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Summary
Engineered tracking systems ‘fuse’ data from disparate sensor platforms, such as radar and video,
to synthesize information that is more reliable than any single input. The mammalian brain
registers visual and auditory inputs to directionally localize an interesting environmental feature.
For a fly, sensory perception is challenged by the extreme performance demands of high speed
flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual
environments, outperforming any human engineered robot. Flies integrate disparate modalities,
such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by
registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how
low-level multisensory circuits and functional algorithms produce high-performance motor
control.

Introduction
You are a machine. Neuronal circuits logically combine elemental electrochemical events to
evoke each of your most elaborate perceptions, thoughts and emotions. Molecular
algorithms are transformed by circuits into spectacularly complex behavioral phenomena.
Indeed any sensory perception or motor action must have been computed by cellular
networks. Brains across taxa integrate signals from multiple sensory modalities, and the
resultant transformation into robust and flexible motor outputs then modify the inputs under
reciprocal closed-loop feedback. The integration of disparate sensory signals is adaptive
because environmental signals are noisy and often unreliable so combining data from
different modalities enhances the reliability or dependability of sensory computations.

This principle has been co-opted by engineers. For example, a tracking system might utilize
sound localization through a microphone array and image pixel information from video.
Geometric equations can relate the angle at which the target arrives at both sensor platforms
to improve the signal-to-noise ratio. In mammals and primates, the superior colliculus
houses visual, auditory, and somatosensory tissue maps that are superposed in topographic
spatial register to feed the receptive fields of multisensory neurons [1]. Thus, for a visually
noisy sound source, spatially coincident auditory input can cross-modally facilitate a
directional shift in gaze. More recently, evidence has been accumulating that multisensory
processing occurs not only in association centers, but also within primary sensory cortex
[2,3].

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Published as: Curr Opin Neurobiol. 2010 June ; 20(3): 347–352.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Multisensory processing is not relegated to large animal taxa with large brains, nor is it
necessarily restricted to modalities that share spatiotemporal topology. From the moment it
is born in its adult form, a fly's job in life is to seek out the source of an appropriately smelly
object upon which it will find mates, food, and oviposition sites. The key challenges to this
life history strategy are multisensory; first, a fly moves fast, which tends to compromise
sensory information transmission. Second, olfactory resources are sparsely distributed such
that there is often no odor plume to track – it must be found first.

Flies show sensory independent search behavior that transitions to sensory dependent
tracking behavior when an attractive chemosensory signal is acquired [4,5]. Search
trajectories in flight are characterized by segments of straight flight punctuated by ballistic
changes in orientation called saccades for their functional analogy to our own gaze ballistic
eye movements [6,7]. During search, saccade intervals tend to be short, with infrequent long
relocation intervals [8]. Upon encountering a plume, the animal reduces both the frequency
and amplitude of body saccades, and maintains a stable forward heading with reduced
rotational optic flow (Figure 1A).

Flies are equipped with an array of sensor inputs including simple lens ocelli that track the
position of the horizon, compound eyes that provide input to process optic flow, antennae
that measure mechanical disturbances and chemical signals, and mechanosensory halteres
that act like a gyroscope (Figure 1B). These sensory inputs are integrated for the motor
control of visual gaze through neck muscle motoneurons, antennae, wing, and haltere
kinematics through cognate motor circuits.

In flies therefore, we find an exquisite research model characterized by highly sophisticated
yet tractable motor behaviors that are under the control of many sensory inputs. Some of the
integration algorithms are best understood on the quantitative behavioral level, whereas
others have been resolved electrophysiologically within specific neuronal circuits.
Combined, these results offer insight into how low-level multisensory algorithms produce
high-level behavioral control.

Visual-olfactory integration
Classic experiments with moths flying freely in wind tunnels have revealed that upwind
plume tracking is enhanced by the presence of rich visual feedback generated by a high
contrast visual panorama [9]. Indeed visual feedback is useful for stabilizing an upwind
heading since a flying animal has no other independent sensory reference to a ground vector
[10,11]. However even in the absence of any background ambient wind, fruit flies fail to
locate the source of an attractive odor in the absence of a richly textured visual panorama,
which hints at a visual dependence that is not related to upwind tracking [12**,13].

A simple experiment revealed that attractive odor has a context dependent influence over the
gain of optomotor responses during flight [14*]. Flies were rigidly tethered within a visual
flight simulator and exposed to a plume of apple cider vinegar. The animals were tested for
optomotor responses to two independent axes of optic flow, side-slip translation and rotation
[15-17]. For side-slip, odor has the effect of reducing the amplitude of compensatory
optomotor steering responses, whereas for the same group of flies rotation responses are
amplified (Figure 2A). Increasing the strength of rotation responses would enable a fly to
maintain a straight heading upon exposure to a plume (Fig. 1A), while reduced translation
responses might facilitate approach to a landing surface.

Flies are equipped with a pair of olfactory antennae. In larvae the pair have been shown to
effectively boost signal detection [18**]. In walking adults, the pair have been shown to
encode spatial variations in the static odor gradient [19]. Could flies use the minute intensity
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gradient across the antennae to steer up a plume during flight? An assay was constructed to
measure active tracking of a spatially discreet plume [20]. A fly tethered to a pin and
suspended within a magnetic field, enabling free rotation in the yaw plane, was placed
within a cylinder of light emitting diodes that displayed visual stimuli and thereby allowed
smooth pursuit and saccade behaviors qualitatively similar to those in free flight [21]. The
arena was fitted with a nozzle that delivered a mass-flow regulated vapor stream on one side
of the arena [20]. Flies did not track a control water plume, but actively tracked a plume of
attractive vinegar vapor at identical flow rate.

In the magnet arena, the test for motion-dependent odor tracking required switching from a
high contrast pattern of stripes that generates strong motion cues to an isoluminant grayscale
which evokes no motion cues but maintained the light-adapted state of the photosensory
systems. The switch effectively abolished the flies' ability to actively track the attractive
vinegar plume [12**]. This was consistent with free-flight behavioral results indicating that
flies are unable to locate a source of apple cider vinegar in still air if the walls of a 1-meter
flight arena are lined with uniform grayscale rather than a high contrast checkerboard [13].

To specifically examine whether a fly can track a spatial gradient across the antennae while
in flight, a vertical bar (a very attractive feature for a fly) was rotated around the arena to
visually “drag” the animal 90-degrees to the side of the vinegar plume. Upon “release” each
fly steered directly up the gradient, back toward the odor nozzle (Figure 2B left).
Remarkably, the flies could not re-acquire the plume in the uniform grayscale visual arena
(Figure 2B right) [22].

Strong visual-olfactory behavioral interactions have been documented in several fruit fly
studies [12**-14*,23]. However, it is worth noting that whereas flies won't normally take to
the wing in the dark since they can't see, tethered animals can be coaxed to fly within a dark
arena [11,21]. A featureless grayscale panorama, in which the photosensory systems are
driven without the contrasting features required for motion detection is not equivalent to
flying in the dark, in which there is no photosensory input at all, masking the diurnal
conditions under which flies naturally track plumes but potentially relaxing the visual
dependence on odor tracking.

Visual integration for plume tracking in fruit flies operates only with panoramic visual cues.
Small visual landmarks insufficient to elicit stable plume tracking [12**]. This is in contrast
to what has been shown in hawkmoths, animals that forage for the nectar of visually
conspicuous flowers, and that fuse information about the visual position of a flower and the
spatial location of the plume [24], and may be processed by circuits within the mushroom
body [25*], a neuropile that has been shown to gate decisions and modulate the apparent
perceptual salience of environmental features [26].

However, unlike moths, Drosophila melanogaster are dietary generalists that have no
particular need to visually identify the source of an odor (they alight on a wine glass as
readily as on a piece of fermenting fruit). The evidence shows that odor selectively
modulates optomotor equilibrium responses to facilitate straight flight in a plume. This low-
level integration algorithm does not require object recognition or scene segmentation, but
rather would operate in whatever visual landscape in which the animal may be tracking an
appetitive odor plume.

Olfactory-mechanosensory integration
For Drosophila, the requirement of two intact antennae to track a spatial odor gradient in
flight presents something of a paradox: the vast majority of olfactory sensory neurons
project bilaterally to the first order antennal lobes [27]. There is evidence that unilateral
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stimulation results in higher metabolic activity in the ipsilateral axonal projections [28], but
excitatory post synaptic currents have been shown to be similar across the two antennal
lobes [29].

By contrast to olfactory sensory pathways, all mechanosensory neurons comprising the
Johnston's Organ (JO) project ipsilaterally to a region that integrates antennal
mechanosensory afferents and motor efferents [30], serving antennal proprioceptive and
auditory functions [31]. During tethered flight, normal upwind orientation is perturbed by
JO occlusion [11]. The antennae are sensitive to a rich array of stimuli, but are not passive
sensors. Instead they are articulated with muscles and can be seen to twitch during flight,
which may provide insight into their role in sensorimotor transformations.

Anatomical evidence suggests that third-order chemosensory interneurons and primary
mechanosensory neurons converge in the brain at the antennal motor center [32], which
could potentially provide multisensory coordination of antennal movement and feedforward
activation of steering saccades [22]. Indeed, unilateral immobilization of the JO joint results
in constitutive steering in the contralateral direction (Figure 3). A reasonable hypothesis
motivated both by these results and by work in other insects [33,34], is that in flies antennal
movements are both evoked and sensed during steering maneuvers, and that these feed-
forward and feedback signals are somehow biased by asymmetric olfactory signals to
mediate gradient tracking [22].

Mechanosensory-visual integration
During flight, flies exhibit robust optokinetic stabilization responses to reduce image blur on
the retina [35]. The retina is fixed, so eye movements are controlled by muscles of the neck
that move the whole head. The fly stabilizes its gaze both during saccades [36-38] and also
to counteract unplanned mechanical perturbations such as by a gust of wind [21,39]. Body
rotations are encoded by gyroscopic equilibrium organs called halteres [40] that are
themselves under neuromuscular control and can be steered much like the wings [41]. The
sensory signals from the halteres are electrotonically coupled to wing muscle motoneurons
(Figure 4), forming an extremely fast local reflex circuit to coordinate nearly instantaneous
steering corrections to abrupt changes in body position [42].

There are as yet no physiologically identified inputs directly from the visual system to the
wings. Rather, visual motion evokes muscle potentials in the haltere steering muscles [41],
which would presumably evoke corrective steering responses through the haltere sensory-
motor arc to the wings. Visual and haltere signals also converge upon the neck motor
system. Motoneurons are activated by the summation of visual and haltere afference, which
together bring the motoneurons to firing threshold [43,44*]. The integration of visual and
mechanosensory feedback at neck and haltere motor circuits ensures that amplitude-coded
visual motion signals are transformed into phase-coded motor signals to coordinate the
cycle-by-cycle variations in wing steering kinematics.

Visuo-visual integration
Insects in general and flies in particular have for decades been a rich model system to study
the cellular basis of motion detection [45]. Most of what we understand of motion
processing in the fly brain comes from in the 3rd optic ganglion, the lobula plate, which
houses some 60 large tangential cells (LPTCs). These interneurons have large dendrites and
large receptive fields that are assembled from a retinotopic array of local motion detectors
each with small receptive fields. Within some LPTCs, the spatial specification of local
directional dendritic input is such that the full receptive field of the neuron matches the
spatial patterns of optic flow on the retina generated by specific flight maneuvers such as
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roll or pitch [45]. These complex LPTC receptive fields are formed by a combination of
dendritic integration and lateral synaptic interactions between axons and dendrites. Indeed
fully integrated axonal receptive fields are not restricted to their cognate dendritic inputs, but
rather they also incorporate inputs from neighboring LPTCs though gap junctions [46**].

Remarkably, the LPTCs also receive excitatory input from another visual modality entirely,
the ocelli (Figure 4), which provide information about the overall light level and are thought
to detect the visual horizon [47] and thus help keep the fly oriented upright against the bright
sky [48*] where pursuit targets such as mates or territorial conspecifics would be strongly
contrasted against the ultraviolet rich sky. The excitability of LPTC membranes are
modulated during active flight both by heterosynaptic and neuromodulatory signals
presumably to meet the increased performance demands of flying by comparison to walking
[49,50]. As a result, the dynamic tuning properties of behavioral equilibrium responses
themselves are shaped by the animal's current flight trajectory [51*].

Conclusions
In flies we find the fastest visual kinetics, an olfactory system that approaches the theoretical
limit of chemical sensing, and a mechanosensory system that encodes complex forces on a
wing beat time scale. These sensory systems converge upon one another and upon motor
circuits to enhance the detection of sensory signals and also to synchronize sensorimotor
coordination of high performance locomotion. It would appear that nearly every sensory
modality in flies is wired to every other modality, providing robust reflex arcs that insure
behavioral robustness in a noisy and unpredictable environment. Thus far, we see no
example of a sensory modality that operates entirely independently of the others, making it
difficult to fathom non-deterministic behavior in flies denied feedback from only one
modality [52].

By contrast, under the presumption that any stimulus that is perceived must have been
computed, it would appear that multisensory integration in flies operates in large part at
surprisingly basal computational levels, but results in a highly complex and robust
behavioral repertoire. Similar behavioral complexity can be observed in Braitenberg
vehicles [53] in which simple operational algorithms evoke surprising behavioral
complexity that would not be predicted by first principles.

The future is rich for multisensory research in flies. In cases where the neuronal
microcircuits for multisensory integration have been well described, the behavioral
ramifications have yet to be fully explored. Conversely, in instances where the behavioral
algorithms have been well analyzed, the underlying circuits are mysterious. Future studies
will benefit from integration across these levels of analysis.
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Figure 1.
Behavioral features and multisensory systems. (A) A cartoon highlighting the central
sensory-ecological challenges to a fly: (i) in the absence of sensory cues, search with short
inter-saccade intervals (ISI), (ii) upon acquiring a sensory signal, track the unpredictable
odor plume, (iii) visually stabilize heading and avoid collisions. (B) Select sensory inputs.
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Figure 2.
Visual-olfactory behavioral algorithms. (A) A fly tethered within an electronic visual flight
simulator is presented with a plume of food odor. In response to oscillation of the visual
panorama in an increasing frequency sweep, flies adjust their wing kinematics for a classical
optomotor response. The difference in wing beat amplitude across the two wings (ΔWBA)
is proportional to yaw torque. (B) A fly tethered to a pin and suspended in a magnetic field
beats its wings and steers freely in the horizontal (yaw) plane. A plume of food odor is
delivered at one side of the circular arena (0 degrees, orange triangle). At the start of the
trial, the animal is positioned 90 degrees to the right of the plume (blue arrow). Solid lines
indicate individual flight trajectories, grayscale coded for individuals. Silhouettes indicate
approximate heading at three time points. The spatial odor gradient is not drawn to scale.
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Figure 3.
Gradient tracking requires antennae to be mechanically functional. Experiments are similar
to those in Figure 2, except that the mechanosensory Johnston's organ (JO) of the left
antenna was immobilized with non-toxic epoxy (indicated in red).
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Figure 4.
Multisensory reflex loops revealed by electrophysiology.
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