
Biometrika (2012), 99, 2, pp. 363–378 doi: 10.1093/biomet/ass008
C© 2012 Biometrika Trust Advance Access publication 30 March 2012

Printed in Great Britain

Likelihood approaches for the invariant density ratio model
with biased-sampling data

BY YU SHEN, JING NING

Department of Biostatistics, MD Anderson Cancer Center, The University of Texas, Houston,
Texas 77030, U.S.A.

yshen@mdanderson.org jning@mdanderson.org

AND JING QIN

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda,
Maryland 20892, U.S.A.

jingqin@niaid.nih.gov

SUMMARY

The full likelihood approach in statistical analysis is regarded as the most efficient means for
estimation and inference. For complex length-biased failure time data, computational algorithms
and theoretical properties are not readily available, especially when a likelihood function involves
infinite-dimensional parameters. Relying on the invariance property of length-biased failure time
data under the semiparametric density ratio model, we present two likelihood approaches for the
estimation and assessment of the difference between two survival distributions. The most effi-
cient maximum likelihood estimators are obtained by the EM algorithm and profile likelihood.
We also provide a simple numerical method for estimation and inference based on conditional
likelihood, which can be generalized to k-arm settings. Unlike conventional survival data, the
mean of the population failure times can be consistently estimated given right-censored length-
biased data under mild regularity conditions. To check the semiparametric density ratio model
assumption, we use a test statistic based on the area between two survival distributions. Simu-
lation studies confirm that the full likelihood estimators are more efficient than the conditional
likelihood estimators. We analyse an epidemiological study to illustrate the proposed methods.

Some key words: Conditional likelihood; Density ratio model; EM algorithm; Length-biased sampling; Maximum like-
lihood approach.

1. INTRODUCTION

Length-biased sampling has been recognized in the statistics and scientific literature for
decades (Zelen, 2004; Scheike & Keiding, 2006). An epidemiological study serves as an illus-
tration: in a prevalent cohort study, individuals age 65 and older were recruited and screened for
dementia (Wolfson et al., 2001). Individuals who were confirmed to have dementia were prospec-
tively followed to assess their time to death or censoring. Individuals who survived until the time
of recruitment were sampled into the study, whereas those who died before recruitment were not
included. This resulted in selection bias, because the observed time intervals from the onset of
dementia to death were longer for individuals in the study cohort compared with those dementia
patients in the general population. With three different dementia diagnoses, it is of interest to
compare the survival distributions from different groups of patients.
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For conventional survival data, the partial likelihood is rank invariant with a binary covariate
under the proportional hazards model (Peto & Peto, 1972). However, when right-censored sur-
vival data are subject to length-biased sampling, the invariance is lost because the size of the
failure time also plays a key role in the inference. The proportional hazards assumption does not
hold in the hazard functions of the observed biased failure time data, even though the unbiased
failure time satisfies the proportional hazards model. For uncensored length-biased data, Chen
(2010) and Mandel & Ritov (2010) proposed estimation approaches that rely on the invariance of
the covariate effects under the accelerated failure time model. For censored length-biased data,
the accelerated failure time model does not enjoy invariance due to the presence of dependent
right censoring.

The density ratio model, which relates the distributions of two arms under a flexible semi-
parametric structure, has been explored for uncensored data and traditional right-censored data
(Anderson, 1979; Qin et al., 2002; Shen et al., 2007), but to our knowledge has never been inves-
tigated for length-biased survival data. In fact, the density ratio model has the invariance property
for length-biased data; this naturally facilitates the construction of likelihood functions.

Assume T̃ to be the time interval measured from an initiating event to failure within the pop-
ulation of interest. Let fu(t) and f (t) define the probability density function for unbiased time,
T̃ and the length-biased time, T , respectively, in the first group. Then

f (t)= t fu(t)

μ f
, μ f =

∫
t fu(t) dt. (1)

Let Fu be the cumulative distribution function of T̃ . For the second group, let gu and Gu denote
the unbiased density and the cumulative distribution functions. The corresponding f and g rep-
resent the density functions for length-biased samples, and F and G denote the distribution func-
tions of T in each group. Under the density ratio model, the ratio of two density functions of T̃
in the target population is assumed to have the form

gu(t)= exp{αu + βγ (t)} fu(t), (2)

where γ (t) is a known monotone function for transforming the observed time t . Different forms
of γ (t) correspond to some conventionally used densities; the common forms of γ in applications
include γ (t)= t or γ (t)= log(t) (Anderson, 1979; Kay & Little, 1987; Qin et al., 2002). When
γ (t)= t , β is the log odds ratio for density of T̃ = t + 1 against density of T̃ = t between the
two groups. In this case, model (2) is also equivalent to a semiparametric model in which the
log ratio of two density functions is linear in t , where β is the slope in the linear function. When
γ (t)= log(t) and 0<β � 1, gu(t) is proportional to its length of t with the power of β. When
both density functions are exponential, they belong to the intersection of the density ratio models
and proportional hazards models. For any form of γ (t), β = 0 leads to the equality of the two
density functions, because αu = αu(β). A unique property of (2) is its invariance for length-
biased T . The density ratio of biased samples can be associated with the same model structure,
except for a different intercept, g(t)= exp{α + βγ (t)} f (t), where α = αu + log(μ f )− log(μg)

and μg = ∫ tgu(t) dt .
In the present paper, we propose a conditional estimating equation approach to estimating

the nonparametric baseline density function fu(t) and parameters (αu, β) for length-biased data
under this model. We also develop a full likelihood approach under the density ratio model. We
obtain the maximum likelihood estimators by extending Vardi’s EM algorithm for nonparametric
estimation under the renewal process together with the profile likelihood method. We assess the
adequacy of the density ratio model using a test based on the area between two survival curves.
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2. CONDITIONAL LIKELIHOOD METHOD

Suppose that T = A + V is the observed failure time and U = A + C is the censoring time,
where V is the time from examination to failure, and C is the time from examination to censoring.
Here, A is called the truncation variable and V is the residual survival time. Assume that residual
censoring time C and (A, V ) are independent. The joint density distributions of (A, V ) and
(A, T ) have the same formula when there is no censoring,

f A,V (a, v)= fu(t)

μ f
(t = a + v, t > a > 0). (3)

Given (3), the probability of observing a biased failure time is

pr(A = a, T = t,U > t)= pr(A = a, V = t − a)pr(C > t − a).

The conditional density function of observing uncensored T can be expressed as

f1(t)= lim�→0+ pr(t � T < t +�,U > t | Z = 0)/�

pr(T <U | Z = 0)
= fu(t)w f (t)

μ f λ f
, (4)

where Z = 0 or 1 is the group indicator, w f (t)=
∫ t

0 Sc(u | Z = 0) du, Sc(. | Z) is the survival
distribution of C given Z , λ f = pr(T <U | Z = 0) and

g1(t)= lim�→0+ pr(t � T < t +�,U > t | Z = 1)/�

pr(T <U | Z = 1)
= gu(t)wg(t)

μgλg
, (5)

where wg(t)=
∫ t

0 Sc(u | Z = 1) du and λg = pr(T <U | Z = 1). Under the density ratio model
assumption in (2), the ratio of the two conditional density functions retains a model framework
similar to that of the marginal density function for the unbiased observation T̃ ,

g1(t)

f1(t)
= gu(t)μ f

fu(t)μg

wg(t)λ f

w f (t)λg
= exp{α1 + βγ (t)+ w(t)},

where α1 = αu + log(λ fμ f )− log(λgμg) and w(t)= log{wg(t)} − log{w f (t)}. When the cen-
soring distribution is the same for two arms, there is a further simplification with w(t)= 0.

Let Yi = min(Ti ,Ui ), Ai , δi = I (Ti � Ui ), Zi (i = 1, . . . , n) be the observed data, equiva-
lently denoted by (Yi , Ai , δi , Zi ) for the i th subject. Conditional on the observed failure times:
{s1, . . . , sm1, . . . , sm}, m = m1 + m2 where m1 is the number of failures among n1 subjects in
arm 1, and m2 is the number of failures among n2 subjects in arm 2, and the likelihood for F1
and (α1, β) is proportional to

Lc(α1, β, F1)=
m∏

i=1

p1i

m∏
j=m1+1

exp{α1 + βγ (s j )+ w(s j )},

where p1i = d F1(si ) and F1(t)=
∑

si �t p1i . The corresponding loglikelihood function is

�c(α1, β, F1)=
m∑

i=1

log(p1i )+
m∑

j=m1+1

{α1 + βγ (s j )+ w(s j )}, (6)
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subject to the constraints p1i � 0(i = 1, . . . ,m),
∑m

i=1 p1i = 1 and

m∑
i=1

p1i [exp{α1 + βγ (si )+ w(si )} − 1] = 0,

where the second constraint comes from the fact that
∫

g1(t) dt = 1. After profiling p1i , we have
the logistic type of loglikelihood (Qin & Zhang, 1997),

�c(α1, β)=
m∑

j=m1+1

{α1 + βγ (s j )+ w(s j )} −
m∑

i=1

log[1 + ρ exp{α1 + βγ (si )+ w(si )}],

where ρ = m2/m1. If w(t) is known, the score equations for (α1, β) are

∂�c

∂α1
= m2 −

m∑
i=1

ρ exp{α1 + βγ (si )+ w(si )}
1 + ρ exp{α1 + βγ (si )+ w(si )} , (7)

∂�c

∂β
=

m∑
i=m1+1

γ (si )−
m∑

i=1

ργ (si ) exp{α1 + βγ (si )+ w(si )}
1 + ρ exp{α1 + βγ (si )+ w(si )} . (8)

The expectations for the right side of equations (7) and (8) are zero under model (2), so the esti-
mating equation from the score function is unbiased. If f1 and g1 have finite mean, finite and
nonzero variance, 0< E f1{γ (t)}2 <∞ and 0< Eg1{γ (t)}2 <∞, we can derive the existence
of E f1{m(t)}2 and Eg1{m(t)}2, where m(t)= γ (t) exp{α1 + βγ (t)+ w(t)}/[1 + ρ exp{α1 +
βγ (t)w(t)}]. Under the above regularity conditions, the derivatives of (7) and (8) with respect to
(α1, β) yield a positive definite matrix, so the solution is unique and leads to consistent estimators
of (α1, β).

When w(t) is unknown, we replace it by its consistent estimator w̃(t)= log{w̃g(t)} −
log{w̃ f (t)}, where w̃ f and w̃g are the area under the Kaplan–Meier estimators of the residual
censoring time of each arm. We obtain the estimators, (α̃1, β̃) by solving equations (7) and (8).
Subsequently, we can estimate F1(t) by F̃1(t)=

∑
i :si �t p̃1i , from

p̃1i = m−1
1 [1 + ρ exp{α̃1 + β̃γ (si )+ w̃(si )}]−1,

and estimate G1(t)=
∫ t

0 g1(v) dv by G̃1(t)=
∑

i :si �t q̃1i , where

q̃1i = exp{α̃1 + β̃γ (si )+ w̃(si )} p̃1i .

The quantities, λ f and λg can be consistently estimated by λ̃ f =∑n
i=1 I (δi = 1, Zi = 0)/n1

and λ̃g =∑n
i=1 I (δi = 1, Zi = 1)/n2. Because fu and gu are proper density functions with∫

fu(t) dt = 1 and
∫

gu(t) dt = 1, consistent estimators of μ f and μg can be derived from (4)
and (5) as

μ̃ f = 1

λ̃ f

{∫
dF̃1(t)

w̃ f (t)

}−1

, μ̃g = 1

λ̃g

{∫
dG̃1(t)

w̃g(t)

}−1

.

Provided there is a positive follow-up time t , w f (t) and wg(t) can be consistently estimated
by w̃ f (t) and w̃g(t), which are bounded away from zero. Given these consistent estimators, the
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consistent estimators of Fu(t) and Gu(t) can subsequently be obtained through (4) and (5),

F̃u(t)=
∑

i :si �t

μ̃ f λ̃ f

w̃ f (si )
p̃1i , G̃u(t)=

∑
i :si �t

μ̃gλ̃g

w̃g(si )
q̃1i .

Our motivating example involves three dementia diagnoses in the study cohort; a comparison
of the survival distributions among the three types is of scientific interest. We generalize the
proposed two-arm estimation and inference procedures to those for k-arm studies where k > 2.
Details for the global k-arm estimation and inference methods can be found in the Supplementary
Material.

3. FULL LIKELIHOOD APPROACH

3·1. Maximum likelihood estimate

Conditioning on the observed failure times, the proposed estimation procedure is straightfor-
ward and can be implemented easily, as shown in § 2. However, conditional inference is often less
efficient than inference based on the full likelihood (Wang, 1991; Zeng & Lin, 2007). We formu-
late the full likelihood function under the density ratio model by generalizing the nonparametric
maximum likelihood estimation method of Vardi (1989).

From (3), the full likelihood for the observed data can be formally expressed as

n∏
i=1

{
d Fu(Yi )

μ f

}δi (1−Zi )
{

F̄u(Yi )

μ f

}(1−δi )(1−Zi ){
dGu(Yi )

μg

}δi Zi
{

Ḡu(Yi )

μg

}(1−δi )Zi

,

where F̄u and Ḡu are the survivor functions of T̃ for the two arms. Because of the relationship
between the probability density function of the unbiased time and that of the biased time given
in (1),

Yi d Fu(Yi )

μ f
= d F(Yi ),

F̄u(Yi )

μ f
=
∫ ∞

Yi

1

t
dF(t),

Yi dGu(Yi )

μg
= dG(Yi ),

Ḡu(Yi )

μg
=
∫ ∞

Yi

1

t
dG(t).

Under the density ratio model, dG(t)= exp{α + βγ (t)} d F(t) and removing the constant Yi , the
full likelihood of the observed data is proportional to

L f (α, β, F)=
n∏

i=1

{dF(Yi )}δi (1−Zi )

{∫ ∞

Yi

u−1 dF(u)

}(1−δi )(1−Zi )

× [dF(Yi ) exp{α + βγ (Yi )}]δi Zi

[∫ ∞

Yi

u−1 exp{α + βγ (u)} dF(u)

](1−δi )Zi

. (9)

To find the nonparametric maximum likelihood estimator for F and the unknown parame-
ters (α, β) from (9), it is sufficient to maximize the discrete version of F on the point mass
support of 0< t1 < · · ·< th , where {t1, . . . , th} denote the uniquely observed failure and censor-
ing times from both arms in increasing order (Vardi, 1989). Let pi = d F(ti ) (i = 1, . . . , h) and
qi = dG(ti )= pi exp{α + βγ (ti )}.
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The discrete version of the full likelihood can be expressed as

L f (α, β, F)=
h∏

j=1

p
ξ

f
j

j

⎛
⎝ h∑

k= j

t−1
k pk

⎞
⎠
ζ

f
j h∏

j=1

q
ξ

g
j

j

⎛
⎝ h∑

k= j

t−1
k qk

⎞
⎠
ζ

g
j

, (10)

where

ξ
f
j =

n∑
i=1

δi I (Yi = t j , Zi = 0), ζ
f
j =

n∑
i=1

(1 − δi )I (Yi = t j , Zi = 0),

ξ
g
j =

n∑
i=1

δi I (Yi = t j , Zi = 1), ζ
g
j =

n∑
i=1

(1 − δi )I (Yi = t j , Zi = 1)

are the multiplicities of the failure times and censoring times at t j in each arm. Thus, maxi-
mizing (9) reduces to maximizing (10) with respect to p j ( j = 1, . . . , h), β and α subject to the
constraints

p j � 0,
h∑

j=1

p j = 1,
h∑

j=1

p j [exp{α + βγ (t j )} − 1] = 0 ( j = 1, . . . , h). (11)

When α = β = 0, the likelihood (10) is equivalent to the nonparametric likelihood for length-
biased data proposed by Vardi (1989).

3·2. Implementation of the EM algorithm

Vardi (1989) showed a natural connection between the nonparametric likelihood of length-
biased data and the likelihood under multiplicative censorship. For a right-censored observa-
tion, U can be considered as incomplete failure time data in an EM algorithm and equivalently
expressed as U = φT, φ ∼ Un(0, 1), T ∼ d F(t), where T and ψ are independent and T is the
biased failure time for a subject with Z = 0. The joint density of (U, T ) and the marginal density
of U are, respectively,

(U, T )∼ 1

t
d F(t) (t � u), U ∼

∫ ∞

u

1

t
dF(t).

The conditional density function of T given right-censored time U can thus be expressed as

f (t | U = u)= 1

t
d F(t)

{∫ ∞

u

1

t
dF(t)

}−1

(t � u). (12)

For subjects in the treatment group with Z = 1, similar equations can be derived given T ∼
dG(t). Applying the EM algorithm in Vardi (1989), we can estimate the nonparametric density
function F and parameters (α, β) from the likelihood function (10).

Denote the observed data by O = {Yi , δi , Zi : i = 1, . . . , n}. A key step in the EM algorithm is
to replace the current estimated probability mass at t j by its expected and normalized conditional
multiplicity of the complete data observation at t j using (12). At the E-step, we start with arbitrary
p0

i (i = 1, . . . , h), α0 and β0 satisfying (11). Since not all Ti are observable, we thus replace
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those unobserved I (Ti = t j ) by their expectations. The expectation of
∑n

i=1 I (Ti = t j ) in each
arm given the observed data and current parameter estimators is

w
f
j = E f

{
n∑

i=1

δi I (Ti = t j , Zi = 0)+
n∑

i=1

(1 − δi )I (Ti = t j , Zi = 0)

∣∣∣∣∣O
}

= ξ
f
j + t−1

j p0
j

j∑
k=1

ζ
f

k

(
h∑

i=k

t−1
i p0

i

)−1

,

w
g
j = Eg

{
n∑

i=1

δi I (Ti = t j , Zi = 1)+
n∑

i=1

(1 − δi )I (Ti = t j , Zi = 1)

∣∣∣∣∣O
}

= ξ
g
j + t−1

j q0
j

j∑
k=1

ζ
g
k

(
h∑

i=k

t−1
i q0

i

)−1

,

where q0
i = p0

i exp{α0 + β0γ (ti )}. The conditional expectation of the complete data
loglikelihood is

�=
h∑

j=1

w
f
j log p j +

h∑
j=1

w
g
j log q j =

h∑
j=1

w j log p j +
h∑

j=1

w
g
j {α + βγ (t j )}, (13)

where w j =w
f
j + w

g
j . Define the sum of the w j as w+ =∑h

j=1w j .
At the M-step, we maximize the loglikelihood (13) under the constraints specified in (11) by

including the Lagrange multipliers in the weighted likelihood (Owen, 1988) as follows:

�L =
h∑

j=1

w j log p j +
h∑

j=1

w
g
j {α + βγ (t j )} + λ1

⎛
⎝1 −

h∑
j=1

p j

⎞
⎠

− w+λ2

h∑
j=1

p j [exp{α + βγ (t j )} − 1].

Taking the derivative of �L with respect to p j , we have

w j p−1
j − λ1 − w+λ2[exp{α + βγ (t j )} − 1] = 0,

together with the constraints (11), leading to λ1 =w+. Consequently,

p j = w j

w+(1 + λ2[exp{α + βγ (t j )} − 1])
. (14)

After profiling over the p j s in (13) and ignoring the constant terms, we have

�L(α, β)= −
h∑

j=1

w j log(1 + λ2[exp{α + βγ (t j )} − 1])+
h∑

j=1

w
g
j {α + βγ (t j )}. (15)
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Taking the derivative of �L with respect to α,

h∑
j=1

w
g
j − λ2

h∑
j=1

w j exp{α + βγ (t j )}
1 + λ2[exp{α + βγ (t j )} − 1]

= 0,

and together with (14), we obtain λ2 =∑h
j=1w

g
j /w

+. After inserting the Lagrange multipliers
into (15), the loglikelihood function with respect to α and β under the constraints is

�L(α, β)=
h∑

j=1

w
g
j {α + βγ (t j )} −

h∑
j=1

w j log[1 − exp(c)+ exp{α + c + βγ (t j )}], (16)

where c = log(
∑h

j=1w
g
j /w

+). We can estimate α, β from (16) and then derive p j from (14).

Given the estimated α, β and p j ,w
f
j andwg

j are updated by repeating the E-step. The iteration is
repeated until a prespecified criterion is satisfied. The maximum likelihood estimate is denoted
by θ̂n = (α̂, β̂, F̂), where F̂(t)=∑t j �t p̂ j . The corresponding unbiased distribution function is

estimated by F̂u(t)=
∫ t

0 x−1 d F̂(x)/
∫∞

0 x−1 d F̂(x).

3·3. Large sample properties

Let θ0 ≡ (α0, β0, F0) denote the true values of θ ≡ (α, β, F). Under the regularity conditions
specified in the Appendix, we can establish the asymptotic properties of the estimated maximum
likelihood estimator θ̂n for t ∈ [0, τ ], where τ is a finite upper bound of the support for the
population survival times.

THEOREM 1. Under Conditions A1–A4, the maximum likelihood estimator θ̂n is consistent,
defined by

|α̂ − α0| + |β̂ − β0| + sup
t∈[0,τ ]

|F̂(t)− F0(t)|

converging to 0 almost surely and uniformly as n → ∞.

THEOREM 2. Under Conditions A1–A4, n1/2(θ̂n − θ0) converges weakly to a tight zero-mean
Gaussian process −φ ′

ψ0
{U̇−1

0 (W)} as n → ∞.

Definitions of φ′
ψ0

{U̇−1
0 (W)} and W are provided in the Appendix. The consistency of θ̂n

is proved by the Kullback–Leibler information approach (Murphy, 1994; Parner, 1998). The
weak convergence of θ̂n is established by applying the Z-theorem for the infinite-dimensional
estimating equations (van der Vaart & Wellner, 1996). We present the proof of Theorem 1 and
an outline proof for Theorem 2 in the Appendix. Although the variance matrix is derived from
the weak convergence of θ̂n , its computation is complex. Alternatively, we use the simple boot-
strap resampling method to compute the variances for the estimated parameters (Bilker & Wang,
1996; Gross & Lai, 1996; Asgharian et al., 2002). Given the established weak convergence for
the proposed estimators in Theorem 2 under the regularity conditions, this bootstrap is valid for
estimating the variances of the estimators (van der Vaart & Wellner, 1996, Ch. 3.6).
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4. INFERENCE

4·1. Hypothesis testing

To test the difference in the survival distributions, we describe likelihood ratio tests under
the conditional likelihood framework, when the censoring distributions in the two arms are
the same, w(t)= 0. For the conditional probability density function, f1(t)= g1(t) is equiva-
lent to fu(t)= gu(t), when w(t)= 0. If f1(t)= g1(t) and w f (t)=wg(t), then λ f = λg because
both f (t) and g(t) are proper density functions. Thus, f (t)= g(t), and fu(t)= gu(t). We
therefore use the conditional likelihood ratio statistic to test the equality f1(t)= g1(t), i.e.,
H0 : α1 = β = 0. Let �c denote the loglikelihood of (6). Under the null hypothesis H0, �c reduces
to �c(0, 0, F̂1), where F̂1 is the nonparametric estimator of F1 under α1 = β = 0. The asymptotic
distribution of Rc = 2{�c(α̃1, β̃, F̃1)− �c(0, 0, F̂1)} is χ2

1 because β = 0 implies α1 = 0. When
the censoring distributions of the two arms are not equal,w(t) |= 0, the asymptotic distribution of
Rc for testing β = 0 will not be chi-squared in general, but we can obtain a critical value for the
test statistic using the bootstrap. Intuitively, the full likelihood ratio statistic R f , which is defined
similarly to Rc, may be used to test H0. Our simulation results showed that this test statistic can
be well approximated by a χ2

1 distribution when w(t)= 0, though we cannot prove this property
theoretically.

4·2. Model checking

To assess the parametric component for the link function γ (t) imposed on the ratio of the
two density functions in model (2), we use a general model checking method similar to that
in Shen et al. (2007). The test statistic is based on a quadratic form of the cumulative difference
between the nonparametric estimate of the distribution function and its estimate under the density
ratio model assumption. The goodness-of-fit test is

An =
∫ τ

0
{F̂u(t)− F̂v(t)}2 dt, (17)

where F̂u is the estimated distribution function of T̃ using the full likelihood under the density
ratio model assumption, and F̂v is Vardi’s nonparametric estimate using data from arm 1 only.
Similarly, we can replace F̂u(t) by F̃u(t) in (17) to assess the goodness-of-fit for the conditional
likelihood estimator. Because the derivation of the asymptotic distribution of An is tedious and
not the focus of this paper, we use the bootstrap to find its critical values.

5. NUMERICAL STUDIES AND APPLICATIONS

5·1. Simulations

We compare the performance of the estimation and inference of the full likelihood and the
conditional likelihood, under various scenarios. We use a Weibull distribution for fu , so that f
is also Weibull. The density gu is exp{αu + βγ (t)} fu(t) for Z = 1, where γ (t)= t .

For Z = 0 or 1, we generate independent pairs ( Ã, T̃ ), then keep those with Ã< T̃ , where Ã
is generated independently from a uniform distribution on (0, τ0) and T̃ is generated from the
density fu or gu depending on Z , where τ0 is the upper bound of T̃ . The censoring times C
are generated independently from uniform distributions corresponding to censoring percentages
ranging from 15 to 43%. The censoring indicator is δ = I (T � C + A). For each scenario, we
use sample sizes n1 = n2 =50 or 100, and repeat the simulation 2000 times.
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Table 1. Estimated standard deviations of the parameter estimators under the density
ratio model, size and power of the likelihood ratio tests under the nominal level of 1

and 5%
Full likelihood Conditional likelihood

Standard deviation R f : χ2-test Standard deviation Rc : χ2-test
Cens. α̂u β̂ 1% 5% α̃u β̃ 1% 5%

αu = β = 0, n0 = n1 = 50
15% 0·17 0·17 1·4 6·5 0·20 0·19 1·1 6·3
25% 0·18 0·17 1·2 5·8 0·22 0·21 0·8 5·6
43% 0·19 0·18 1·4 5·6 0·31 0·30 1·2 6·8

αu = β = 0, n0 = n1 = 100
15% 0·11 0·11 1·5 6·4 0·12 0·12 0·8 5·6
25% 0·11 0·11 1·3 6·0 0·14 0·14 1·0 4·8
43% 0·12 0·12 1·5 6·2 0·19 0·19 1·0 6·0

αu = −0·405, β = 0·333, n0 = n1 = 50
15% 0·21 0·15 58·6 79·6 0·23 0·17 41·1 66·1
25% 0·21 0·15 54·1 75·4 0·25 0·18 35·4 60·1
43% 0·23 0·16 38·6 59·6 0·33 0·25 20·0 41·8

αu = −0·405, β = 0·333, n0 = n1 = 100
15% 0·13 0·10 91·0 97·5 0·15 0·11 81·8 93·5
25% 0·15 0·11 87·2 94·8 0·16 0·12 68·0 87·6
43% 0·15 0·11 62·8 73·8 0·21 0·16 41·5 67·3

In Table 1, we summarize the standard deviation of the estimated parameters for both meth-
ods. We also provide the size and power of the conditional likelihood ratio statistics for testing
the null hypothesis H0 : αu = β = 0. The empirical bias slightly increases with increasing cen-
soring for the conditional likelihood estimator. For both methods, the point estimators are fairly
unbiased, and the biases are not significantly different from zero, so we do not present them.
The standard error of each estimate is found using 500 bootstrap replicates. Compared with the
conditional likelihood approach, the estimators from the full likelihood are more efficient; the
standard deviations for the former approach are up to 1·65 times greater. The efficiency gain is
more significant when censoring increases. The significance levels of the conditional likelihood
ratio tests are maintained around the nominal levels. We also compare the estimated mean and
the baseline cumulative distributions, F̂u(t) and F̃u(t) at the 50 and 75% quantiles. The standard
deviations of the full likelihood estimator are smaller than those of the conditional likelihood
estimators when data have heavy censoring, but the difference in efficiency is otherwise small.
For both methods, the estimation efficiency for (β, F) increases with the percentage of uncen-
sored data. For the conditional likelihood, although w f (t) and wg(t) may not be estimated with
great accuracy when most of data are uncensored, ŵ f (t) and ŵg(t) are always robust and have
relatively small impact on the estimation efficiency for (β, F).

5·2. Example

In a multicentre prospective observational study conducted throughout Canada during 1991–
1996, more than 14 000 individuals aged 65 years or older participated in a health survey
(Wolfson et al., 2001). Among them, 1132 participants who were identified to have dementia
were followed until their death or censoring in 1996. We have complete data on a total of 818
individuals, consisting of the date of dementia onset, date of screening for dementia, date of death
or censoring and the dementia diagnosis. Three categories of dementia diagnosis were identified
among these patients: probable Alzheimer’s disease, with n = 393, possible Alzheimer’s disease,
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Table 2. Parameter estimators, standard deviations and p-values from the condi-
tional likelihood ratio test under the density ratio model for the dementia study

γ (t) α̃u1(sd) β̃1(sd) α̃u2(sd) β̃2(sd) p-value, Rc

t 0·16 (0·11) −0·03 (0·02) 0·28 (0·16) −0·05 (0·03) 0·11
log(t) 0·22 (0·21) −0·15 (0·15) 0·54 (0·24) −0·42 (0·18) 0·05

Baseline group is ‘Possible Alzheimer’s’; αu1 and β1, the coefficients for ‘Probable Alzheimer’s’ vs.
‘Possible Alzheimer’s’; αu2 and β2 , the coefficients for ‘Vascular’ vs. ‘Possible Alzheimer’s’; p-
value, the critical value of Rc is determined by χ2 statistic with one degree of freedom; sd, standard
deviation.
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Fig. 1. Estimated survival curves using Vardi’s method (dotted line) and by the full likelihood approach
under the density ratio model with γ (t)= log(t) (solid line) for (a) possible Alzheimer’s disease, (b) probable

Alzheimer’s disease and (c) vascular dementia.

with n = 252 and vascular dementia, with n = 173. Several studies have confirmed the station-
arity assumption, indicating that the dataset collected from this cohort of individuals represents
a collection of length-biased samples (Asgharian et al., 2006). The distributions of the censoring
time measured from the date of screening for dementia to censoring are essentially the same for
the three diagnosis groups.

Applying the methods proposed for an overall analysis, we use the group diagnosed with pos-
sible Alzheimer’s disease as the baseline cohort with a link function of γ (t)= t or log(t). The
corresponding parameter estimates and their standard errors are given in Table 2. We test the
hypothesis that all three diagnoses of dementia are equidistributed. Under the log-transformation
γ (t)= log(t), the conditional likelihood ratio test indicates a marginal significant difference in
the survival distributions, p-value = 0·05. The model-based survival distribution estimates for
the three groups with γ (t)= log(t) are provided in the Supplementary Material.

Using the test statistic described in § 4·2, we check the fit of the density ratio model with
γ (t)= t and γ (t)= log(t). The tests indicate that both link functions fit the data well; the
p-values from the goodness-of-fit test range from 0·59 to 0·92. Comparing the density ratio
model-based survival curve for each arm against Vardi’s nonparametric survival estimate, we
find that the model with the link function γ (t)= log(t) leads to a slightly better fit in all three
pairwise comparisons. As shown in Fig. 1, the survival distribution estimate using the full like-
lihood approach under the density ratio model with γ (t)= log(t) is almost identical to Vardi’s
nonparametric estimate of the survival distribution for each disease diagnosis.

Under the density ratio model assumption, the estimated parameters for the three pairwise
comparisons among the diagnosis groups are listed in Table 3. The estimates using the full likeli-
hood and conditional likelihood methods are similar, whereas the standard deviations of the full
likelihood estimators are smaller than those obtained from the conditional likelihood.
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Table 3. Pairwise models: parameter estimators, standard deviations and p-values from the
likelihood ratio test statistics for full and conditional likelihood methods for the dementia

study

Vascular vs. probable Vascular vs. possible Probable vs. possible
Full Conditional Full Conditional Full Conditional

γ (t)= t
α̂u(sd) 0·09 (0·11) 0·11 (0·15) 0·24 (0·10) 0·25 (0·14) 0·19 (0·09) 0·18 (0·13)
β̂(sd) −0·02 (0·02) −0·02 (0·03) −0·05 (0·02) −0·05 (0·03) −0·04 (0·02) −0·03 (0·02)
p-value 0·32 0·37 0·01 0·06 0·03 0·13

γ (t)= log(t)
α̂u(sd) 0·29 (0·18) 0·34 (0·21) 0·50 (0·20) 0·52 (0·24) 0·26 (0·17) 0·21 (0·20)
β̂(sd) −0·24 (0·14) −0·27 (0·17) −0·39 (0·15) −0·39 (0·17) −0·19 (0·12) −0·15 (0·14)
p-value 0·08 0·09 0·01 0·02 0·13 0·29

Possible, possible Alzheimer’s disease; Probable, probable Alzheimer’s disease; p-value, conditional likelihood
ratio test Rc or full likelihood ratio test R f for assessing the equality of two survival distributions; sd, standard
deviation.

6. DISCUSSION

Other than applications in standard case-control studies, the two-sample density ratio model
has been used for the estimation of malaria attributable fractions (Qin & Leung, 2005) and the
analysis of genetic linkage studies (Qin & Zhang, 2005; Anderson, 1979). In this paper, by taking
advantage of the invariance property, we have proposed two likelihood approaches for analysing
length-biased failure data. We generalized Vardi’s EM algorithm together with the profile likeli-
hood method, so that the unknown parameters and baseline nonparametric distribution of T can
be jointly estimated under the density ratio model. Inference based on the full likelihood method
is more efficient than that based on the conditional likelihood, because the censored data are fully
utilized in the EM algorithm. Moreover, the full maximum likelihood estimator of F is on the sup-
port of both failure and censoring times, whereas the conditional maximum likelihood estimator
of F is on the failure times only. Finally, the full likelihood method is more robust to various
censoring pattérns, because it does not require the estimation of w(t), which is a function of the
residual censoring distribution. Although the full likelihood estimator has efficiency and robust-
ness advantages over the conditional likelihood estimate, the conditional approach is appealing
due to its straightforward computation under the density ratio model. Kalbfleisch (1978) recom-
mended the conditional approach in a partially specified generalized linear model, of which the
two-sample density ratio model is a special case.

There is a unique feature for length-biased data different from conventional survival data. The
normalizing factor in the length-biased density function, μ f , can be estimated consistently if
there is a positive follow-up time, regardless of how short this is. Because of symmetry between
the truncation time A and the residual survival time V under length-biased sampling, information
of V can be recovered from A, which is treated as free follow-up time. Such a data structure
facilitates the estimability of the mean of the population failure times.

As suggested by one reviewer, it would be interesting to generalize the density ratio model
to semiparametric regression models by taking covariates other than group indicators into
consideration. One possibility is to model covariates in a parametric form, which may be incor-
porated into a general density ratio structure.
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Supplementary material available at Biometrika online includes a proof of the estimability
of the mean of T̃ , the inference method for k-arms, additional simulation results and a detailed
proof of Theorem 2.

APPENDIX

We assume the following regularity conditions.

Condition A1. The true parameters (ξ0, F0) belong to B × F = {(ξ, F) : ξ ∈B and F is a distribution
function with continuous and differentiable density function}, where ξ = (α, β)T and B is a compact set
in R

2.

Condition A2. The known monotone function γ (t) is differentiable and bounded for t ∈ [0, τ ].

Condition A3. The residual censoring time C has a continuous survival function and satisfies pr(C >

V ) > 0 and E(C | Z) > 0.

Condition A4. The Fisher information −E{∂2� f (ξ, F̂)/∂ξ 2} evaluated at ξ0 is positive, where
� f (ξ, F) is defined in expression (A2).

Condition A1 ensures the smoothness of the underlying distribution functions. Condition A3 states that
at least some subjects are uncensored at the end of the study. The condition on E(C | Z) > 0 ensures a
positive follow-up time in each arm, so that the upper bound for the finite support of failure time denoted
by τ can be consistently estimated by τ̂ = max1,...,n{Yi }. Condition A4 is a classical condition for semi-
parametric models (Andersen et al. , 1992, Condition VII2.1.(e), p. 497) and implies that the information
matrix for ξ is positive definite when the cumulative distribution function is known.

Proof of Theorem 1. Denote the maximum likelihood estimator based on n observed samples
by θ̂n = (α̂, β̂, F̂). Estimation of the cumulative distribution function F is via a discretized ver-
sion F̂(t)=∑ti �t p̂i . To obtain the maximum likelihood estimator of F subject to the constraint∑h

j=1 p j = 1 and
∑h

j=1 p j [exp{α + βγ (t j )} − 1] = 0, we consider the unconstrained loglikelihood func-
tion � f (α, β, F, λ3, λ4) by incorporating the Lagrange multipliers λ3 and λ4,

n∑
i=1

⎛
⎝ h∑

j=1

δi I (Yi = t j )[log(p j )+ Zi {α + βγ (t j )}] + (1 − δi ) log

⎡
⎣∑

t j �Yi

t−1
j eZi {α+βγ (t j )} p j

⎤
⎦
⎞
⎠

− λ3

⎛
⎝ h∑

j=1

p j − 1

⎞
⎠− λ4

⎛
⎝ h∑

j=1

p j

[
exp{α + βγ (t j )} − 1

]⎞⎠ . (A1)

Taking the derivative of � f (α, β, F, λ3, λ4) with respect to p j , setting it equal to zero, multiplying p j on
both sides, summing over j and taking the constraints into account, we obtain λ3 = n. Taking the derivative
of � f (α, β, F, λ3, λ4) with respect to α, together with two constraints, we obtain λ4 = n2. After inserting
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the Lagrange multipliers into (A1), the loglikelihood function � f (α, β, F) under the constraints is

n∑
i=1

⎛
⎝ h∑

j=1

δi I (Yi = t j )
[

log(p j )+ Zi {α + βγ (t j )}
]

+ (1 − δi ) log

⎡
⎣∑

t j �Yi

t−1
j eZi {α+βγ (t j )} p j

⎤
⎦
⎞
⎠

− n

⎛
⎝ h∑

j=1

p j − 1

⎞
⎠− n2

⎛
⎝ h∑

j=1

p j [exp{α + βγ (t j )} − 1]

⎞
⎠ . (A2)

Let P ≡ (p1, . . . , ph). The maximizer of � f (α, β, F) for given (α, β) is denoted by P̂(α, β) and the cor-
responding estimator of F is F̂(α, β). The loglikelihood function � f (α, β, F) is strictly concave in P ,
implying a unique maximizer P̂(α, β) for each (α, β) in the compact set B. The compactness of B and
the continuity of the profile likelihood � f {α, β, F(α, β)} implies the existence of the maximum likeli-
hood estimator for (α, β, F). Condition A4 ensures the uniqueness of the maximum likelihood estimator
(Rothenberg, 1971).

We prove the consistency of θ̂n by the Kullback–Leibler information approach (Murphy, 1994; Parner,
1998). Since the maximum likelihood estimator θ̂n is bounded, by Helly’s selection theorem, there exists
a convergent subsequence of θ̂n , denoted by θ̂nk ≡ (α̂nk, β̂nk, F̂nk), such that (α̂nk, β̂nk) converges to some
(α∗, β∗) in B and F̂nk converges to a distribution function F∗ in F . The second step is to show that any
such convergent subsequence of θ̂n must converge to θ0, i.e., θ∗ ≡ (α∗, β∗, F∗)= θ0.

The empirical Kullback–Leibler distance � f (α̂nk, β̂nk, F̂nk)− � f (ᾱ, β̄, F̄) is always nonnegative for any
(ᾱ, β̄, F̄) in the parameter space, since (α̂nk, β̂nk, F̂nk) maximizes the loglikelihood function � f (α, β, F).
We choose (ᾱ, β̄)= (α0, β0) and let

F̄(t)=
∑
t j �t

w
f0
j + w

g0
j∑h

k=1w
f0

k +∑h
k=1w

g0
k exp{α0 + β0γ (t j )}

,

and E0 is the expectation under the true parameter values. If θ0 was used as the initial value in the EM

algorithm in § 3·2, then F̄(t) is the one-step estimator of the cumulative distribution function. It can be
shown that F̄(t) converges to F0 almost surely and uniformly in t . By the properties of the maximum
likelihood estimator,

� f (θ̂nk)− � f (α0, β0, F̄)� 0. (A3)

By taking limits on both sides, we can show that (nk)−1{� f (θnk)− � f (α0, β0, F̄)} must converge to the
negative Kullback–Leibler distance between Pθ∗ and Pθ0 almost surely by the strong law of large numbers,
where Pθ is the probability measure under the parameter θ . Expression (A3) implies that the Kullback–
Leibler distance between Pθ∗ and Pθ0 is nonpositive. However, the limiting version of � f is maximized
at θ0, implying that Pθ∗ = Pθ0 almost surely. Thus, the model identifiability yields θ∗ = θ0. Since every
convergent subsequence of θ̂n converges to θ0, the entire sequence θ̂n must converge to θ0 for any t ∈ [0, τ ].
The convergence is almost sure, since we only use the strong law of large numbers at most countably many
times. The continuity and monotonicity of F0 ensure the uniform convergence of F̂(t) in t . �

Proof of Theorem 2. The technical details are provided in the Supplementary Material. We only list the
main steps here. For theoretical developments, it is helpful to express the likelihood in terms of the hazard
function. Let� denote the cumulative hazard function for the length-biased time T . Using counting process
notation, Ni (t)= I (Yi � t)δi , for i = 1, . . . , n, the loglikelihood for ψ ≡ (α, β,�) is

� f (ψ)=
n∑

i=1

[∫ τ

0
{log d�(u)−�(u)+ Zi X T(u)ξ} dNi (u)+ log

∫ τ

0
Ki (u) d�(u)

]
,

where ξ = (α, β)T, X (u)= (1, γ (u))T and Ki (u)= (1 − δi )I (u � Yi ) exp{Zi X T(u)ξ −�(u)} d�(u).
Denote the maximum likelihood estimator based on n observed samples by ψ̂n = (α̂, β̂, �̂). We prove
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the weak convergence of ψ̂n by using the Z -theorem (van der Vaart & Wellner, 1996, Theorem 3.3.1) for
infinite-dimensional estimating equations.

Denote the score equation vector of the loglikelihood � f (ψ) by U (ξ,�)≡ {U1(ξ,�),U2(t; ξ,�)},
where U1(ξ,�) is the score function of ξ ,

U1(ξ,�)= 1

n

n∑
i=1

{∫ τ

0
Zi X (u) dNi (u)+

∫ τ
0 Ki (u)X (u) d�(u)∫ τ

0 Ki (u) d�(u)

}
,

and U2(t; ξ,�) is the score function for the infinite-dimensional parameter �. To derive U2(t; ξ,�), we
consider a one-dimensional submodel given as d�η,h = (1 + ηh) d�, where h is a bounded and integrable
function. When setting h(·)= I (· � t) and evaluating the derivative of the loglikelihood with respect to η
at η= 0,

U2(t; ξ,�)= 1

n

n∑
i=1

(∫ t

0

[
dNi (u)− Yi (u) d�(u)+

∫ t
0

{
Ki (u)− ∫ τ

u Ki (v) d�(v)
}

d�(u)∫ τ
0 Ki (u) d�(u)

])
,

where Yi (u)= I (Yi � u) is the at risk function for the i th subject. Denote the expectation of score func-
tion under the true parameter values (α0, β0,�0) by U0(ξ,�)≡ {U10(ξ,�),U20(t; ξ,�)}. We prove
Theorem 2 by verifying the required conditions in Theorem 3.3.1 of van der Vaart & Wellner (1996). We
first verify that U0(ξ,�) is Fréchet differentiable and its Fréchet derivative can be calculated through the
one-parameter submodel given by ξη = ξ0 + ηξ and �η =�0 + η�:

U̇0(ξ,�)≡ −
(

d11 d12

d21 d22

)(
ξ

�

)
≡ −{d11(ξ)+ d12(�), d21(ξ)(·)+ d22(�)(·)},

where

d11(ξ)= ∂U10(ξη,�0)/∂η|η=0, d12(�)= ∂U10(ξ0,�η)/∂η|η=0,

d21(ξ)(t)= ∂U20(t, ξη,�0)/∂η|η=0, d22(�)(t)= ∂U20(t, ξ0,�η)/∂η|η=0.

In the Supplementary Material, we prove that the inverse operator U̇−1
0 exists and takes the following form:

U̇−1
0 (ξ,�)≡

(
d−1

11 + d−1
11 d12�

−1d21d−1
11 −d−1

11 d12�
−1

�−1d21d−1
11 �−1

)(
ξ

�

)
,

where �= d22(�)− d21d−1
11 d12.

We then show the weak convergence of the score equation vector evaluated at the true value, U (ξ0,�0).
Last we prove the following stochastic approximation for the score equation vector

n1/2{(U − U0)(ψ̂n)− (U − U0)(ψ0)} = op(1).

We conclude that under the Conditions A1–A4, n1/2(ψ̂n − ψ0) converges weakly to a tight mean zero
Gaussian process −U̇−1

0 (W). By the functional delta method, n1/2(θ̂n − θ0) converges weakly to a tight
mean zero Gaussian process −φ ′

ψ0
{U̇−1

0 (W)}, where φ is the transformation from B × A→B × F , and

φ
′
ψ0

is its Hadamard derivative at ψ0. �
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