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Abstract

Social networks with positive and negative links often split into two antagonistic factions. Examples of such a split abound:
revolutionaries versus an old regime, Republicans versus Democrats, Axis versus Allies during the second world war, or the
Western versus the Eastern bloc during the Cold War. Although this structure, known as social balance, is well understood, it
is not clear how such factions emerge. An earlier model could explain the formation of such factions if reputations were
assumed to be symmetric. We show this is not the case for non-symmetric reputations, and propose an alternative model
which (almost) always leads to social balance, thereby explaining the tendency of social networks to split into two factions.
In addition, the alternative model may lead to cooperation when faced with defectors, contrary to the earlier model. The
difference between the two models may be understood in terms of the underlying gossiping mechanism: whereas the
earlier model assumed that an individual adjusts his opinion about somebody by gossiping about that person with
everybody in the network, we assume instead that the individual gossips with that person about everybody. It turns out
that the alternative model is able to lead to cooperative behaviour, unlike the previous model.
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Introduction

Why do two antagonistic factions emerge so frequently in social

networks? This question was already looming in the 1940s, when

Heider [1] examined triads of individuals in networks, and

postulated that only balanced triads are stable. A triad is balanced

when friends agree in their opinion of a third party, while foes

disagree, see Fig. 1. The individuals in an unbalanced triad have

an incentive to adjust their opinions so as to reduce the stress

experienced in such a situation [2]. Once an adjustment is made,

the triad becomes balanced, and the stress disappears.

A decade later, Harary [3] showed that a complete social

network splits in at most two factions if and only if all its triads are

balanced, see also [4]. Such networks are called (socially) balanced

as well. Since then, the focus of much of the research has been on

detecting such factions in signed networks [5,6]. Many signed

networks show evidence of social balance, although the split into

factions might not be exact, that is, they are only nearly socially

balanced [7–10].

What has been lacking until fairly recently, are dynamical

models that explain how social balance emerges. The purpose of

this paper is to analyse two such models. One of these models,

proposed first in [11], was proved to exhibit social balance in [12].

However, this was done under a restrictive symmetry assumption

for the reputation matrix. Here, we continue the analysis of this

model and show that it generically does not lead to social balance

when the symmetry assumption is dropped. In contrast, we

propose a second model that is based on a different underlying

gossiping mechanism, and show that it generically does lead to

social balance, even when reputations are not symmetric.

Moreover, there is a natural connection between negative links

and the evolution of cooperation: we consider positive links as

indicating cooperation and negative links as defection. We will

show that our alternative model is able to lead to cooperation,

whereas the earlier model cannot.

Earlier Model

Certain discrete-time, stochastic dynamics have been investi-

gated [13,14], but they exhibit so-called jammed states [15]: no

change in the sign of a reputation improves the degree of social

balance, as measured by the total number of balanced triads in the

network. A surprisingly simple continuous-time model [11] was

proved to converge to social balance for certain symmetric initial

conditions [12]. The authors assume that the social network is

described by a complete graph (everybody is connected to

everybody), with weighted links representing reputations that

change continuously in time. Let X denote the real-valued matrix

of the reputations, so that Xij represents the opinion i has about j. It

is positive whenever i considers j a friend, and negative if i thinks of

j as an enemy. The network is balanced, if, up to a possible

relabelling of the individuals, the sign structure of X takes one of

two possible block forms:
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Changes in the reputations are modelled as follows:

_XX~X 2, or _XX ij~
X

k

XikXkj , ð2Þ

where _XX denotes the derivative with respect to time of the matrix

X. The idea behind this model is that reputations are adjusted

based on the outcome of a particular gossiping process. More

specifically, suppose that Bob (individual i) wants to revise his

opinion about John (individual j). Bob then asks everybody else in

the network what they think of John. If one such opinion Xkj has

the same sign as the opinion Bob has about his gossiping partner,

i.e. as Xik, then Bob will increase his opinion about John. But if

these opinions differ in sign, then Bob will decrease his opinion

about John.

The analysis for symmetric initial conditions X(0) = XT (0) was

carried out in [12]: First, X(0) is diagonalized by an orthogonal

transformation X(0) = UL(0)UT, where the columns of U are

orthonormal eigenvectors u1,…,un of X(0) so that UUT = In, and

L(0) is a diagonal matrix whose diagonal entries are the

corresponding real eigenvalues l1(0) $ l2(0)$ ? $ ln(0) of X(0).

Direct substitution of the matrix function UL(t)UT shows that it

is the solution of Eq. 2 with initial condition X(0). Here, L(t) is

a diagonal matrix, solving the uncoupled matrix equation
:L~L2 with initial condition L(0). The diagonal entries of L(t)

are obtained by integrating the scalar first order equations

l
:

i~l2
i :

li tð Þ~ li 0ð Þ
1{li 0ð Þt , t [ 0,z?½ Þif li 0ð Þƒ0

0,1=li 0ð Þ½ Þif li 0ð Þw0

�
ð3Þ

Hence, the solution X(t) blows up in finite time if and only if

l1(0) .0. Moreover, if l1(0) .0 is a simple eigenvalue, then the

solution X(t), normalized by its Frobenius norm, satisfies:

lim
t?1=l1 0ð Þ

X tð Þ
DX tð ÞDF

~u1uT
1 : ð4Þ

Assuming that u1 has no zero entries, and up to a suitable

permutation of its components, the latter limit takes one of the

forms in Eq. 1. In other words, if the initial reputation matrix is

symmetric and has a simple, positive eigenvalue, then the

normalized reputation matrix becomes balanced in finite time.

Our first main result is that this conclusion remains valid for

normal initial conditions, i.e. for initial conditions that satisfy the

equality X(0)XT (0) = XT (0)X(0), see SI Text S1, Theorem 2.

Whereas the real eigenvalues behave similar to the symmetric

case, the complex eigenvalues show circular behaviour, which

results in small ‘‘bumps’’ in the dynamics as shown in Fig. 2 (see SI

Fig. S1 for more detail). More precisely, if X(0) is normal and if

l1(0) is a real, positive and simple eigenvalue which is larger than

every other real eigenvalue (if any), then the solution X(t) of Eq. 2

satisfies Eq. 4. Hence, once again, the normalized reputation

matrix converges to a balanced state.

Our second main result is that this conclusion does not carry

over to the case where X(0) is not normal, see SI Text S1,

Theorem 3. This general case is analysed by first transforming

X(0) into its real Jordan-canonical form J(0): X(0) = TJ(0)T–1,

where T consists of a basis of (the real and imaginary parts of)

generalized eigenvectors of X(0). It can then be shown that the

solution X(t) of Eq. 2 is given by TJ(t)T–1, where J(t) solves the

matrix equation _JJ~J2, an equation which can still be solved

explicitly. Hence, X(t) can still be determined. It turns out that if

X(0) has a real, positive and simple eigenvalue l1(0) which is

larger than every other real eigenvalue (if any), then the

normalized reputation matrix satisfies:

lim
t?1=l1 0ð Þ

X tð Þ
DX tð ÞDF

~
u1vT

1

Du1vT
1 D

F

, ð5Þ

where u1 and vT
1 are left and right eigenvectors of X(0)

respectively, that correspond to the eigenvalue l1(0). If we

assume that none of the entries of u1 and v1 are zero, then we

can always find a suitable permutation of the components of u1

and v1 such that they have the following sign structure:

u1~

z

z

{

{

0
BBB@

1
CCCAand vT

1 ~ z { D z {ð Þ

Consequently, in general, the matrix limit in Eq. 5 has the sign

structure:

z {

{ z
D
z {

{ z

� �
,

as illustrated in Fig. 2. Clearly, this configuration doesn’t

correspond to social balance any longer.

Figure 1. Social Balance. The two upper triads are balanced, while
the two lower triads are unbalanced. According to the structure
theorem [3], a complete graph can be split into (at most) two opposing
factions, if and only if all triads are balanced. This is represented by the
coloured matrix on the right, where blue indicates positive entries, and
red negative entries.
doi:10.1371/journal.pone.0060063.g001
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Alternative Model

Let us briefly reconsider the gossiping process underlying model
_XX~X 2. In our example of Bob and John, the following happens.

Bob asks others what they think of John. Bob takes into account

what he thinks of the people he talks to, and adjusts his opinion of

John accordingly. An alternative approach is to consider a type of

homophily process [16–18]: people tend to befriend people who

think alike. When Bob seeks to revise his opinion of John, he talks

to John about everybody else (instead of talking to everybody else

about John). For example, suppose that Bob likes Alice, but that

John dislikes her. When Bob and John talk about Alice, they notice

they have opposing views about her, and as a result the

relationship between Bob and John deteriorates. On the other

hand, should they share similar opinions about Alice, their

relationship will improve. Thus, our alternative model for the

update law of the reputations is:

_XX~XX T , or _XX ij~
X

k

XikXjk: ð6Þ

Although there apparently is only a subtle difference in the

gossiping processes underlying the models in Eq. 2 and 6, these

models turn out to behave quite differently, as we discuss next.

Our third main result is that for generic initial conditions, the

normalized solution of system Eq. 6 converges to a socially

balanced state in finite time. To show this, we decompose the

solution X(t) into its symmetric and skew-symmetric parts:

X(t) = S(t)+ A(t), where S(t) = ST(t) and A(t) = –AT (t). Since _XX~ _XX
T

,

the skew-symmetric part remains constant, and therefore

A(t) = A(0) ; A0. The symmetric part then obeys the matrix

Riccati differential equation _SS~ SzA0ð Þ S{A0ð Þ. We introduce

Z tð Þ~e{A0tS tð ÞeA0t to eliminate the linear terms in this equation,

and obtain

_ZZ~Z2zA0AT
0 : ð7Þ

The latter matrix Riccati differential equation can be integrat-

ed, yielding the solution Z(t) explicitly, and hence S(t), as well as

X(t), can be calculated.

It turns out that if A0 ? 0, then X(t) always blows up in finite

time. Moreover, using a perturbation argument, it can be shown

there is a dense set of initial conditions X(0) such that the

normalized solution of Eq. 6 converges to

lim
t?t�

X tð Þ
DX tð ÞDF

~wwT , ð8Þ

for some vector w, as t approaches the blow-up time t*, see SI Text

S1, Theorem 5. If w has no zero entries, this implies that the

normalized solution becomes balanced in finite time. Hence, the

alternative model in Eq. 6 generically evolves to social balance, see

Fig. 2.

Evolution of Cooperation

Positive and negative links have a natural interpretation in the

light of cooperation: positive links indicate cooperation and

negative links indicate defection. There is then also a natural

motivation for the alternative model in terms of cooperation.

Again, suppose Bob wants to revise his opinion of John. For Bob it

is important to know whether John is cooperative in order to

determine whether he should cooperate with John or not. So,

instead of asking Alice whether she has cooperated with John, Bob

would like to know whether John has cooperated with her. In

other words, Bob is not interested in Xkj but in Xjk, consistent with

Figure 2. The two models compared. The first row illustrates what happens generically for the model _XX~X 2 , while the second row displays the

results for _XX~XX T . Each row contains from left to right: (1) an illustration of the model; (2) the random initial state; (3) the dynamics of the model;
and (4) the final state to which the dynamics converge. Blue indicates positive entries, and red negative entries. Although the first model converges
to a rank one matrix, it is not socially balanced. The second model does converge generically to social balance. The small bumps in the dynamics for
_XX~X 2 are due to complex eigenvalues that show circular behaviour (see Fig. S1).

doi:10.1371/journal.pone.0060063.g002
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Eq. 6, illustrated in Fig. 2. This is also what is observed in studies

on gossip: it often concerns what others did, not what one thinks of

others [19,20].

Indeed gossiping seems crucial in explaining the evolution of

human cooperation through indirect reciprocity [21]. It has even

been suggested that humans developed larger brains in order to

gossip, so as to control the problem of cooperation through social

interaction [22]. In general, the problem is that if defection allows

individuals to gain more, why then do individuals cooperate? This

is usually modelled in the form of a prisoner’s dilemma, in which

each agent has the possibility to give his partner some benefit b at

some cost c,b. So, if an agent’s partner cooperates (he gives the

agent b) but the agent doesn’t cooperate (he doesn’t pay the cost c)

his total payoff will be b. Considering the other possibilities results

in the payoff matrix detailed in Fig. 3.

Irrespective of the choice of the other player, it is better to defect

in a single game. Suppose that the second player cooperates. Then

if the first player cooperates he gains b – c, while if he defects he

gains b, so defecting is preferable. Now suppose that the second

player defects. The first player then has to pay c, but doesn’t have

to pay anything when defecting. So indeed, in a single game, it is

always better to defect, yet the payoff is higher if both cooperate,

whence the dilemma.

In reality, we do observe cooperation, and various mechanisms

for explaining the evolution of cooperation have been suggested

[23], such as kin selection [24,25], reciprocity [26] or group

selection [27]. Humans have a tendency however to also cooperate

in contexts beyond kin, group or repeated interactions. It is

believed that some form of indirect reciprocity can explain the

breadth of human cooperation [21]. Whereas in direct reciprocity

the favour is returned by the interaction partner, in indirect

reciprocity the favour is returned by somebody else, which usually

involves some reputation. It has been theorized that such a

mechanism could even form the basis of morality [28]. Addition-

ally, reputation (and the fear of losing reputation) seems to play an

important role in maintaining social norms [29–31].

In general, the idea is the following: agents obtain some good

reputation by helping others, and others help those with a good

reputation. Initially a strategy known as image scoring was

introduced [32]. Shortly after, it was argued that a different

strategy, known as the standing strategy, should actually perform

better [33], although experiments showed people tend to prefer

the simpler image scoring strategy [34]. This led to more

systematic studies of how different reputation schemes would

perform [35–37]. Although much research has been done on

indirect reciprocity, only few theoretical works actually study how

gossiping shapes reputations [38,39]. Nonetheless, most studies

(tacitly) assume that reputations are shaped through gossip.

Additionally, it was observed experimentally that gossiping is an

effective mechanism for promoting cooperation [40–42].

Moreover, these reputations are usually considered as objective.

That is, all agents know the reputation Xj of some agent j, and all

agents have the same view of agent j. Private reputations–so that

we have Xij, the reputation of j in the eyes of i–have usually been

considered by allowing a part of the population to ‘‘observe’’ an

interaction, and update the reputation accordingly. If too few

agents are allowed to ‘‘observe’’ an interaction, the reputations Xij

tend to become uncorrelated and incoherent. This makes

reputation unreliable for deciding whether to cooperate or defect.

The central question thus becomes how to model private

reputations such that they remain coherent and reliable for

deciding whether to cooperate or not.

Dynamical models of social balance might provide an answer to

this question. Although it allows to have private reputations–that is

Xij–the dynamics could also lead to some coherence in the form of

social balance. In addition, it models more explicitly the gossiping

process, commonly suggested to be the foundation upon which

reputations are forged.

Simulation Results

The reputations of the agents are determined by the dynamics

of the two models. We call agents using _XX~X 2 dynamics type A,

and those using _XX~XX T dynamics type B. We assume that agent

i cooperates with j whenever Xij .0 and defects otherwise. Agents

reproduce proportional to their fitness, determined by their payoff.

Agents that do well (have a high payoff) have a higher chance of

reproduction, and we are interested in knowing the probability

that a certain type becomes fixated in the population (i.e. takes

over the whole population), known as the fixation probability r.

All simulations start off with an equal amount of agents, so if some

type wins more often than his initial relative frequency, it indicates

it has an evolutionary advantage. For the results presented here

this comes down to r .1/2. More details on the simulations are

provided in the Materials and Methods section at the end of the

paper.

The results are displayed in Fig. 4 using a normalized cost of c

= 1 (the ratio b/c drives the evolutionary dynamics, see Materials

and Methods and [23]). When directly competing against each

other, type B has an evolutionary advantage (its fixation

probability rB .1/2) compared to type A, already for relatively

small benefits. When each type is playing against defectors (agents

that always defect), type A seems unable to defeat defectors (rA

,1/2) for any b ,20, while type B performs quite well against

them. When all three types are playing against each other results

are similar (see SI Fig. S2). When varying the number of agents,

the critical benefit b* at which type B starts to have an evolutionary

advantage changes (i.e. where the fixation probability rB = 1/2).

For b.b* agents using the model _XX~XX T have a higher chance

to become fixated, while for b,b* defectors tend to win. The

inequality for type B to have an evolutionary advantage can be

relatively accurately approximated by bwb �~c
ffiffiffi
n
p

where c is

estimated to be around c < 1.7260.037 (95% confidence

interval). Varying the intensity of selection does not alter the

results qualitatively (see SI Fig. S3). Summarizing, type B is able to

lead to cooperation and defeats type A. Based on these results, if a

gossiping process evolved during the course of human history in

order to maintain cooperation, the model _XX~XX T seems more

likely to have evolved than _XX~X 2. For smaller groups a smaller

benefit is needed for the model _XX~XX T to become fixated. This

Figure 3. Prisoner’s Dilemma. Both players have the option to either
Cooperate or Defect. Whenever an agent cooperates, it costs him c
while his partners receives a benefit b.c, leading to the indicated
payoffs.
doi:10.1371/journal.pone.0060063.g003
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dependence seems to scale only as
ffiffiffi
n
p

, so that larger groups only

need a marginally larger benefit in order to develop cooperation.

Conclusion
To conclude, we have shown that the alternative model

_XX~XX T generically converges to social balance, whereas the

model _XX~X 2 did not. The current models exhibit several

unrealistic features, we would like to address: (1) an all-to-all

topology; (2) dynamics that blow-up in finite time; and (3)

homogeneity of all agents. Although most of these issues can be

addressed by specifying different dynamics, the resulting models

are much more difficult to analyse, thereby limiting our

understanding. Although the two models are somewhat simple,

they are also tractable, and what we lose in truthfulness, we gain in

deeper insights: in simplicity lies progress. Our current analysis

offers a quite complete understanding, and we hope it provides a

stepping stone to more realistic models, which we would like to

analyse in the future.

The difference between the two models can be understood in

terms of gossiping: we assume that people who wish to revise their

opinion about someone talk to that person about everybody else,

while the earlier model assumed that people talk about that person

to everybody else. Both gossiping and social balance are at the

centre of many social phenomena [22,29,43,44], such as norm

maintenance [30], stereotype formation [45] and social conflict

[46]. For example, a classic work [29] on the established and

outsiders found that gossiping was the fundamental driving force

for the maintenance of the cohesive network of the established at

the exclusion of the outsiders. Understanding how social balance

may emerge might help to understand the intricacies of these

social phenomena.

Moreover, in light of the evolution of cooperation it appears

that agents using _XX~XX T dynamics perform well against

defectors, and have an evolutionary advantage compared to

agents using _XX~X 2 dynamics. Contrary to other models of

indirect reciprocity, not everybody might end up cooperating with

everybody, and the population may split into two groups. This

provides an interesting connection between social balance theory,

gossiping and the evolution of cooperation. Our results improve

our understanding of gossiping as a mechanism for group

formation and cooperation, and as such contributes to the study

of indirect reciprocity.

Materials and Methods

In the simulations of the evolution of cooperation, the dynamics

consist of two parts: (1) the interaction dynamics within each

generation; and (2) the dynamics prescribing how the population

evolves from generation to generation.

Interaction Dynamics
We include three possible types of agents in our simulations:

Type A uses _XX~X 2 dynamics,

Type B uses _XX~XX T dynamics, and

Defectors have trivial reputation dynamics _XX~0, with

negative constant reputations.

We can decompose the reputation matrix X(t) accordingly into

three parts:

X tð Þ~
XA tð Þ
XB tð Þ
XD tð Þ

0
B@

1
CA,

where XA(t) are the reputations of all agents in the eyes of agents of

type A, XB(t) for type B and XD(t) for defectors. The reputations

XA(0) and XB(0) are initialized from a standard Gaussian

distribution. The initial reputation for XD(0) will be set to a fixed

negative value. To be clear, XD(0) is the reputation of all other

agents in the eyes of defectors, which is negative initially. The

initial reputation of the defectors themselves is of course not

necessarily negative initially. For the results displayed here we

have used XD(0) = 210, but results remain by and large the same

when varying this parameter, as long as it remains sufficiently

negative.

Since we are dealing with continuous dynamics in this paper, we

assume all agents are involved in infinitesimally short games at

each time instance t. Each agent i may choose to either cooperate

or defect with another agent j, and this decision may vary from one

agent to the next. For agents of type A and type B the decision to

Figure 4. Evolution of Cooperation. (A) The fixation probability (probability to be the sole surviving species) is higher for model _XX~XX T than
_XX~X 2 . This implies that the model _XX~XX T is more viable against defectors, and has an evolutionary advantage compared to _XX~X 2 . (B) The point

b* at which the model _XX~XX T has an evolutionary advantage against defectors (i.e. the fixation probability r .1/2) depends on the number of

agents n. The condition for the model _XX~XX T to defeat defectors can be approximated by bwb �~b
ffiffiffi
n
p

, with b < 1.72.
doi:10.1371/journal.pone.0060063.g004
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cooperate is based on the reputation: they defect whenever Xij(t) #

0 and cooperate whenever Xij(t) .0. We define the cooperation

matrix C(t) accordingly.

Cij tð Þ~
0 if Xijƒ0

1 if Xijw0

�

Defectors will simply always defect. Whenever an agent i

cooperates with j the latter receives a payoff of b at a cost of c to

agent i. We integrate this payoff over all infinitesimally short

games from time 0 to time t*, which can be represented as

p gð Þ~ 1

n

ðt�

0

bC tð ÞT e{cC tð Þedt,

where e = (1,…,1) the vector of all ones for a certain generation g.

Evolutionary Dynamics
We have simulated the evolution of cooperation for n

= 10,20,…,60 agents, which stays constant throughout evolution.

We consider four different schemes for initializing the first

generation:

pA(0) pB(0) pD(0)

1. Type A vs Type B 1/2 1/2 -

2. Type A vs Defectors 1/2 - 1/2

3. Type B vs Defectors - 1/2 1/2

4. Type A,B and Defectors 1/3 1/3 1/3

Here pA(0),pB(0) and pD(0) are respectively the proportion of

agents of type A, type B and defectors in the first generation. We

use the vector Ti(g) M {A, B, D} to denote the type of agent i in

generation g, so that Ti(g) = A if agent i is a type A player, Ti(g) = B

for a type B player, and Ti(g) = D for a defector. We are interested

in estimating the probability that a single type takes over the whole

population, known as the fixation probability rA, rB and rD for the

three different types. If a type has no evolutionary advantage, it is

said to be evolutionary neutral, and in that case its fixation

probability is equal to its initial frequency, e.g. for type A

rA = pA(0).

We will keep the population constant at the initial n, and simply

choose n new agents according to their payoff for the next

generation. This can be thought of as choosing n times one of the n

agents in the old generation for reproduction. Let wi denote the

probability that an agent is selected for reproduction, which we

define as

wi~
ebPi gð ÞP
i ebPi gð Þ :

Since we are only interested in the number of agents of a certain

type, we can also gather all payoffs for the same type of agents, and

write

Wq~
X

i:Ti gð Þ~q

wi,

where q M {A, B, D} represents the type of agent. The probability

to select a type A agent, a type B agent or a defector is then

respectively WA, WB and WD. In the next generation, the probability

that agent i is of a specific type q can then be written as

Pr Ti gz1ð Þ~qð Þ~Wq:

This evolutionary mechanism can be seen as a Wright-Fisher

process [47] with fitnesses ebPi gð Þ. It is well known that this process

converges faster than a Moran birth-death process, since it

essentially takes n time steps in a Moran process to reproduce the

effect of one time step in a Wright-Fisher process [47]. Because of

the high computational costs (solving repeatedly a non-linear

system of differential equations of size n2), this process is

preferable.

Higher b signifies higher selective pressure, and leads to a

higher reproduction of those with a high payoff, and in the case

that b R ‘ only those with the maximum payoff reproduce. On

the other hand, for b R 0 this tends to the uniform distribution wi

= 1/n, where payoffs no longer play any role. We have used b
= 0.5 for the low selective pressure, b = 5 for the high selective

pressure, reported in SI Fig. S3. For the results in the main text we

have used b = 1.

For an evolutionary neutral selection in where all Pi(g) = P are

effectively the same, b has no effect, and wi = 1/n. Notice that if

we rescale Pi(g) by 1/c so that the payoff effectively becomes

1

c
Pi gð Þ~ 1

n

ðt�

0

b

c
C tð Þ

T

e{C tð Þedt,

and we rescale b by c, then the reproduction probabilities remain

unchanged. Hence, only the ratio b/c effectively plays a role up to

a rescaling of the intensity of selection. Since the point at which the

evolution is neutral (i.e. r equals the initial proportional

frequency), is independent of b, this point will only depend on

the ratio b/c. So, we normalized the cost c = 1. To verify this, we

also ran additional simulations with different costs, which indeed

gave the same results.

We stop the simulation whenever one of the types becomes

fixated in the population. With fixation we mean that all other types

have gone extinct, and only a single type remains. If no type has

become fixated after 1,000 generations, we terminate the

simulation and count as winner the most frequent type. This

almost never happens, and the simulation usually stops after a

relatively small number of generations.

In total, we repeat this process 1,000 times for the results in the

main text, and for the low (b = 0.5) and high (b = 5) selective

pressure 100 times. This means that we run the evolutionary

dynamics until one of the types has become fixated, and we record

which type has ‘‘won’’. After that, we again start from the first

generation, and run until fixation, and repeat this. Finally, we

calculate how many rounds a type has ‘‘won’’ compared to the

total number of rounds, which yields the fixation probability r.

Supporting Information

Figure S1 Phase portrait of system S12-S13. Circular

orbits in the upper half plane (a .0) are traversed counter

clockwise, whereas circular orbits in the lower half plane (a ,0) are

traversed clockwise.

(TIFF)

Figure S2 Results including type A, B and defectors.

(TIFF)
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Figure S3 Results different intensities of selection.
(TIFF)

Text S1 Proofs and details of statements in the main
paper.
(PDF)
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