointwise
in (y, x, β) as h → 0.

The corrected quantile estimator is therefore defined as

β̂L = argmin
β∈B

n∑
j=1

ρ∗
L(y j , w j , β, h).

2·4. Large sample properties

To establish the asymptotic results in this paper, we make the following assumptions.

Assumption 1. The samples {(y j , x j ) : j = 1, . . . , n} are independent and identically
distributed.

Assumption 2. The vector β0 is an interior point of the parameter space B, a compact subset
of Rp.

Assumption 3. The expectation E(‖x j‖2) is bounded, and E(x j xT
j ) is a positive definite

p × p matrix.

Assumption 4. Let e j = y j − xT
jβ(τ). The conditional density of e j , f j (e j | x j ), is bounded

from infinity, and it is bounded away from zero and has a bounded first derivative in the neigh-
bourhood of zero.

Assumption 5. For each j , E(e2
j | x j ) is bounded as a function of τ .

Assumption 6. The kernel function K (u) is a bounded probability density function having
finite fourth moment and is symmetric about the origin. In addition, K (u) is twice-differentiable,
and its second derivative K (2)(u) is bounded and Lipschitz continuous on (−∞,∞).

Theorem 3 states the strong consistency of the proposed estimators for normal and Laplace
measurement errors, respectively.

THEOREM 3. (i) Suppose that the measurement error u j ∼ N (0, �), that Assumptions 1–5
hold, and that h → 0 and h = c(log n)−δ, where δ < 1/2 and c is some positive constant. Then
β̂N → β0 almost surely as n → ∞. (ii) If the measurement error u j ∼ ALp(0, �) and Assump-
tions 1–4 and 6 hold, h → 0, and (nh)−1/2 log n → 0, then β̂L → β0 almost surely as n → ∞.

Assumption 2 ensures the existence of β̂N and β̂L , and the uniformity of the convergence of
the minimand over B, as required to prove the consistency. Assumptions 3 and 4 ensure that β0 is
the unique minimizer of E{ρ(y, x, β)}. With normal measurement error, because the corrected
quantile loss function ρ∗

N (·) is complicated, Assumption 5 is used in the Appendix to bound the
first-order expansion of ρ∗

N (·) uniformly over e j . Assumption 5 is not needed for the Laplace
measurement error. Assumption 6 specifies the conditions on the kernel function used in β̂L
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for the Laplace measurement error. In Theorem 3, the rate of h differs for normal and Laplace
measurement errors. This difference is related to the smoothness of the measurement error dis-
tribution. It is well known in the deconvolution literature that the rates of convergence are lower
for smoother error distributions (Carroll & Hall, 1988; Fan, 1992).

We next establish asymptotic normality of the proposed estimators. For notational simplicity,
let β̂ denote the proposed corrected estimator, and ρ∗(y, w, β, h) denote the corrected quantile
loss function, for either normal or Laplace measurement errors. We make the following additional
assumption.

Assumption 7. Let ψ∗
1 (y, w, β, h)= ∂ρ∗(y, w, β, h)/∂β and ψ∗

2 (y, w, β, h)=
∂2ρ∗(y, w, β, h)/∂β∂βT. As n → ∞ and h → 0, there exist positive definite matrices D
and A such that E{ψ∗

1 (y, w, β0, h)⊗2} → D and E{ψ∗
2 (y, w, β0, h)} → A.

THEOREM 4. Suppose that Assumptions 1–7 hold, and β̂ is the consistent estimator of
β0, either β̂N or β̂L defined in § § 2·3 and 2·4. Then n1/2(β̂ − β0)→ N (0, A−1 D A−1) in
distribution, as n → ∞.

2·5. Estimated measurement error covariance matrix

Thus far we have described our method under the assumption that the covariance matrix �
is known. Applications where � is known exist, but are rare. The more common scenario is
one in which an unbiased estimate, �̂, is available. Analysis then proceeds using �̂ as a plug-in
estimator of�. A common design where this strategy is used is when eachw j is itself the average
of m replicate measurements w j,k (k = 1, . . . ,m), each having variance 
 = m�. A consistent
and unbiased estimator of � is �̂ = 
̂/m, where


̂ = {n(m − 1)}−1
n∑

j=1

m∑
k=1

(w j,k − w j )(w j,k − w j )
T

is based on n(m − 1) degrees of freedom; see Liang et al. (2007). The application data in § 4
have this structure with m = 6 in which case �̂ is estimated on 5n degrees of freedom. In the
Monte Carlo study in § 3, we simulate this situation with m = 2.

Let σ be a q-dimensional vector consisting of the elements of the upper triangle of� including
the diagonals, where q = p(p + 1)/2. To reflect the dependence on σ , we let ρ∗(y, w, β, h, σ )
denote the corrected quantile loss function, for either normal or Laplace measurement errors. We
next establish the asymptotic properties of the corrected estimator,

β̂ = argmin
β∈Rp

n∑
j=1

ρ∗(y j , w j , β, h, σ̂ ), (5)

where w j = m−1∑m
k=1w j,k . Let S j be a q-vector consisting of the elements of the

upper triangle of the matrix
∑m

k=1(w j,k − w j )(w j,k − w j )
T including the diagonals. Define

ψ∗
1β(y, w, β, h, σ )= ∂ρ∗(y, w, β, h, σ )/∂β, ψ∗

2β(y, w, β, h, σ )= ∂ψ∗
1β(y, w, β, h, σ )/∂β and

ψ∗
2σ (y, w, β, h, σ )= ∂ψ∗

1β(y, w, β, h, σ )/∂σ . We replace Assumption 7 with the following
Assumption 7′.

Assumption 7′. As n → ∞ and h → 0, E{ψ∗
1β(y, w, β0, h, σ )⊗2} → D, E{ψ∗

2β(y, w,
β0, h, σ )} → A, E{ψ∗

2σ (y, w, β0, h, σ )} → B, E[ψ∗
1β(y j , w j , β0, h, σ ){S j − m(m − 1)σ }T] →

C , where A and D are p × p-positive definite matrices, and B and C are p × q matrices.
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THEOREM 5. Under the conditions of Theorem 3 and Assumption 7′, the estimator β̂ given
in (5) is consistent and asymptotically normal with covariance matrix A−1 D∗ A−1, where D∗ =
D + {m(m − 1)}−2 B E[{S j − m(m − 1)σ }⊗2]BT + {m(m − 1)}−1(C BT + BCT).

Remark 1. Compared with Theorem 4, the covariance of β̂ has three additional terms due
to the variation in the estimated measurement error variance. For normal measurement error,
(y j , w j ) are independent of 
̂, so the last two terms of D∗ reduce to zero.

2·6. Some computational issues

Motivated by the method of Delaigle & Hall (2008), we propose a modified simulation-
extrapolation-type strategy to choose the smoothing parameter h. The simulation and extrapola-
tion method was introduced by Stefanski & Cook (1995) for estimation in a parametric setting;
see also Stefanski (2000), Luo et al. (2006) among others. Delaigle & Hall (2008) showed how
this strategy can be adapted to choose the smoothing parameter in nonparametric modelling.

Let β̂(h) be the corrected-loss estimator associated with smoothing parameter h. Define
M(h)= E[{β̂(h)− β0}T�−1{β̂(h)− β0}] as the mean squared error of β̂(h), where �=
cov{β̂(h)}. Ideally, we would like to find the optimal smoothing parameter h0 = argmin M(h).
However, since M(h) depends on the unknown x j , the minimization of M(h) cannot be executed
in practice. Instead, we develop two versions of M(h) by simulating higher levels of measurement
errors. Let u∗

b1, . . . , u∗
bn and u∗∗

b1, . . . , u∗∗
bn (b = 1, . . . , Nb) denote independent and identically

distributed random vectors from N (0, �) for the normal measurement error or from ALp(0, �)
for Laplace measurement error depending on the error model assumed. Let w∗

bj =w j + u∗
bj ,

w∗∗
bj =w∗

bj + u∗∗
bj , β∗

b (h) and β∗∗
b (h) as the corrected-loss estimators based on samples (y j , w

∗
bj )

and (y j , w
∗∗
bj ), respectively. Define

M1(h)= N−1
b

Nb∑
b=1

{β∗
b (h)− β̂(h)}T(S∗)−1{β∗

b (h)− β̂(h)},

M2(h)= N−1
b

Nb∑
b=1

{β∗∗
b (h)− β∗

b (h)}T(S∗∗)−1{β∗∗
b (h)− β∗

b (h)},

where S∗ and S∗∗ are the sample covariance matrices of {β∗
b (h)− β̂(h) : b = 1, . . . , Nb}

and {β∗∗
b (h)− β∗

b (h) : b = 1, . . . , Nb}, respectively. Let ĥ1 = argminh M1(h) and ĥ2 =
argminh M2(h). Since w∗∗

bj measures w∗
bj in the same way that w∗

bj measures w j , it is
reasonable to expect that the relationship between ĥ2 and ĥ1 is similar to that between ĥ1 and h0.
Therefore, back extrapolation can be used to approximate h0. In our implementation, we use the
linear extrapolation from the pair (log ĥ1, log ĥ2) and define the second-order approximation to
h0 as ĥ = ĥ2

1/ĥ2.
For corrected-loss approaches, one computational complication is that, in finite samples,

the corrected objective function may not be globally convex in β; see also Stefanski (1989),
Stefanski & Carroll (1985, 1987) and Nakamura (1990) for similar observations. If x j is mea-
sured with a Laplace error, then n−1∑

j ρ
∗
L(y j − wT

jβ)→ −∞ or +∞ when σ 2 = βT
β → ∞,
depending on the sign of the last term in brackets in (4). In such a case, the corrected objective
function has no global minimum. However, it is locally convex around a local minimizer β̂ that
is the desired corrected-loss estimate. In our work, when solving the minimization problem for
β̂, we adopted the common strategy of starting from the naive estimator obtained by regressing
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y j onw j , and then searched using the R (R Development Core Team, 2012) function optim with
default options. This algorithm worked well in numerical studies.

3. SIMULATION STUDY

We conduct a simulation study to investigate the performance of the proposed corrected-loss
approaches. The data were generated from the model

y j = 1 + x j + (1 + ηx j )e j ( j = 1, . . . , 200),

where e j ∼ N (0, σ 2
e ). Under the above model, the τ th conditional quantile of y given x is

β01(τ )+ β02(τ )x with β01(τ )= 1 + σe�
−1(τ ) and β02(τ )= 1 + ησe�

−1(τ ), and �(·) is the
cumulative distribution function of N (0, 1). We further assume that the x j are subject to mea-
surement error following the model

w j = x j + u j , x j ∼ U (5, 5 + 121/2).

We consider four different cases. The measurement errors u j are generated from N (0, σ 2
u ) in

Cases 1–2, from L(0, σ 2
u ) in Case 3, and from the normalized χ2

3 with mean zero and variance
σ 2

u in Case 4. We set η= 0 in Case 1, corresponding to a homoscedastic model, and η= 0·2
in Cases 2–4, corresponding to heteroscedastic models. We give e j and u j standard deviations
σe = σu = 0·5, so the assumption required by He & Liang’s method is satisfied in Case 1. In
Cases 2–4 with heteroscedasticity, the variances of the regression errors depends on x j and thus
are on different scales with the measurement error.

For each case, 100 simulations are performed. Focusing on τ = 0·5 and τ = 0·75, we compare
five estimators, including the naive estimator obtained from regressing y j on w j , He & Liang’s
estimator, the proposed corrected-loss estimator for normal measurement error, the proposed
corrected-loss estimator for Laplace measurement error and Wei & Carroll’s estimator obtained
using the R program developed by Wei and Carroll with 20 iterations.

To make a fair comparison, in the implementation of He & Liang’s method, we first transform
yi to y∗

i = λy with λ= [E{(1 + ηx j )
2}]1/2σe/σu to match the marginal variance of regression

error with the measurement error variance. The resulting coefficient estimates are then trans-
formed back to the original scale. For the proposed corrected-loss estimators and Wei & Carroll’s
approach, we generated an independent estimate σ̂ 2

u of σ 2
u based on n degrees of freedom as

explained in § 2·5 for each dataset. This simulates the situation in which each w j is the average
of two replicate measurements w j,k ∼ N (x j , γ

2
u ) or L(x j , γ

2
u ) (k = 1, 2) with γ 2

u = 2σ 2
u .

In the implementation of the two proposed methods, we choose the smoothing parameter h
following the simulation and extrapolation procedure in § 2·6 with Nb = 20. In Case 1, the mean
ĥ for the corrected-loss estimators for normal and Laplace errors are 2·82 and 2·29 at τ = 0·5,
and 1·04 and 1·09 at τ = 0·75, respectively.

Figure 1 presents boxplots of β̂k(τ )− β0k(τ ) (k = 1, 2) at τ = 0·75 from the five approaches.
We omit the boxplots at τ = 0·5 since the main observations are similar to those at τ = 0·75.
As expected, the naive estimator is seriously biased under all scenarios. He & Liang’s estimator
performs well in Case 1 when e j and u j have the same distribution, but has considerable bias in
Cases 2–4 with heteroscedastic regression errors for estimation at τ = 0·75. The two proposed
estimators and Wei & Carroll’s estimator successfully correct the bias for both homoscedastic
and heteroscedastic models. Even though the proposed methods require parametric assumptions
on the measurement error distribution, they are quite robust against model misspecification. The
two methods perform very well not only in Cases 1–3 when the normal error assumption is used
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Fig. 1. Boxplots of β̂k(τ )− β0k(τ ), k = 1, 2 for different methods in Cases 1–4 at τ = 0·75. Naive, the
naive method by regressing y j on w j ; HL, He & Liang’s method; CLN, corrected-loss estimator for
normal measurement error; CLL, corrected-loss estimator for Laplace measurement error; WC, Wei &

Carroll’s method.

for the Laplace measurement error and vice versa, but also in Case 4 when the measurement error
distribution is substantially right skewed.

For detailed comparison, Table 1 summarizes the mean squared errors of the different estima-
tors. The two proposed corrected-loss estimators are more efficient than Wei & Carroll’s esti-
mator in all cases. In addition, since Wei & Carroll’s estimator requires estimation of the whole
quantile process simultaneously, it is computationally much more expensive than the proposed
estimators when the focus is on one or a few quantile levels. The normal corrected-loss estimator
is slower than the Laplace corrected-loss estimator, as the corrected loss function ρ∗

N (·) involves
an integral that has no closed form and thus requires numerical integration. For one simulated
dataset in Case 2 with n = 200, using R version 2·8·1 on a 3 GHz Dell computer, estimation
at the median required 9·7 seconds for the Laplace corrected-loss estimator, 496 seconds for the
normal corrected-loss estimator, and it took 1020 seconds for Wei & Carroll’s estimator to obtain
estimates at 39 quantile levels. The number of quantile levels required by Wei & Carroll’s esti-
mator grows with the sample size n, and thus the computation is even more challenging for larger
datasets.
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Table 1. Mean squared errors of different estimators of the intercept β1(τ ) and slope β2(τ )

parameters. The values in the parentheses are the Monte Carlo standard deviations

100 × MSE{β̂1(τ )} 100 × MSE{β̂2(τ )}
Naive HL CLN CLL WC Naive HL CLN CLL WC

Case 1
τ = 0·5 179 20 15 15 18 4·0 0·4 0·3 0·3 0·4

(8) (4) (2) (2) (3) (0·2) (0·1) (0·1) (0·0) (0·1)
τ = 0·75 201 23 16 19 28 3·8 0·5 0·3 0·3 0·6

(10) (3) (2) (2) (4) (0·2) (0·1) (0·1) (0·0) (0·1)
Case 2

τ = 0·5 192 64 47 46 67 4·4 1·5 1·1 1·1 1·6
(16) (9) (6) (6) (9) (0·4) (0·2) (0·1) (0·1) (0·2)

τ = 0·75 275 78 58 56 105 5·8 1·5 1·1 1·2 2·3
(24) (12) (7) (7) (12) (0·5) (0·2) (0·1) (0·1) (0·3)

Case 3
τ = 0·5 192 76 74 65 104 4·3 1·8 1·7 1·5 2·4

(19) (11) (12) (10) (19) (0·4) (0·3) (0·3) (0·2) (0·5)
τ = 0·75 250 101 63 63 132 5·2 1·7 1·3 1·3 2·9

(24) (14) (10) (9) (21) (0·5) (0·3) (0·2) (0·2) (0·5)
Case 4

τ = 0·5 205 69 56 53 87 4·6 1·6 1·3 1·2 1·9
(19) (10) (7) (8) (14) (0·4) (0·2) (0·2) (0·2) (0·3)

τ = 0·75 194 157 59 58 75 4·0 2·5 1·2 1·2 1·8
(19) (17) (8) (8) (13) (0·4) (0·3) (0·2) (0·2) (0·3)

Naive, the naive method by regressing y on w; HL, He & Liang’s method; CLN, corrected-loss estimator for normal
measurement error; CLL, corrected-loss estimator for Laplace measurement error; WC, Wei & Carroll’s method.

Table 2. Coverage probabilities, %, of bootstrap confidence intervals with a
nominal level of 95%

β1(0·5) β2(0·5) β1(0·75) β2(0·75)
CLN CLL CLN CLL CLN CLL CLN CLL

Case 1 97 95 97 95 96 92 96 92
Case 2 95 96 95 96 91 94 91 94
Case 3 91 94 91 94 91 92 91 92
Case 4 98 95 98 95 92 92 92 92

CLN, the corrected-loss estimator for normal measurement error; CLL, the corrected-loss estimator
for Laplace measurement error.

In quantile regression, it is challenging to estimate the asymptotic covariance of the quantile
coefficients directly, as the covariance matrix involves unknown density functions that are dif-
ficult to estimate in finite samples. For practical implementation, we adopt a simple bootstrap
approach through resampling (y j , w j ) with replacement. To accommodate the variation in the
estimation of σu , for each bootstrap, we obtain the proposed estimators by using the estimated σu

calculated with the bootstrap sample of the internal replicates w j,k . Bootstrap confidence inter-
vals can be constructed by using the bootstrap standard error and the asymptotic normality of the
proposed estimators. In each simulation run, 200 bootstrap samples are used to obtain the confi-
dence intervals. Table 2 summarizes the coverage probabilities of 95% confidence intervals from
the two proposed estimators. The bootstrap approach performs reasonably well. The confidence
intervals of the proposed methods have empirical coverage probabilities close to the nominal
level 95% even in cases where the parametric measurement error distribution is misspecified.
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4. APPLICATION TO A DIETARY DATA

For illustration, we analyse a dietary dataset from the Women’s Interview Survey of Health.
These data are from 271 subjects, each completing a food frequency questionnaire and six
24-hour food recalls on randomly selected days. The food frequency questionnaire is a com-
monly used dietary assessment instrument in epidemiology studies; see Carroll et al. (1997)
or Liang & Wang (2005), among others. We focus on studying the impacts of long-term usual
intake, body mass index and age, on the food frequency questionnaire intake, measured as per-
cent calories from fat. As the long-term intake cannot be observed due to measurement errors and
other sources of variability, the 24-hour recalls were used to obtain error-prone measurements of
intake.

We consider the following linear quantile regression and measurement error models:

Qτ (y j |x j , z j1, z j2)= β1(τ )+ β2(τ )x j + β3(τ )z j1 + β4(τ )z j2,

w j,k = x j + u j,k ( j = 1, . . . , 271; k = 1, . . . , 6),

where y j , x j , z j1 and z j2 are the food frequency questionnaire intake, the long-term usual
intake, body mass index and age of the j th subject, w j,k is the kth food recall intake of the
j th subject, u j,k is the measurement error with mean zero and variance γ 2

u = 6σ 2
u , and the intake

measurements are on the log scale. For illustration, we study quantile levels τ = 0·2, 0·5 and
0·8. For this dataset, each subject j has six internal replicates of food recall intake, w j,k (k =
1, . . . , 6). Therefore, we estimate γ 2

u by γ̂ 2
u = (5n)−1∑n

j=1
∑6

k=1(w j,k − w j )
2 = 0·132, where

w j = 1/6
∑6

k=1w j,k . Thus the estimated variance ofw j as a measurement of x j is σ̂ 2
u = γ̂ 2

u /6 =
0·022. The attenuation factor, 1 − σ̂ 2

u /var(w j ), is estimated as 0·737. Using the simulation and
extrapolation method, we chose h as 0·3, 0·55 and 0·35 for the normal corrected-loss estima-
tor, and 0·36, 0·45 and 0·21 for the Laplace corrected-loss estimator, at τ = 0·2, 0·5 and 0·8,
respectively.

Table 3 summarizes the coefficient estimates β̂(τ ) from the naive method, He & Liang’s
method, Wei & Carroll’s method, the normal corrected-loss and the Laplace corrected-loss meth-
ods at three quantile levels. The values in parentheses are the corresponding bootstrap standard
errors, based on 200 bootstrap samples. In the implementation of He & Liang’s method, we first
transform y j to y∗

j = σ̂u y j/s to put the variances of measurement and regression errors on the
same scale, where s is the standard deviation of the estimated residuals obtained from the naive
method at the median. The resulting coefficient estimates are then transformed back to the orig-
inal scale. According to He & Liang (2000, Theorem 2.1), their estimator β̂1(τ ) of the intercept
converges to some quantity depending on βk(τ ) (k = 2, 3, 4) and the unknown τ th quantile of
the regression error. Therefore, we omit β̂1(τ ) in Table 3.

By accounting for the measurement error, both normal and Laplace corrected-loss methods
identify a stronger association between food frequency questionnaire intake and the long-term
intake at all three quantiles than the naive method. For instance, the normal corrected-loss esti-
mates of β2(τ ) increase by 26, 44 and 74% at τ = 0·2, 0·5, and 0·8, respectively, compared with
the naive estimates. In contrast, He & Liang’s method gives a β2(τ ) estimate smaller than the
naive estimates at τ = 0·8. Both normal and Laplace corrected-loss methods suggest that body
mass index has a significantly positive effect at τ = 0·8, but He & Liang’s method gives a larger
β2(τ ) estimate associated with a large standard error, which leads to insignificance. All meth-
ods show that age has no significant effect on any of the three quantiles. The effect of body
mass index increases with the quantile level, and the effect of the long-term intake decreased
with the quantile level, which indicate some form of heteroscedasticity. Our simulation demon-
strated that He & Liang’s method gives biased estimates for such heteroscedastic data. Wei &
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Table 3. Estimates, standard errors, of the quantile coefficients
from different methods for the Womens Interview Survey of
Health data: β2(τ ), β3(τ ) and β4(τ ) correspond to the effects
of long-term usual intake, body mass index and age on the τ th
quantile of the food frequency questionnaire intake, respectively

τ Method β2(τ ) β3(τ ) 10 × β4(τ )

0·2 Naive 0·65 (0·12) −0·11 (0·18) 0·28 (0·42)
HL 0·81 (0·18) −0·11 (0·28) 0·35 (0·38)
WC 0·95 (0·18) −0·19 (0·25) 0·29 (0·39)
CLN 0·82 (0·20) −0·01 (0·17) 0·10 (0·28)
CLL 0·81 (0·16) −0·05 (0·13) 0·16 (0·26)

0·5 Naive 0·51 (0·10) 0·22 (0·16) −0·01 (0·29)
HL 0·71 (0·13) 0·49 (0·27) 0·00 (0·30)
WC 0·70 (0·14) 0·24 (0·16) −0·13 (0·33)
CLN 0·73 (0·14) 0·31 (0·13) 0·04 (0·27)
CLL 0·71 (0·13) 0·29 (0·15) −0·00 (0·27)

0·8 Naive 0·4 (0·17) 0·5 (0·18) −0·06 (0·37)
HL 0·38 (0·26) 0·75 (0·44) 0·15 (0·41)
WC 0·62 (0·15) 0·51 (0·21) −0·18 (0·36)
CLN 0·70 (0·16) 0·47 (0·15) −0·05 (0·28)
CLL 0·78 (0·24) 0·71 (0·16) −0·09 (0·33)

Naive, the naive method; HL, He & Liang’s method; CLN, corrected-loss
estimator for normal measurement error; CLL, corrected-loss estimator for
Laplace measurement error; WC, Wei & Carroll’s method.

Carroll’s method yields the same significance results as the Laplace corrected-loss method, but
it is computationally much more expensive. Using the same computer, it took 218 hours to obtain
the bootstrap standard error of Wei & Carroll’s estimates with 20 iterations for each of the 200
bootstrap samples, while it required only 35 minutes for the Laplace corrected-loss method.

5. DISCUSSION

Our proposed estimation procedure has the following general structure. Since the quantile loss
function cannot be corrected in the manner of Stefanski (1989) and Nakamura (1990), we pro-
jected the function into a class of suitably smooth functions via kernel smoothing. The corrected-
loss method was then applied to the smoothed quantile objective function. We balanced the bias
and variance by choosing the smoothing parameter using the simulation and extrapolation method
of Delaigle & Hall (2008). This strategy is general and can be used in other problems where cor-
rection is possible after some smoothing of the objective functions.

We assumed a class of measurement errors, including normal and Laplace, for identifica-
tion purpose. The two proposed estimators both showed robustness against misspecification of
the measurement error distribution in the simulation study. Considering the finite sample perfor-
mance and the computational efficiency, we recommend the Laplace corrected-loss estimator for
practical usage. The corrected-loss methods developed herein can be extended to a wider class
of distribution families, as long as their characteristic functions are proportional to the inverse of
a polynomial; see Hong & Tamer (2003) for related discussions. The degree of the polynomial
puts constraints on the smoothness of the objective function. Such an extension is beyond the
scope of this paper.
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APPENDIX

Proof of Theorem 1. We first prove (i). By the definitions of A(ε, σ 2, h) and ρN (ε, h), we get
A(ε, σ 2, h)= ε(τ − 1/2 + I1/π)+ I2/π , where

I1 = Ez

{∫ (ε+iσ z)/h

0
sin(t)/t dt

}
, I2 = Ez

{
iσ z

∫ (ε+iσ z)/h

0
sin(t)/t dt

}
.

Recall that sin(x)= (eix − e−ix )/(2i) and cos(x)= (eix + e−ix )/2. Then

I1 =
∫ ∞

−∞
(2π)−1 e−z2/2

∫ (ε+iσ z)/h

0
sin(t)/t dt dz =

∫ 1/h

0

1

y
eσ

2 y2/2 sin(yε) dy.

Applying similar arguments, we have

I2 =
∫ 1/h

0

1

y

∫ ∞

−∞
iσ z(2π)−1 e−z2/2 sin{y(ε + iσ z)} dz dy

= −
∫ 1/h

0
σ 2ey2σ 2/2(eiyε + e−iyε)/2 dy = −

∫ 1/h

0
σ 2ey2σ 2/2 cos(yε) dy.

We next show (ii). For any U ∼ N (0, 1), it is easy to show that

E{sin(a + bU )} =
∫ ∞

−∞
(2π)−1/2e−u2/2(2i)−1{ei(a+bu) − e−i(a+bu)} du = e−b2/2 sin(a),

E{U sin(a + bU )} = be−b2/2 cos(a), E{cos(a + bU )} = e−b2/2 cos(a). (A1)

By (A1), E{ε sin(yε)} = E{(μ+ σU ) sin(yμ+ yσU )} = e−y2σ 2/2{μ sin(yμ)+ yσ 2 cos(yμ)}. There-
fore, we have

E{A(ε, σ, h)} =μ (τ − 1/2)+ 1

π

∫ 1/h

0

1

y
ey2σ 2/2 E{ε sin(yε)} − σ 2

π

∫ 1/h

0
ey2σ 2/2 E{cos(yε)} dy

=μ (τ − 1/2)+ 1

π

∫ 1/h

0

1

y
μ sin(yμ) dy = ρN (μ, h). �

Proof of Lemma 1. Assertion (i) can be obtained from representation (6.3.4) in Kotz et al. (2001), and
(ii) is a direct conclusion of Proposition 6.8.1 in Kotz et al. (2001). �

Proof of Theorem 2. Suppose that there exists a function ḡ(ε) such that E{ḡ(ε)} = g(μ). We shall
show that ḡ(ε)= g(ε)− 0·5σ 2g(2)(ε). First recall that if ε ∼ L(μ, σ 2), then f (ε)= (

√
2σ)−1e−√

2|ε−μ|/σ .
Denote σ = √

2b. Therefore

E{ḡ(ε)} = e−μ/b
∫ μ

−∞
ḡ(ε)

1

2b
eε/b dε + eμ/b

∫ ∞

μ

ḡ(ε)
1

2b
e−ε/b dε

= e−μ/b I1(μ)+ eμ/b I2(μ)= g(μ). (A2)
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Differentiating both sides of the equation (A2) with respect to μ gives

g′(μ)= −1

b
e−μ/b I1(μ)+ 1

b
eμ/b I2(μ)

= −1

b
e−μ/b I1(μ)+ e−μ/bḡ(μ)

1

2b
eμ/b + 1

b
eμ/b I2(μ)− eμ/bḡ(μ)

1

2b
e−μ/b. (A3)

Differentiating (A3) again with respect to μ, we get b−2{e−μ/b I1(μ)+ eμ/b I2(μ)} − b−2ḡ(μ)= g(2)(μ).
Thus, we have ḡ(μ)= g(μ)− b2g(2)(μ)= g(μ)− 0·5σ 2g(2)(μ). �

Proof of Theorem 3. For easy demonstration, we first show (ii). Define

M∗
L(w, β, h)= n−1

n∑
j=1

{ρ∗
L(y j , w j , β, h)− ρ∗

L(y j , w j , β0, h)},

ML(x, β, h)= n−1
n∑

j=1

{ρL(y j , x j , β, h)− ρL(y j , x j , β0, h)},

M(x, β)= n−1
n∑

j=1

{ρ(y j , x j , β)− ρ(y j , x j , β0)}.

By Theorem 2, E{M∗
L(w, β, h)} = E{ML(x, β, h)}. Therefore,

|M∗
L(w, β, h)− E{M(x, β)}| � |M∗

L(w, β, h)− E{M∗
L(w, β, h)}|

+ |E{ML(x, β, h)} − ML(x, β, h)| + |ML(x, β, h)− M(x, β)|
+ |M(x, β)− E{M(x, β)}|. (A4)

Following the arguments used for proving Horowitz (1998, Lemma 1), we can show that the following
relations hold almost surely as n → ∞:

sup
β∈B

|M(x, β)− E{M(x, β)}| = o(n−1/2 log n),

sup
β∈B

|ML(x, β, h)− E{ML(x, β, h)}| = o(n−1/2 log n)+ O(h). (A5)

Since the corrected loss function ρ∗
L(·) involves the second derivative of ρL(·), similar to Horowitz (1998,

Lemma 3(b)), we obtain

sup
β∈B

|M∗
L(w, β, h)− E{M∗

L(w, β, h)}| = o{log n/(nh)1/2} + O(h) (A6)

almost surely. Furthermore, under Assumption 6, supε |ρL(ε, h)− ρτ (ε)| = supε |ε{GL(ε/h)− I (ε >
0)}| = supt |htGL(−t)| � hE |Z | = O(h), where t = |ε/h|, Z ∼ GL(·). Therefore,

sup
β∈B

|ML(x, β, h)− M(x, β)| = O(h) (A7)

almost surely. Combining (A4)–(A7), we have that as h → 0 and (nh)−1/2 log n → 0,

sup
β∈B

|M∗
L(w, β, h)− E{M(x, β)}| = o(1)
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almost surely. By Assumptions 3 and 4, β0 uniquely minimizes E{MN (x, β)} over B. By White (1980,
Lemma 2.2), β̂L → β0 almost surely. To prove (i), we define

M∗
N (w, β, h)= n−1

n∑
j=1

{ρ∗
N (y j , w j , β, h)− ρ∗

N (y j , w j , β0, h)},

MN (x, β, h)= n−1
n∑

j=1

{ρN (y j , x j , β, h)− ρN (y j , x j , β0, h)}.

By Theorem 1, E{M∗
N (w, β, h)} = E{MN (x, β, h)}. Therefore,

|M∗
N (w, β, h)− E{M(x, β)}| � |M∗

N (w, β, h)− E{M∗
N (w, β, h)}|

+ |MN (x, β, h)− E{MN (x, β, h)}| + |MN (x, β, h)− M(x, β)|
+ |M(x, β)− E{M(x, β)}|. (A8)

Denote G N (x)=
∫ x

−∞ KN (u) du, where KN (u)= sin(u)/(uπ). For any t > 0, there exists an integer
number k � 0 such that t ∈ (kπ, (k + 1)π ], and

|G N (−t)| = 1

π

∣∣∣∣
∫ −t

−∞
sin(x)/x dx

∣∣∣∣= 1

π

∣∣∣∣∣
∫ (k+1)π

t
sin(x)/x dx +

∞∑
l=k+1

∫ (l+1)π

lπ
sin(x)/x dx

∣∣∣∣∣
� 1

π

∣∣∣∣
∫ (k+1)π

t
sin(x)/x dx

∣∣∣∣+ 1

π

∣∣∣∣
∫ (k+2)π

(k+1)π
sin(x)/x dx

∣∣∣∣� 2/|t |.

Therefore, we have almost surely

sup
ε

|ρN (ε, h)− ρτ (ε)| = sup
ε

|ε{τ − 1 + G N (ε/h)} − ε{τ − I (ε < 0)}|

= sup
ε

|ε{G N (ε/h)− I (ε > 0)}|

= sup
t

{htG N (−t)} = O(h), t = |ε/h|, (A9)

and
sup
β∈B

|MN (x, β, h)− M(x, β)| = O(h). (A10)

By arguments similar to Horowitz (1998, Lemma 3(a)), it is easy to see that

sup
β∈B

|MN (x, β, h)− E{MN (x, β, h)}| = o((log n)/n1/2) (A11)

almost surely. Let ε = y − wTβ and σ 2 = βT
β. By Assumption 5, the compactness of B and the fact that
| sin(t)/t | � 1, we have

E{ρ∗
N (y, w, β, h)2} � C1 + C2 E

{∫ 1/h

0
(ε2 + σ 2) et2σ 2/2 dt

}2

� C1 + C2h−2 eσ
2/h2 = δn,

where C1 and C2 are some positive constants. By Nolan & Pollard (1987, Lemma 22) and Pollard (1984,
Theorem 2.37),

sup
β∈B

|M∗
N (w, β, h)− E{M∗

N (w, β, h)}| = o(δ1/2
n n−1/2 log n) (A12)

almost surely, which is o(1) if h = C(log n)−δ , where δ < 1/2 and C is some positive constant. The
above equation together with (A5), (A8) and (A9)–(A11) gives supβ∈B |M∗

N (w, β, h)− E{M(x, β)}| =
o(1) almost surely The rest of the proof follows the same lines as that for Theorem 3(ii). �
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Proof of Theorem 4. Let ρ∗(y, w, β, h) denote the corrected quantile loss function for
either normal or Laplace measurement errors. Define ψ∗

1 (y, w, β, h)= ∂ρ∗(y, w, β, h)/∂β,
ψ∗

2 (y, w, β, h)= ∂2ρ∗(y, w, β, h)/∂β∂βT. Furthermore, let ρ∗
n (w, β)= n−1

∑n
j=1 ρ

∗(y j , w j , β, h),
ψ∗

1n(w, β)= ∂ρ∗
n (w, β)/∂β and ψ∗

2n(w, β)= ∂2ρ∗
n (w, β)/∂β∂β

T. Under the conditions of Theorem 2
and 3, similar to (A6) and (A12), we have supβ∈B |ψ∗

2n(w, β)− E{ψ∗
2n(w, β)}| = op(1). Taylor

expansion gives n1/2(β̂ − β0)= −E{ψ∗
2n(w, β0)}n1/2ψ∗

1n(w, β0)+ op(1). By Assumption 7, we have
limn→∞ E{ψ∗

2n(w, β0)} = A. On the other hand, n1/2ψ∗
1n(w, β0)= n−1/2

∑n
j=1 ψ

∗
1 (y j , w j , β0, h). By

using the results of Theorems 1–2 and methods like those used to obtain the asymptotic means and
variances of kernel density estimators, we have E{ψ∗

1 (y j , w j , β0, h)} = E{ψ1(y j , x j , β0, h)} = o(n−1/2)

as n → ∞ and h → 0, where ψ1(y, x, β, h)= ∂ρ(y, x, β, h)/∂β and ρ(y, x, β, h) is the smoothed
quantile loss function. Therefore, n1/2 E{ψ∗

1n(w, β0)} = n1/2 E{ψ∗
1 (y j , w j , β0, h)} = o(1), which together

with the central limit theorem gives n1/2ψ∗
1n(w, β0)→ N (0, D) in distribution. �

Proof of Theorem 5. Similar to the proof in Theorem 3, the consistency of β̂ can be proven by
using the fact that �̂ −� = Op(n−1/2). In addition, note that minimizing the objective function in
(5) with the estimated covariance matrix �̂ is equivalent to solving the following stacked estimat-
ing equation [n−1/2

∑n
j=1 ψ

∗
1β(y j , w j , β, h, σ )T, n−1/2

∑n
j=1{Sj − m(m − 1)σ }T] = (0T

p, 0T
p(p+1)/2)

T. The
asymptotic normality can be proven by following the same arguments as in the proof of Theorem 4 and by
expanding the stacked estimating function. �
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