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SUMMARY

In biomedical studies, ordered bivariate survival data are frequently encountered when bivari-
ate failure events are used as outcomes to identify the progression of a disease. In cancer studies,
interest could be focused on bivariate failure times, for example, time from birth to cancer onset
and time from cancer onset to death. This paper considers a sampling scheme, termed inter-
val sampling, in which the first failure event is identified within a calendar time interval, the
time of the initiating event can be retrospectively confirmed and the occurrence of the second
failure event is observed subject to right censoring. In a cancer data application, the initiating,
first and second events could correspond to birth, cancer onset and death. The fact that the data
are collected conditional on the first failure event occurring within a time interval induces bias.
Interval sampling is widely used for collection of disease registry data by governments and med-
ical institutions, though the interval sampling bias is frequently overlooked by researchers. This
paper develops statistical methods for analysing such data. Semiparametric methods are proposed
under semi-stationarity and stationarity. Numerical studies demonstrate that the proposed esti-
mation approaches perform well with moderate sample sizes. We apply the proposed methods to
ovarian cancer registry data.

Some key words: Bivariate survival distribution; Copula; Interval sampling; Semiparametric model; Semi-stationarity;
Stationarity.

1. INTRODUCTION

Ordered bivariate survival data arise frequently in biomedical studies when bivariate failure
events are considered to be the major outcomes to identify the progression of a disease. In cancer
studies, for example, it is of interest to understand the process from birth to cancer onset, and
then to death. Disease registry or surveillance systems commonly collect data with incidence of
disease occurring within a calendar time interval. This is referred to as interval sampling, and we
consider the induced sampling bias problems in this paper.

Consider a case population where two failure events occur in chronological order following
the occurrence of the initiating event, and a case refers to the presence of the first failure



346 HONG ZHU AND MEI-CHENG WANG

0 t0

T

Initiating event Y
Event I

Z
Event II

Initiating event Event I Event II

Uncensored

Censored

Fig. 1. The interval sampling cohort with event I occurring within time inter-
val [0, t0], T is the calendar time of the initiating event (T � t0) and (Y, Z)

are the bivariate failure times of interest.

event. Denote the calendar time of the initiating event by T , the time from the initiating
event to the first failure event by Y and the time from the first event to the second event
by Z . The variables Y and Z are expected to be correlated because they come from the
same subject. Bivariate failure times (Y, Z) are the outcome variables of interest in this paper.
Wang & Wells (1998), Lin et al. (1999) and Schaubel & Cai (2004) proposed estimation meth-
ods for bivariate or multivariate survival data subject to right censoring. This paper focuses
on developing estimation approaches for analysing survival data collected under the interval
sampling scheme.

In this paper, the case population under interval sampling is made up of subjects whose
first failure event occurs within a calendar time interval [0, t0], which is described by the con-
straint −T � Y � t0 − T . Thus, Y is observed subject to double truncation and individuals with
the first failure event occurring before time 0 or after time t0 are excluded. The observation of
Z is subject to right censoring because of loss to follow-up or end-of-study, and the induced
sampling bias due to its correlation with the first failure time Y . Then, if the second failure
event occurs before calendar time of censoring C � t0, it is uncensored and Z is observed sub-
ject to the further constraint Y + Z � C − T , and otherwise it is censored with censoring time
C − (T + Y ). Figure 1 shows the schema for bivariate survival data with interval sampling with
constant C = t0.

The research is motivated by statistical problems arising in analysis of cancer registry data. In
this application, T is the calendar time of birth of an ovarian cancer patient, and Y and Z are,
respectively, age of cancer onset and residual lifetime after cancer onset. Using age as the scale,
the cancer event occurs at age Y and death occurs at age Y + Z . Due to interval sampling, Y is
observed subject to double truncation and Z is subject to possibly dependent right censoring. With
long survival times, sampling bias is nonnegligible, especially in the natural history of cancers. It
is also important to develop methods to study the joint survival distribution for bivariate survival
data. For example, the survival function of one failure time conditional on the other, such as the
conditional probability of surviving more than five years given disease onset at age 50 years or
older, is often of interest in practice. A joint survival function estimator can be used to produce
an estimator for such a conditional survival function, and it enables one to compare the failure
time distributions between two or more groups.

The inference procedures are developed for the case population experiencing the first failure
event within the calendar time interval [0, t0]. Assume that the initiating events occur over cal-
endar time with rate function λ(t) for t � t0, which is the average number of events in unit time
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at t or an unconditional probability function defined for a point process:

λ(t) = lim
�→0+

pr{N(t + �) − N(t) > 0}
�

,

where N (t) is the total number of events prior to time t . For instance, λ(t) is the unconditional
birth rate over calendar time for the study population. For the case population, let fY,Z (y, z),
fY (y) and fZ (z) denote the population joint density function of (Y, Z) and the marginal den-
sities of Y and Z , respectively. Let FY (y) and FZ (z) denote the corresponding population
distribution functions of Y and Z , where y− = inf{y : FY (y) > 0}, y+ = sup{y : FY (y) < 1},
z− = inf{z : FZ (z) > 0}, z+ = sup{z : FZ (z) < 1} and t− = inf{t : λ(t) > 0}. To reduce mathe-
matical complexity in our discussion, assume that the failure time Y has finite support, that is,
y+ < ∞. Here we use this as a technical condition under which the density function of T and the
joint density functions of (T, Y ), (T, Y, Z) can be defined. The constraint y+ < ∞ is not required
for the inferential results of (Y, Z), but does make the likelihood discussion much easier. In this
paper, we focus on the case population, so all the subjects under study experience the disease
within the calendar time interval, which explains why the constraint y+ < ∞ is reasonable. Let
g(t) denote the population density function of T in the interval [−y+, t0 − y−], for instance, the
population density of birth times. It is derived as a normalized rate function from λ(t),

g(t) = λ(t)I (−y+ � t � t0 − y−)

/∫ t0−y−

−y+
λ(u) du, (1)

and the corresponding population distribution function is denoted by G(t). Assume
(T1, Y1, Z1), . . . , (Tn, Yn, Zn) are independent and identically distributed. Consider the follow-
ing assumptions.

Assumption 1. The disease process is independent of when the initiating event occurs, that is,
(Y, Z) is independent of T .

Assumption 2. The initiating event occurs at a constant rate over calendar time, that is, λ(t)
is constant for −y+ � t � t0 − y−, so that G(·) is uniform(−y+, t0 − y−).

The two assumptions are fundamental for studying the probability structures of the pri-
mary outcomes in this paper. We say that the model is semi-stationary if only Assump-
tion 1 is satisfied, stationary if both Assumptions 1 and 2 are satisfied and nonstationary
if neither Assumption 1 nor 2 is assumed. The discussion here is focused on the semi-
stationary and stationary conditions. However, Assumptions 1 and/or 2 could be violated
when, for instance, an improved screening strategy was developed and it might lead to ear-
lier disease detection. In this article, we propose a statistical framework to properly analyse
the bivariate survival time with interval sampling under semi-stationarity and stationarity,
and study inference on the joint distribution and dependence structure of bivariate sur-
vival data.

2. SEMIPARAMETRIC ESTIMATION UNDER SEMI-STATIONARITY

2·1. Estimation of θ

In this section, we consider a general situation when only Assumption 1 holds, and focus on a
semi-stationary model to estimate the joint survival function on the basis of observed biased data.
For simplicity, we consider constant censoring, where the observation of death ends at calendar
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time t0. This can be replaced by random censoring. Specifically, we consider a joint model for
T and (Y, Z), and parameterize the distribution function of T by G(t; θ), where θ ∈ � and � is
an open set in Rk . For example, in cancer studies, G describes the birth rate for cancer patients.
Particular interest is focused on estimation of the parameter θ in G(t; θ) and the joint survival
function of (Y, Z).

The estimation of θ is complicated by the bias from interval sampling. We explore the sampling
bias on the distribution of T . For the interval sampling cohort, the calendar time of the initiating
event, T , is observable subject to the constraint −Y � T � t0 − Y . The joint density of observed
(t, y) can be written as

pT,Y (t, y) = g(t) fY (y)I (−y � t � t0 − y)

pr(−T � Y � t0 − T )

= fY (y)I (−y � t � t0 − y)

SY (t0 − t) − SY (−t)
× {SY (t0 − t) − SY (−t)}g(t)∫ {SY (t0 − s) − SY (−s)}g(s) ds

= pY |T (y | t) × pT (t),

where g(t) is the population density function of T . Thus, the sampling density of T , pT (t), is
proportional to its population density g(t),

pT (t) = {SY (t0 − t) − SY (−t)}g(t)∫ {SY (t0 − s) − SY (−s)}g(s) ds
,

and is generally biased under either stationarity or semi-stationarity, which implies systematic
bias when using the ordinary empirical distribution to estimate the so-called birth rate of diseased
patients for cancer registry data.

The conditional likelihood approach is used to estimate parameter θ . When Assumption 1
is assumed, the joint density of uncensored (t, y, z) can be derived as the density of (T, Y, Z)

conditional on −T � Y � t0 − T and Y + Z � t0 − T :

pT,Y,Z (t, y, z) = g(t) fY,Z (y, z)I (−y � t � t0 − y − z)

pr(−Y � T � t0 − Y − Z)

= g(t)I (−y � t � t0 − y − z)

G(t0 − y − z) − G(−y)
× {G(t0 − y − z) − G(−y)} fY,Z (y, z)∫ {G(t0 − u − v) − G(−u)} fY,Z (u, v) du dv

= pT |Y,Z (t | y, z) × pY,Z (y, z). (2)

The first bracketed term above, denoted by pT | Y,Z (t | y, z), specifies the conditional density of
observed t given observed uncensored (y, z); the second bracketed term, denoted by pY,Z (y, z)
is the joint density of uncensored (y, z). Thus, the conditional likelihood function of observed t
given observed (y, z) is

Lc(θ) =
n∏

i=1

pT |Y,Z (ti | yi , zi , θ) =
n∏

i=1

g(ti ; θ)

G(t0 − yi − zi ; θ) − G(−yi ; θ)
.

The target parameter θ is the only parameter involved in the conditional likelihood, since the
nuisance parameter fY,Z (·, ·) is eliminated by conditioning. The conditional maximum likeli-
hood estimator of θ , denoted by θ̂ , can be derived by maximizing Lc(θ) for θ ∈ �. Large sample
properties of θ̂ are obtained using techniques similar to those of Andersen (1970). Under reg-
ularity conditions and as n → ∞, θ̂ converges in probability to θ , and n1/2(θ̂ − θ) converges
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weakly to a mean zero multivariate normal distribution with variance-covariance matrix I −1
c ,

where Ic = E[{∂ log pT |Y,Z (Ti | Yi , Zi )/∂θ}{∂ log pT |Y,Z (Ti | Yi , Zi )/∂θ}T] is the Fisher infor-
mation matrix for the conditional likelihood function Lc(θ).

2·2. Estimation of joint survival function SY,Z (y, z)

In many situations, the maximum likelihood approach produces efficient estimators. In our
case, the full likelihood function L can be expressed as the product of the conditional likelihood
and the marginal likelihood: L{θ, fY,Z (·, ·)} = Lc(θ) × LY,Z {θ, fY,Z (·, ·)}, where Lc involves
only θ . In this section, we show that the semiparametric maximum likelihood estimator of
SY,Z (y, z) can be derived by a two-step procedure.

First consider the case when θ is known. As shown in (2), the joint density function pY,Z (y, z)
of uncensored (y, z) can be written as

pY,Z (y, z) = {G(t0 − y − z; θ) − G(−y; θ)} fY,Z (y, z)∫∫ {G(t0 − u − v; θ) − G(−u; θ)} fY,Z (u, v) du dv
. (3)

Define a weight function h(y, z) = G(t0 − y − z) − G(−y), which describes the selection bias
of observing (y, z). Its value coincides with the probability that initiating events occur within the
window (−y, t0 − y − z]. The sampling density pY,Z (y, z) is generally biased and proportional
to the population density fY,Z (y, z), and the direction of bias is determined by h(y, z). Thus, an
estimator of the joint survival function of (Y, Z) is

ŜY,Z (y, z, θ) =
∑n

i=1{G(t0 − Yi − Zi ; θ) − G(−Yi ; θ)}−1 I (Yi > y, Zi > z)∑n
i=1{G(t0 − Yi − Zi ; θ) − G(−Yi ; θ)}−1

.

If θ is known, ŜY,Z (y, z, θ) can be proved to be the nonparametric maximum likelihood estimator
of SY,Z (y, z), a special case of Vardi (1985). As n → ∞, ŜY,Z (y, z, θ) is consistent, and the
process n1/2{ŜY,Z (y, z, θ) − SY,Z (y, z)} converges weakly to a bivariate zero-mean Gaussian
process with covariance function

σ 2 = H−1 H

(∫∞
y

∫∞
z {G(t0 − u − v; θ) − G(−u; θ)}−1 fY,Z (u, v) du dv

H−1
{1 − SY,Z (y

′
, z

′
)}

+ SY,Z (y, z)

[
SY,Z (y

′
, z

′
) −

∫∞
y′
∫∞

z′ {G(t0 − u − v; θ)− G(−u; θ)}−1 fY,Z (u, v) du dv

H−1

])
,

where H = ∫ ∫ {G(t0 − u − v; θ) − G(−u; θ)} fY,Z (u, v) du dv, and H−1 = ∫ ∫ {G(t0 − u −
v; θ) − G(−u; θ)}−1 fY,Z (u, v) du dv. A consistent variance estimator σ̂ 2 can be obtained by
replacing H and H−1 by empirical distribution functions, and SY,Z (y, z) by ŜY,Z (y, z, θ).

Now suppose θ is unknown. We replace θ in ŜY,Z (y, z, θ) by the conditional maximum like-
lihood estimator θ̂ and derive an estimator of SY,Z (y, z) as ŜY,Z (y, z, θ̂ ). This can be proved to
be the semiparametric maximum likelihood estimator using an argument similar to that in Wang
(1989). The error of ŜY,Z (y, z, θ̂ ) can be decomposed into two terms,

ŜY,Z (y, z, θ̂ ) − SY,Z (y, z) = {ŜY,Z (y, z, θ) − SY,Z (y, z)} + {ŜY,Z (y, z, θ̂ ) − ŜY,Z (y, z, θ)},
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where the first error term is determined by σ 2. The error in the second term is generated by the
use of θ̂ to estimate θ . The distributions of the two terms can be proved to be asymptotically
orthogonal to each other because θ in the second term is estimated by the conditional likelihood
estimator. This property will be used in the proof of Theorem 1 in the Appendix.

Therefore, the joint survival function can be estimated by

ŜY,Z (y, z, θ̂ ) =
∑n

i=1{G(t0 − Yi − Zi ; θ̂ ) − G(−Yi ; θ̂ )}−1 I (Yi > y, Zi > z)∑n
i=1{G(t0 − Yi − Zi ; θ̂ ) − G(−Yi ; θ̂ )}−1

,

where (Yi , Zi ) are the uncensored bivariate failure times, ŜY,Z (y, z, θ̂ ) is a weighted empirical
estimator and SY,Z (y, z) is identifiable on the domain {(y, z) : y + z � t0 − t−}. The estimator
ŜY,Z (y, z, θ̂ ) has the following properties.

THEOREM 1. The estimator ŜY,Z (y, z, θ̂ ) is consistent, and as n → ∞, the process
n1/2{ŜY,Z (y, z, θ̂ ) − SY,Z (y, z)} converges weakly to a bivariate zero-mean Gaussian process
with covariance function � = ∇θ ŜY,Z (y, z, θ)T I −1

c ∇θ ŜY,Z (y
′
, z

′
, θ) + σ 2.

The proof can be found in the Appendix. Vector notation for the gradient ∇θ is used since
θ ∈ Rk . A consistent estimator of � is �̂ = ∇θ ŜY,Z (y, z, θ̂ )T Î −1

c ∇θ ŜY,Z (y
′
, z

′
, θ̂ ) + σ̂ 2.

The above joint survival function estimate can be used to produce an estimator ŜY (y, 0, θ̂ ) for
the marginal survival function. The same approach of modelling (T, Y, Z) could be applied to
(T, Y ) and a more efficient estimator of SY (y) is

ŜY (y, θ̂∗) =
∑n

i=1{G(t0 − Ỹi ; θ̂∗) − G(−Ỹi ; θ̂∗)}−1 I (Ỹi > y)∑n
i=1{G(t0 − Ỹi ; θ̂∗) − G(−Ỹi ; θ̂∗)}−1

,

where Ỹi is the observed first failure time and θ̂∗ is obtained by maximizing the conditional
likelihood function of the observed {t} given the observed {y}. Compared with the {Yi }, which
are from uncensored bivariate failure times (Yi , Zi ), the {Ỹi } contain more data points. Also,
ŜY (y, θ̂∗) can be proved to be a semiparametric maximum likelihood estimator of SY (y).

The marginal survival function of Z is not in general easily estimated under semi-
stationarity due to induced sampling bias and dependent censoring; however, it is possible
to estimate the conditional probability function prZ |Y (Z > z | y1 < Y � y2) = {SY,Z (y1, z) −
SY,Z (y2, z)}/{SY (y1) − SY (y2)} as long as y + z � t0 − t−. In fact, this conditional probability
may be of interest even when SZ is estimable. An estimator of prZ |Y (Z > z | y1 < Y � y2) is

p̂rZ |Y (Z > z | y1 < Y � y2) = ŜY,Z (y1, z, θ̂ ) − ŜY,Z (y2, z, θ̂ )

ŜY (y1, θ̂∗) − ŜY (y2, θ̂∗)
.

Estimation of such a conditional survival function can be used in exploratory analysis to detect
possible correlation between Y and Z , as shown in the Supplementary Material.

The stationary condition when both Assumptions 1 and 2 hold is often of interest both in
practice and theory. We have proposed a stationary model, assuming G is uniform, to estimate
the joint survival function, which is a special case of the semi-stationary model and the method
discussed in this section. The details of the stationary model are provided in the Supplementary
Material. When G is totally unknown, the development of a nonparametric approach to estimate
the joint survival function is possible. Using our notation, the conditional density of observed y
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given t is

pY |T (y | t) = fY (y)I (−y � t � t0 − y)

SY (t0 − t) − SY (−t)
,

from which the nonparametric maximum likelihood estimator of SY (y) can be obtained by a
conditional likelihood approach developed by Efron & Petrosian (1999) for doubly truncated
data. The semiparametric model is generally a compromise between the nonparametric model
and the stationary model, and is designed to incorporate the parametric information from the
distribution function G. Moreover, the semiparametric estimator ŜY (y, θ̂ ) has an explicit form
and manageable asymptotic expressions for development of large sample properties, while the
Efron–Petrosian estimator must be computed using an iterative algorithm. Although it is inter-
esting to extend the nonparametric estimation technique to the bivariate case, we will not pursue
this here.

It is important to check the validity of the parametric distribution assumption H0 : T ∼ G(t; θ).
This can be done by plotting the nonparametric maximum likelihood estimate Ĝn(t) against
Ĝ(t, θ̂ ). Since T is also doubly truncated subject to the constraint −Y � T � t0 − Y , estimating
G is essentially dual to estimating SY . Shen (2008) provided an algorithm to jointly compute the
nonparametric maximum likelihood estimators of both G and SY . The plot is used to examine
the adequacy of the fit of the parametric distribution of T .

The above method uses only uncensored data. However, most disease registry data involve
a large number of subjects over a long time period, and many observations are uncensored. In
general, the proportion of uncensored data would be typically sufficient, or more than sufficient,
for use of the proposed method. Nevertheless, with a slightly stronger model assumption in § 3,
we have developed a method to analyse the bivariate survival data based on both uncensored
and censored observations. Another possible solution is to utilize the information from censored
observations in estimating θ in G(t; θ). We could model (T, Y ) to obtain a conditional maximum
likelihood estimator θ̂∗ based on observed first failure time {Ỹi }, instead of modelling (T, Y, Z)

using only uncensored bivariate failure times {Yi , Zi }. In general, θ̂∗ is expected to be more effi-
cient than θ̂ , and accordingly, a new weight {G(t0 − Yi − Zi ; θ̂∗) − G(−Yi ; θ̂∗)} could be used to
replace {G(t0 − Yi − Zi ; θ̂ ) − G(−Yi ; θ̂ )} in constructing the weighted empirical joint survival
function estimator. In this way, we may take advantage of some information from censored obser-
vations, at least for the first failure time. The properties of the resulting joint survival function
estimator with the new weight, as well as its efficiency gain, are under investigation.

3. SEMIPARAMETRIC COPULA MODEL UNDER STATIONARITY

3·1. Failure time distributions

The estimation method proposed in § 2 only uses uncensored data and particularly focuses on
adjusting for the sampling bias from double truncation. In this section, we estimate the bivariate
survival function based on both censored and uncensored observations. With a slightly stronger
assumption on the dependence structure of the bivariate distribution, a semiparametric copula
model under stationarity is used, which allows one to model and estimate the margins and depen-
dence separately. We investigate the semiparametric copula model by a two-stage estimation
approach similar to those of Genest et al. (1995) and Shih & Louis (1995). We first explore
the probability structure for each failure time marginally and obtain the nonparametric con-
sistent estimators for marginal survival functions under stationarity, ignoring the dependence.
Then these estimators are substituted into a conditional likelihood for the association parameter,
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yielding a pseudo likelihood (Gong & Samaniego, 1981). The association parameter is then esti-
mated by solving the estimating equation derived from the pseudo conditional likelihood.

First, we consider the first failure time Y , which is sampled given −T � Y � t0 − T . The joint
density of observed (t, y) can be written as

pT,Y (t, y) = g(t) fY (y)I (−y � t � t0 − y)

pr(−Y � T � t0 − Y )

= g(t)I (−y � t � t0 − y)

G(t0 − y) − G(−y)
× {G(t0 − y) − G(−y)} fY (y)∫ {G(t0 − u) − G(−u)} fY (u) du

= pT |Y (t | y) × pY (y).

Under stationarity when T is uniformly distributed, the marginal density of observed y, pY (y),
becomes fY (y), so the sampling density of y coincides with its population density and double
truncation from interval sampling does not result in bias on Y . Therefore, the nonparametric
estimator of SY (y) is simply the empirical survival function ŜY (y) =∑n

i=1 I (Ỹi > y), where Ỹi

is the observed first failure time. The nonparametric maximum likelihood estimator of SY (y),
ŜY (y), is consistent.

For the second failure time Z , we investigate its probability structure under stationarity. Specif-
ically, we show that the sampling distribution of Z is the same as the target population dis-
tribution. Let W = T + Y denote the calendar time when the first failure event occurs. With
sampling window [0, t0], only those cases satisfying 0 � W � t0 are included in the sampling
population. The stationary condition implies that fY,Z | T (y, z | t) = fY,Z (y, z) and λ(t) = λ0 for
−y+ < t � t0 − y−. The occurrence rate of the first failure event at W = w over the calendar
time window [0, t0] can then be derived as

φ(w) =
∫ w

−∞
fY | T (w − t | t)λ(t) dt = λ0

∫ w

−∞
fY (w − t) dt = λ0

∫ ∞

0
fY (y) dy = λ0. (4)

That is, the occurrence rate of the first failure event is the same as that of the initiating event.
Also, the joint rate function of (Z , W ) is

φ(w) fZ | W (z | w) =
∫ w

−∞
fY,Z | T (w − t, z | t)λ(t) dt = λ0

∫ ∞

0
fY,Z (y, z) dy = λ0 fZ (z). (5)

From (4) and (5), we conclude that fZ (z) = fZ | W (z | w) almost surely for all (w, z), so Z is
independent of W . The censoring time for observing Z is C − W , where C is the calendar time of
censoring. If C is a constant, for example, the calendar time of the end of study, the independence
of Z and W implies the independence of Z and C − W . This independent censoring also extends
to the situation when C is not a constant, simply by imposing independence between Z and C ,
as commonly employed in a survival model. Therefore, survival data {{min(zi , ci − wi ), I (zi �
ci − wi )} : ci � wi } can be treated as right-censored for obtaining the Kaplan–Meier estimator
of the marginal survival function SZ (z).

3·2. Copula model and two-stage semiparametric estimation

Suppose the bivariate failure times (Y, Z) come from the Cα copula for some association
parameter α, where Cα is a distribution function with density cα on [0, 1]2. Then the joint survival
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function and density function of (Y, Z) are

SY,Z (y, z) = Cα{SY (y), SZ (z)}, fY,Z (y, z) = cα{SY (y), SZ (z)} fY (y) fZ (z), y, z � 0.

A two-stage estimation strategy is used to estimate the association parameter α. For observed
data (t, y, x, δ) where x = min(z, c − t − y) and δ = I (z � c − t − y), the conditional likeli-
hood function of {(yi , xi , δi )} given {ti } is

Lc(α) =
n∏

i=1

fY,Z (yi , xi )
δi {∂SY,Z (yi , xi )/∂yi }1−δi

SY (ci − ti ) − SY (−ti )
.

In derivation of Lc(α), the distribution of T is eliminated by conditioning. Under stationarity,
however, T follows a uniform distribution, and the conditional and unconditional likelihoods
contain the same information on α. Here we use the conditional likelihood only for simplic-
ity. The two margins SY (y) and SZ (z) are estimated by the empirical survival function ŜY (y)

and the Kaplan–Meier estimator ŜZ (z), respectively. Denote {SY (yi ), SZ (xi )} by (ui , vi ) for
i = 1, . . . , n. The conditional likelihood of α is

Lc(α) ∝
n∏

i=1

fY,Z (yi , xi )
δi

{
∂SY,Z (yi , xi )

∂yi

}1−δi

=
n∏

i=1

cα(ui , vi )
δi

{
∂Cα(ui , vi )

∂ui

}1−δi

. (6)

Since the denominator of Lc(α) is a function of SY that does not involve α, it is appropriate to
estimate α by maximizing (6). Let

l(α, u, v) = cα(u, v)δ
{

∂Cα(u, v)

∂u

}1−δ

, U (c)
α (α, SY , SZ ) = ∂

∂α

n∑
i=1

log l(α, SY , SZ ).

The semiparametric estimator α̂ for α is the solution to the pseudo score function derived from
the pseudo conditional likelihood

U (p)
α (α, ŜY , ŜZ ) = ∂

∂α

(
n∑

i=1

δi log[cα{ŜY (yi ), ŜZ (xi )}] + (1 − δi ) log

[
∂Cα{ŜY (yi ), ŜZ (xi )}

∂ui

])

= 0.

The following conditions are assumed to develop large sample properties for α̂.

Condition 1. The standard regularity conditions for the maximum likelihood estimator hold.

Condition 2. The functions Wα{α, SY (y), SZ (z)}, Vα{α, SY (y), SZ (z)}, Vα,1{α, SY (y),

SZ (z)} and Vα,2{α, SY (y), SZ (z)} are continuous and bounded for (y, z) ∈A= [y−, y+] ×
[z−, z+], where

Wα{α, SY (y), SZ (z)} = ∂ log l(α, u, v)

∂α
, Vα{α, SY (y), SZ (z)} = ∂2 log l(α, u, v)

∂α2
,

Vα,1{α, SY (y), SZ (z)} = ∂2 log l(α, u, v)

∂α∂u
, Vα,2{α, SY (y), SZ (z)} = ∂2 log l(α, u, v)

∂α∂v
.

The asymptotic properties of α̂ are summarized as follows.
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THEOREM 2. The estimator α̂ is consistent, and as n → ∞, n1/2(α̂ − α0) converges weakly
to the normal distribution with mean zero and variance ρ2 = (ρ2

1 + ρ2
2)/ρ4

1 .

A consistent estimator of ρ2 is obtained as ρ̂2 = (ρ̂2
1 + ρ̂2

2)/ρ̂4
1 . The precise definitions of ρ2

1
and ρ2

2 together with the details of the proof can be found in the Supplementary Material.
For the bivariate survival function, a natural estimator is then obtained by replacing the

unknown quantities in the copula model SY,Z (y, z) = Cα{SY (y), SZ (z)} by appropriate estima-
tors. Specifically, the margins SY (y) and SZ (z) are replaced by their nonparametric estimators,
the empirical survival function for Y and the Kaplan–Meier estimator for Z , and α is replaced by
the two-stage association estimator α̂. The asymptotic properties of ŜY,Z (y, z) are summarized
in Theorem 3, with the proof provided in the Supplementary Material.

THEOREM 3. The estimator ŜY,Z (y, z) is consistent, and as n → ∞, the process n1/2{ŜY,Z

(y, z) − SY,Z (y, z)} converges weakly to a bivariate zero-mean Gaussian process with covari-
ance function [∂C{α, SY (y), SZ (z)}/∂α]2ρ2 + ω2(y, z).

4. SIMULATION STUDIES

4·1. Joint survival function estimation under semi-stationarity

We evaluate the finite-sample performance of the semiparametric estimator ŜY,Z (y, z, θ̂ )

under semi-stationarity by simulation. Data {(t1, y1, z1), . . . , (tn, yn, zn)} with interval sampling
are generated for the semi-stationary model. Define T = −3K + 10, where K ∼ exp(θ), and
let the bivariate failure times (Y, Z) be generated from Clayton’s (1978) copula, SY,Z (y, z) =
{SY (y)−α + SZ (z)−α − 1}−1/α, with unit exponential margins and association parameter α = 2.
An observation (t, y, z) is included in the dataset if and only if 0 � t + y � 10 and is censored
if t + y + z � 10. The proportion of uncensored observations is around 0·6. We generate 1000
simulated samples with n = 400.

Table 1 summarizes the empirical bias, average model-based standard error of θ̂ and
ŜY,Z (y, z, θ̂ ), empirical standard error and 95% coverage probability of ŜY,Z (y, z, θ̂ ) at nine
time-points (y, z), where y and z take values 0·22, 0·51 and 0·92, corresponding to marginal sur-
vival probabilities of 0·8, 0·6 and 0·4. The confidence interval is constructed based on the esti-
mated asymptotic variance, and the empirical 95% coverage probability is based on the 1000 con-
fidence intervals. The estimators are approximately unbiased and the model-based variance esti-
mators work well, with coverage probabilities close to 95% at most time-points. As θ increases,
the biases and standard errors increase.

4·2. Semiparametric copula model under stationarity

The performances of the two-stage estimator α̂ and joint survival function estimator
ŜY,Z (y, z) in the semiparametric copula model under stationarity are examined by simulation.
Two sampling schemes are explored: random sampling and interval sampling. A set of data
{(t1, y1, z1), . . . , (tn, yn, zn)} is generated with interval sampling: define T = −13K + 9, where
K ∼ U(0, 1), and generate bivariate failure times (Y, Z) from three Archimedean copula models:
Clayton’s family, a positive stable copula and Frank’s family, whose explicit expressions are given
in the Supplementary Material. For each copula, we use unit exponential margins, and choose
three values of α in order to accommodate different levels of dependence between Y and Z . An
observation (t, y, z) is included in the dataset if and only if 0 � t + y � 10 and is censored if
t + y + z � 10. For each value of α we generate 1000 simulated samples with n = 400.
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Table 1. Simulation summary statistics for ŜY,Z under semi-stationarity

θ Bias(θ̂) SE(θ̂) y z SY,Z Bias(ŜY,Z ) SEe(ŜY,Z ) SEm(ŜY,Z ) CP(ŜY,Z )

0·5 0·6 7·9 0·22 0·22 0·686 −0·1 3·2 3·2 96
0·51 0·547 −0·3 3·7 3·6 96
0·92 0·383 −0·2 4·1 3·9 96

0·51 0·22 0·547 0·1 3·7 3·6 96
0·51 0·469 −0·1 3·9 3·7 95
0·92 0·353 −0·1 3·9 3·9 95

0·92 0·22 0·383 −0·2 4·1 3·8 94
0·51 0·353 −0·2 4·1 3·9 95
0·92 0·295 −0·1 4·1 3·9 95

1·0 0·8 9·0 0·22 0·22 0·686 −0·1 3·7 3·6 95
0·51 0·547 −0·1 4·5 4·6 96
0·92 0·383 −0·2 5·2 5·1 95

0·51 0·22 0·547 −0·2 4·4 4·3 95
0·51 0·469 −0·2 4·8 4·7 94
0·92 0·353 −0·1 5·2 5·2 94

0·92 0·22 0·383 −0·2 5·2 5·2 95
0·51 0·353 −0·2 5·4 5·3 95
0·92 0·295 −0·3 5·5 5·3 95

2·0 1·0 16·7 0·22 0·22 0·686 −0·7 5·7 5·6 96
0·51 0·547 −0·9 7·7 7·6 98
0·92 0·383 −1·4 9·6 9·5 97

0·51 0·22 0·547 −0·9 7·7 7·6 96
0·51 0·469 −1·1 8·7 8·5 96
0·92 0·353 −1·2 10·0 9·5 95

0·92 0·22 0·383 −1·0 9·4 8·9 94
0·51 0·353 −1·1 9·8 9·2 95
0·92 0·295 −1·4 10·3 9·7 95

Bias(θ̂), empirical bias (×102) of θ̂ ; SE(θ̂), average model-based standard error (×102) of θ̂ ;
Bias(ŜY,Z ), empirical bias (×102) of ŜY,Z ; SEe(ŜY,Z ), empirical standard error (×102) of ŜY,Z ;
SEm(ŜY,Z ), average model-based standard error (×102) of ŜY,Z ; CP(ŜY,Z ), nominal 95% coverage
probability of ŜY,Z .

Table 2 presents simulation results for α̂ and ŜY,Z (y, z) = C{α̂, ŜY (y), ŜZ (z)}. The estimated
joint survival probability is reported at two time-points, (y, z) = (0·22, 0·22) and (0·22, 0·51),
and is there denoted by S1 and S2. For the three copula models, the proposed method performs
quite well with both sampling plans. The biases of α̂, Ŝ1 and Ŝ2 are fairly small. For the associa-
tion parameter, the empirical standard error and average model-based standard error are generally
close, which may imply that inference about α is reasonably good. The empirical coverage prob-
abilities are all quite close to 95%. The stronger the dependence of (Y, Z), indicated by a larger
absolute value of α, the bigger the bias and standard error for α̂. However, no such phenomenon
is observed for Ŝ1 and Ŝ2.

5. APPLICATION TO SEER CANCER REGISTRY DATA

5·1. Analysis under semi-stationarity

This section presents an analysis of ovarian cancer data collected by the Surveillance, Epidemi-
ology and End-Results programme to address statistical issues arising from interval sampling and
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Table 2. Simulation summary statistics for α̂ and ŜY,Z under different sampling schemes for samples from Clayton’s
family, positive stable frailties and Frank’s family

Model α Sampling Bias(α̂) SEe(α̂) SEm(α̂) CP(α̂) Bias(Ŝ1) SEe(Ŝ1) CP(Ŝ1) Bias(Ŝ2) SEe(Ŝ2) CP(Ŝ2)

Clayton 0·50 Random 1·2 9·3 7·8 97 0·5 2·3 97 0·3 2·3 95
Interval 2·0 10·8 9·2 96 0·3 2·5 94 0·2 3·0 94

1·33 Random 1·4 14·9 12·7 98 0·4 2·4 97 0·2 2·5 94
Interval 4·7 17·9 16·3 97 0·4 2·8 96 0·5 3·2 94

3·00 Random 5·4 26·1 24·3 98 0·3 2·1 97 0·1 2·4 96
Interval 10·2 30·4 28·5 97 −0·4 3·0 95 −0·7 3·3 94

Positive 1·25 Random 0·1 2·6 1·8 94 0·3 2·7 98 0·1 2·6 96
Stable Interval 0·6 5·8 4·9 94 0·3 2·5 98 0·3 2·8 96

1·67 Random 0·3 6·7 5·2 94 0·1 2·2 96 0·2 2·7 94
Interval 0·7 9·5 7·8 94 −0·2 2·9 96 −0·2 3·1 96

2·50 Random 1·3 10·3 8·3 95 0·3 2·1 94 −0·2 2·6 96
Interval 2·2 15·5 13·7 94 0·3 3·0 96 0·2 2·8 94

Frank 2·00 Random 1·4 32·8 31·2 96 0·3 2·1 97 −0·2 2·2 96
Interval 1·4 35·7 34·3 96 0·4 2·3 96 0·3 2·5 95

−1·00 Random 0·6 28·0 26·7 95 0·6 2·3 94 0·4 2·3 94
Interval 1·0 34·7 32·9 95 0·5 2·5 94 0·4 2·8 94

−2·00 Random 2·3 32·0 30·8 95 0·3 2·4 95 0·4 2·3 94
Interval 1·6 37·2 35·5 95 0·4 2·6 95 0·5 3·0 94

Bias(α̂), empirical bias (×102) of α̂; SEe(α̂), empirical standard error (×102) of α̂; SEm(α̂), average model-based standard error (×102) of α̂;
CP(α̂), 95% coverage probability of α̂; Bias(Ŝ1), empirical bias (×102) of Ŝ1 with S1 = SY,Z (0·22, 0·22); SEe(Ŝ1), empirical standard error
(×102) of Ŝ1; CP(Ŝ1), 95% coverage probability of Ŝ1; Bias(Ŝ2), empirical bias (×102) of Ŝ2 with S2 = SY,Z (0·22, 0·51); SEe(Ŝ2), empirical
standard error (×102) of Ŝ2; CP(Ŝ2), nominal 95% coverage probability of Ŝ2.
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Fig. 2. Birth density plots and scatter-plot of Ĝn(t) against Ĝ(t, θ̂ ). (a) Birth
density plots: the biased empirical estimate (solid), the linear model estimate
(dash) and the quadratic model estimate (dot). (b) Scatter-plot of Ĝn(t) against
Ĝ(t, θ̂ ) with 95% pointwise confidence bands based on bootstrap (dash). The
diagonal line y = x is shown as a reference. Non-G, nonparametric estimator

Ĝn(t); Para-G, parametric estimator Ĝ(t, θ̂ ).

to study the natural history of ovarian cancer. The programme is an epidemiological surveillance
system consisting of population-based cancer registries designed to track cancer incidence and
survival in the U.S.A. Collection of the data began from 1 January 1973 (Ries et al., 2005). The
registries routinely collect information on newly diagnosed cancer patients residing in geograph-
ically defined areas representing 26 percent of the U.S. population. Information is available on
each person’s birth date, cancer diagnosis date, death date, type of cancer, sex, race, state of resi-
dence, etc. The cohort of interest consists of 36 728 ovarian cancer patients diagnosed from 1973
to 2002 under interval sampling, among whom 24 236 died before 31 December 2002, and others
were censored. In the analysis, the initiating time is birth time, T , and the bivariate failure times
are age of cancer onset, Y and residual lifetime, Z .

In analysis of the data from this study, residual lifetime after cancer onset was typically
analysed by regression methods such as the proportional hazards model, conditioning on age
of cancer onset. These analyses treat age-onset as a conditional variable and therefore should
be interpreted conditionally. Our focus here is unconditional analysis of disease natural history,
that is, it is unconditional on age of cancer onset. Nevertheless, all the models considered in
this paper have a certain conditional component, since the data are observed conditioning on
the fact the subjects were diagnosed with cancer within the study time interval. The age of can-
cer onset distribution was typically empirically estimated and the median age of cancer onset
was reported in Altekruse et al. (2010). However, such a statistical analysis is biased because the
marginal distribution of age of cancer onset from the sampling population is subject to bias due
to interval sampling, and the joint distribution of age of cancer onset and residual lifetime is also
sampling-biased. Existing analyses have commonly ignored these biases.

We apply the method developed under semi-stationarity to the ovarian cancer data, assuming
that (Y, Z) is independent of T . All the variables are analysed on a scale in years. As discussed in
§ 2·1, the sampling density of T is generally biased and it is not appropriate to use the empirical
method to estimate the birth rate. To estimate the distribution of T , we use two polynomial models
for the rate function λ(t) in (1): a linear model λ(t) = c0 + θ1t , and a quadratic polynomial model
λ(t) = c0 + θ1t + θ2t2, where c0 is a positive-valued constant.

The density plots in Fig. 2(a) show that the difference between linear and quadratic models is
small. The figure also demonstrates the huge bias in estimating the birth density by the empirical
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Table 3. Estimated joint survival probabilities at quartiles of
observed age of cancer onset and residual lifetime

All White Nonwhite
y z Ŝemp Ŝprop SE Ŝemp Ŝprop SE Ŝemp Ŝprop SE

62·2 0·25 62·2 62·3 4·0 63·1 62·9 4·2 56·9 57·3 1·0
1·58 36·7 40·2 2·6 37·5 40·7 2·7 30·7 34·4 1·0
4·58 16·0 22·2 1·5 16·3 22·7 1·7 12·1 17·5 0·8

69·8 0·25 41·2 45·1 2·9 42·0 45·7 3·0 34·8 39·1 1·1
1·58 22·0 26·8 1·8 22·7 27·3 1·9 17·3 21·9 1·1
4·58 9·3 13·9 0·9 9·3 14·3 1·2 6·4 10·5 0·7

77·5 0·25 18·9 24·3 1·6 19·2 24·8 1·8 14·4 19·6 1·0
1·58 8·6 12·8 0·9 8·9 13·0 1·0 6·4 10·0 0·7
4·58 3·4 6·2 0·5 3·4 6·3 0·6 2·2 4·5 0·5

y, age of cancer onset; z, residual lifetime; Ŝemp, empirical estimate of joint sur-

vival probability (×102); Ŝprop, proposed estimate of joint survival probability
(×102); SE, bootstrap standard error (×102) based on 500 replications.

method. An increasing trend in birth rate for the case cohort over the calendar time is found
in both models. Such a trend could be explained by the post-World War II baby boom or the
improvement of ovarian cancer screening techniques. Given the similarity of the two polynomial
models, the linear model is chosen as the birth density in analysis. With λ(t) = c0 + θ t , we have
θ̂ = 3·914 (0·030). The validity of this parametric model was assessed by plotting the nonpara-
metric maximum likelihood estimator Ĝn(t) (Shen, 2008) against Ĝ(t, θ̂ ) for the distribution
function of T in Fig. 2(b), which suggests the assumption of linear birth rate is approximately
correct.

The joint survival probability estimators are calculated using both empirical and proposed
methods. To obtain the standard errors of estimated joint survival probabilities, we adopt a non-
parametric bootstrap method, resampling subjects with replacement from the dataset. The resam-
pling procedure is repeated 500 times for the overall cancer patients, white patients and nonwhite
patients, respectively. While the asymptotic variance of ŜY,Z (y, z, θ̂ ) has a rather complicated
form, the ordinary bootstrap method would provide a direct and robust way to estimate the stan-
dard error. Table 3 summarizes the results at nine bivariate time-points, with y = 62·2, 69·8, 77·5
years and z = 0·25, 1·58, 4·58 years, corresponding to the quartiles of observed age of cancer
onset and residual lifetime. The table provides the empirical and proposed estimated joint survival
probabilities with bootstrap standard errors, and shows clear differences between the empirical
and proposed estimates. As indicated by (3), the empirical estimate is generally biased since it
does not account for interval sampling. The analytical result suggests that the empirical method
may underestimate the joint survival probabilities, given our model specification on the distri-
bution of T . Table 3 also provides estimated joint survival probabilities by race. It is shown that
white patients are likely to be diagnosed at older ages and survive longer than nonwhite patients,
consistent with the literature (Ries et al., 2005). The impact of age of cancer onset on residual
lifetime, explored in the Supplementary Material, suggests negative association between age of
onset and residual lifetime.

5·2. Example of the copula model under stationarity

We now illustrate the copula model under stationarity considered in § 3. The analysis in § 5·1
shows that in general the birth rate of the ovarian cancer patients increases over time. To apply
the semiparametric copula model proposed under stationarity, we restrict the study population
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to 12 363 ovarian cancer patients who were born between 1920 and 1930, and assume a con-
stant birth rate for this sub-cohort. The constant birth rate assumption is checked by plotting
the nonparametric estimator of birth distribution against its parametric estimator. Figure 2 of the
Supplementary Material suggests that this assumption is fairly reasonable.

A negative association between age of ovarian cancer onset and residual lifetime is found in
§ 5·1. Hence, we choose a Frank copula model to fit the dependence structure. Under stationarity,
the marginal survival functions of age of onset and residual lifetime are consistently estimated
by the empirical survival function and the Kaplan–Meier estimator. For the overall sub-cohort of
12 363 patients, the estimated association parameter α̂ = −3·69 with 95% confidence interval
(−3·97, −3·40) and bootstrap percentile confidence interval (−3·92, −3·42). The first interval
is constructed based on the asymptotic normality, in which the standard error of α̂ is computed
using 500 bootstrap resamples. The corresponding estimated rank correlation coefficient τ̂ =
−0·36 with 95% confidence interval (−0·39, −0·34) and bootstrap percentile confidence interval
(−0·38, −0·34). For white patients, α̂ = −3·73 with 95% confidence interval (−4·06, −3·39) and
bootstrap percentile confidence interval (−4·16, −3·47). For nonwhite patients, α̂ = −3·39 with
95% confidence interval (−4·31, −2·47) and bootstrap percentile confidence interval (−4·27,
−2·49). There is a significant negative association between age of cancer onset and residual
lifetime, for all the three groups, though the magnitude of the association is slightly different
between white and nonwhite patients and the confidence intervals are wider for the nonwhite
group due to its smaller size.

6. CONCLUDING REMARKS

Under regularity conditions, we develop large sample properties for the association parameter
estimator α̂ in copula model. In particular, we assume boundedness of the score function and its
partial derivatives. This assumption was also adopted by Shih & Louis (1995) and many others
in the derivation of large sample properties for their two-stage estimator of α in a copula model.
However, some popular copula functions, such as the positive stable copula, are equivalent to
the independence copula when the association parameter takes its value on the boundary of the
parameter space. In this case, the score function and its partial derivatives may be unbounded.
The violation was discussed by Chen et al. (2010), who extended the asymptotic results allowing
for copulas with unbounded score function and partial derivatives. While this is not the major
focus of this paper, we rely on the boundedness assumption to derive the large sample properties.
The likelihood theory cannot easily be developed when this assumption is invalid, which makes
testing independence of bivariate survival data possibly problematic using the copula model.
Therefore, a nonparametric test of independence between bivariate survival times with interval
sampling needs to be developed.

The assessment of risk factors or treatments is always crucial in biomedical studies, and
an appropriate Cox regression model would allow for multiple risk factors. While our current
method focuses on the natural history of disease progression, another interesting extension is
to develop efficient estimating methods of the regression model for bivariate survival data with
interval sampling. In some applications, information about time-dependent variables becomes
available only after a certain time. For example, the treatment information of the ovarian cancer
patients under study is provided by SEER-Medicare Link Data (Warren et al., 2002), which were
collected from 1986. Therefore, a prevalent sample is involved and this further complicates the
analysis. In such settings, methods need to be developed to address the problems and bias aris-
ing from both interval and prevalent sampling. The copula model approach could be extended to
accommodate covariates with a regression model in studying the association.
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APPENDIX

Proof of Theorem 1. We study the consistency and asymptotic normality of ŜY,Z (y, z, θ̂ ). If θ is known,
the properties of ŜY,Z (y, z, θ) follow from Vardi (1985) with a weight function involving θ , and thus
ŜY,Z (y, z, θ) − SY,Z (y, z) converges to 0 in probability. Since θ̂ → θ in probability and ŜY,Z (y, z, θ) is con-
tinuous, ŜY,Z (y, z, θ̂ ) − ŜY,Z (y, z, θ) converges to 0 in probability. Therefore, ŜY,Z (y, z, θ̂ ) − SY,Z (y, z) =
{ŜY,Z (y, z, θ) − SY,Z (y, z)} + {ŜY,Z (y, z, θ̂ ) − ŜY,Z (y, z, θ)} converges to 0 in probability. This completes
the proof of consistency of ŜY,Z (y, z, θ̂ ).

Observe that

n1/2{ŜY,Z (y, z, θ̂ ) − SY,Z (y, z)} = n1/2{ŜY,Z (y, z, θ) − SY,Z (y, z)}
+ n1/2{ŜY,Z (y, z, θ̂ ) − ŜY,Z (y, z, θ)}. (A1)

As identified in § 2·2, the process n1/2{ŜY,Z (y, z, θ) − SY,Z (y, z)} converges weakly to a bivari-
ate zero-mean Gaussian process with covariance function σ 2. By counting process methodology
(van der Vaart, 1998), the first term in (A1) can be approximated by

n1/2{ŜY,Z (y, z, θ) − SY,Z (y, z)} = n−1/2
n∑

i=1

φ(θ, Yi , Zi , y, z) + op(1), (A2)

where E{φ(θ, Yi , Zi , y, z)} = 0 for each θ .
To develop an asymptotic result for the second term in (A1), the additional variation due to estimating

θ by θ̂ needs to be handled. Empirical process and semiparametric inference techniques are employed for
the asymptotic properties of the second term in (A1). Note that ŜY,Z (y, z, θ) can be re-expressed as the
empirical process ŜY,Z (y, z, θ) = n−1

∑n
i=1 I (Yi > y, Zi > z)r(Yi , Zi , θ), where r(Yi , Zi , θ) = {G(t0 −

Yi − Zi ; θ) − G(−Yi ; θ)}−1/
∑n

i=1{G(t0 − Yi − Zi ; θ) − G(−Yi ; θ)}−1. In § 2·1, it has been shown that
n1/2(θ̂ − θ) converges in distribution to a mean zero multivariate normal distribution with variance-
covariance matrix I −1

c , where θ̂ is the maximum likelihood estimator from the conditional likelihood func-
tion Lc(θ). Therefore, by functional delta method for the empirical process (Kosorok, 2008), we get that
n1/2{ŜY,Z (y, z, θ̂ ) − ŜY,Z (y, z, θ)} −→ N {0,∇θ ŜY,Z (y, z, θ)T I −1

c ∇θ ŜY,Z (y, z, θ)} in distribution. Thus,
the second term in (A1) can be approximated by

n1/2{ŜY,Z (y, z, θ̂ ) − ŜY,Z (y, z, θ)} = n−1/2∇θ ŜY,Z (y, z, θ)T I −1
c

n∑
i=1

∂

∂θ
log pT |Y,Z (Ti | Yi , Zi ) + op(1)

= n−1/2∇θ ŜY,Z (y, z, θ)T I −1
c

n∑
i=1

ϕ(Ti , Yi , Zi ) + op(1), (A3)
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where E{ϕ(Ti , Yi , Zi )} = E{∂ log pT |Y,Z (Ti | Yi , Zi )/∂θ} = 0. Combining (A2) and (A3), we get

n1/2{ŜY,Z (y, z, θ̂ ) − SY,Z (y, z)} ∼= n−1/2
n∑

i=1

φ(θ, Yi , Zi , y, z)

+ n−1/2∇θ ŜY,Z (y, z, θ)T I −1
c

n∑
i=1

ϕ(Ti , Yi , Zi ). (A4)

Also the corresponding distributions of these two terms are asymptotically orthogonal to each other, since

E{φ(θ, Yi , Zi , y, z)ϕ(Ti , Yi , Zi )} = E

[
φ(θ, Yi , Zi , y, z)E

{
∂

∂θ
log pT |Y,Z (Ti | Yi , Zi ) | Yi , Zi

}]
= 0.

(A5)
Therefore, (A4) and (A5) imply that n1/2{ŜY,Z (y, z, θ̂ ) − SY,Z (y, z)} converges weakly to a bivariate zero-
mean Gaussian process with covariance function �, specified as ∇θ ŜY,Z (y, z, θ)T I −1

c ∇θ ŜY,Z (y
′
, z

′
, θ) +

σ 2. It is natural to estimate � by �̂ = ∇θ ŜY,Z (y, z, θ̂ )T Î −1
c ∇θ ŜY,Z (y

′
, z

′
, θ̂ ) + σ̂ 2. The consistency of

ŜY,Z (y, z, θ̂ ), ŜY,Z (y
′
, z

′
, θ̂ ), Îc and σ̂ 2 implies that �̂ is a consistent estimator of �. �
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