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Abstract Oxidative stress and inflammation are in-
creased with advancing age. Evidence suggests that
oxidative stress and inflammation both lead to im-
paired vascular function. There is also evidence to
suggest that inflammation may cause an increase in
radical production leading to enhanced oxidative
stress. In addition, oxidative stress may cause an in-
crease in inflammation; however, the interactions be-
tween these factors are not fully understood. In this
review, we propose the vascular health triad, which
draws associations and interactions between oxidative
stress and inflammation seen in ageing, and the conse-
quences for vascular function. We review evidence sug-
gesting that exercise may ameliorate the age-related
decline in vascular function, through reductions in both
oxidative stress and inflammation.
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Introduction

Increased oxidative stress (Dhalla et al. 2000) and
increased inflammation (Ross 1999) are risk factors
for cardiovascular disease. In addition, vascular dys-
function is an early marker of poor cardiovascular
health (Cohn 1999), which may occur as a result of a
number of factors that alter as we age. Here, we
propose a vascular health triad, which relates oxidative
stress and inflammatory processes with vascular dys-
function. It is well characterised that oxidative stress
(Harman 1956), inflammation (Singh and Newman
2011) and vascular function (Pierce et al. 2009) are
all altered in ageing. The aim of this review was to
describe the current understanding of the associations
and interactions between oxidative stress, inflammation
and vascular dysfunction, with a particular emphasis on
ageing. Potential mechanisms of interaction will be dis-
cussed including nitric oxide (NO) bioavailability, low
density lipoprotein oxidation, upregulation of pro-
inflammatory proteins and nuclear factor-[kappa] B
(NF-κB) as a potential integrative transcription factor.
Finally, exercise is discussed as potential intervention to
perturb the interactions between these processes.

Oxidative stress

Reactive oxygen and nitrogen species (RONS) are
highly reactive free radical species, characterised by
the presence of one or more unpaired electrons in their
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outer shells. RONS are natural derivatives of cellular
oxidation processes, key in the regulation of normal
biological processes such as cellular respiration and
signalling. The reduction of molecular oxygen to form
superoxide (O2

·−) is central in directly or indirectly
forming many other RONS such as peroxynitrite
(ONOO·−), lipid peroxyl radicals and the highly toxic
hydroxyl radicals. Antioxidants are a counterbal-
ance to the reactivity of RONS, comprising enzymatic
(superoxide dismutase (SOD), glutathione peroxidise,
glutathione reductase and catalase) and non-enzymatic
(glutathione (GSH) and vitamins C and E) sources.
Oxidative stress is a state that may arise when a sub-
stantial pro-oxidant shift in the balance between RONS
and antioxidants occurs. Subsequent radical-induced
modification to cellular biomolecules such as proteins,
lipid and DNA is characterised by adduct formation
(Harman 1956). Some antioxidants, such as glutathione,
function by directly interacting with RONS, mimicking
their downstream targets and reducing oxidative stress.
In situations where antioxidant defences sequester
RONS, the net effect is the promotion of adaptive phys-
iological responses, such as increased expression of
protective enzymes and stress proteins (Ji 2001) that
help to maintain redox balance and preserve free cellular
thiols (Jacob and Ba 2011).

Due to the transient nature of RONS, it is common
practice to measure the formation of adducts, which
may act as “footprints” of radical-mediated reactions.
Care must be taken in interpretation of results; employ-
ing this methodology as markers of oxidative stress are
not necessarily measures of radical production. Common
biomarkers of oxidative stress include protein carbonyls,
malondialdehyde and isoprostanes, 3-nitrotyrosine
(3NT) and 8-hydroxydeoxyguanosine that measure pro-
tein oxidation, lipid peroxidation, protein nitration and
DNA oxidation, respectively. Similarly, antioxidant
measures include SOD, catalase, glutathione (GSSG/
GSH ratio) and total antioxidant capacity (Harman
1956).

Inflammation

Inflammation is a bodily defence mechanism that is
initiated in response to tissue damage or infection,
mediated by signalling cytokine molecules and charac-
terised by the influx ofmigrating leukocytes (Medzhitov
2008). Acute inflammation is a transient, adaptive

response leading to transcriptional activation of multiple
anti-inflammatory cytokines, whereas chronic inflam-
mation is characterised by an “overdrive” of inflamma-
tory mediators, progressing to increased levels of low-
grade systemic inflammation (Stevens et al. 2005). In-
creased levels of low-grade systemic inflammation are
implicated in many disease states, notably dementia
(Engelhart et al. 2004), rheumatoid arthritis (Lee and
Weinblatt 2001) and cardiovascular disease (Tracy
1998). Indeed C-reactive protein (CRP), a marker of
vascular inflammation, is present within most athero-
sclerotic plaques and is implicated in the pathogenesis,
progression and complications of cardiovascular disease
(Devaraj et al. 2009).

The inflammatory response (Fig. 1) is initiated by a
rapid infiltration of leukocytes to the site of infection,
which then engulf the invading pathogen. During this
response, neutrophils weakly adhere to the blood ves-
sel wall via cellular adhesion molecules (CAMS),
initiating a rolling motion (Mayrovitz et al. 1977).
The release of neutrophils to the site of infection is
then mediated by a chemotactic gradient across the
endothelial wall. Interleukin-1β (IL-1β) has been
identified as the chemokine involved in this initial
inflammatory process, alongside interleukin-8 (IL-8),
which directly recruits neutrophils to the site of tissue
damage (Utgaard et al. 1998). Another cytokine,
interleukin-6 (IL-6), then recruits monocytes into
blood vessels, instigating the differentiation of mono-
cytes into pathogen-disposing macrophages (Kaplan-
ski et al. 2003). Additionally, tumour necrosis factor-
alpha (TNF-α) is involved in the recruitment of
CAMS to the endothelial wall (Willerson and Ridker
2004; Bruunsgaard 2005). Inflammation can be quan-
tified by monitoring total or subpopulations of white
blood cells and/or measures of inflammatory signal-
ling cytokines, such as IL-1β, IL-6, IL-8 and TNF-α.

Vascular dysfunction

The healthy human vasculature displays multiple anti-
inflammatory and anti-atherogenic processes, in order
to protect it against disease. Vascular dysfunction is
the impairment of blood vessel function, ensuing from
numerous factors that disrupt the balance of vasoac-
tive substances within the endothelium. The single cell
endothelium lining blood vessels, once thought to be
an inert barrier, are responsible for the release of
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multiple vasoactive substances, in particular NO
(Rubanyi 1993). NO is a vasodilator that can cause
direct relaxation of smooth muscle, augmenting blood
flow and substrate delivery to tissues. NO also has
multiple anti-atherogenic properties that prevent leu-
kocyte and platelet adhesion to the vessel wall (Kubes
et al. 1991). The balance of vasodilatatory factors,
such as NO, with vasoconstrictive factors, such as
endothelin-1 (ET-1), influences the health of the vas-
culature. Reduced bioavailability of NO and/or ex-
pression of endothelial nitric oxide synthase (eNOS)
significantly reduces endothelium-dependent dilation
(EDD), resulting in numerous processes that over time
can progressively impair vascular function and initiate
cardiovascular complications (Sandoo et al. 2010).

NO is a transient molecule, due to its rapid oxida-
tion in vivo (Beckman et al. 1990), and is therefore
very difficult to directly monitor in blood or urine. A
number of different measures have been used to try to
assess NO availability. Traditional methods involve
functional assessments of NO-related vasomotion in
response to physiological and/or pharmacological
stimuli. Additionally, circulatory markers of NO in
plasma and urine are commonly used as indicators of
endothelial function and damage in vivo (Moshage et
al. 1995). The metabolites of NO, nitrite (NO2

−) and
nitrate (NO3

−) have recently been assessed to monitor
NO bioavailability in exercising humans (Lauer et al.
2008). Quantification of these metabolites (NOx) is

achieved using a luminescent assay-based technique
(Moshage et al. 1995).

The aged human vasculature

The ageing human vasculature is associated with a
gradual decline in EDD (Seals et al. 2011) which
may manifest over time as increased large artery stiff-
ness (reduced compliance) and increased intima-media
wall thickness (Tanaka et al. 2000). For an overview
of the assessments of endothelial function and lifestyle
and biological factors that affect the vasculature with
ageing, the reader is referred to a recent review by
Seals et al. 2011. As the current review is related to
oxidative stress and inflammation, the following sec-
tions will focus on their interactions as well as their
associations with vascular dysfunction. Many studies
attempting to elucidate the mechanisms behind this
decline have employed animal models. However, re-
cent evidence has demonstrated for the first time in
humans that an age-related reduction in endothelial
function was a result of decreased NO (Rodriguez-
Manas et al. 2009). Rodriguez-Manas et al. (2009)
showed enhanced levels of O2

·− and ONOO·− along-
side a reduction in endothelial dilations to NO-
dependent bradykinin. Increases in oxidative stress
and vascular wall inflammation are thought to be
pivotal in the mechanisms that reduce availability of
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Fig. 1 Inflammatory
response. Typical inflamma-
tory response to a stimulus
(infection, physical or men-
tal stress). Blood leukocytes
travel to the site of tissue
damage through the actions
of cytokine mediators
(IL-1β, IL-8, IL-6 and
TNF-α), disposing of
foreign bodies
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NO, indeed, theories have suggested for some time
that low-grade systemic inflammation (Chung et al.
2001) and enhanced oxidative stress (Harman 2006)
could be the root of many age-related vascular pathol-
ogies. Enhanced inflammation and oxidative stress
can cause migration of lymphocytes, lipids and fibrous
elements into the vessel wall, resulting in a disrupted
homeostatic equilibrium within the vascular tree. These
physiological alterations to blood vessels, alongside
reduced availability of NO can decrease substrate deliv-
ery to tissues, promoting further pro-inflammatory and
oxidative transcription.

Oxidative stress and vascular dysfunction with age

The deleterious effects of oxidative stress have been
implicated in ageing for more than 50 years. Since
Harman proposed the “free radical theory of ageing”
in 1956, free radicals have been thought to progres-
sively disrupt cellular processes as we age (Harman
1956). Despite lifestyle modifications (i.e. diet, phys-
ical activity and medical care), Harman suggested that
an inborn ageing process was attributable to the in-
creased accumulation of radical-induced adducts on
cellular constituents, resulting in progressive structural
and functional changes. Ageing is also associated with
a decrease in circulating antioxidants (Pinzani et al.
1997). Higher levels of oxidative stress in ageing have
been associated with reduced vascular function
(Donato et al. 2007), and of particular interest is the
impact of oxidative stress on plasma low-density lip-
oproteins (LDL). Brinkley et al. (2009b) showed that
enhanced modification of the protein and lipid com-
ponents of LDL is paralleled with an impairment of
vascular function and a stiffening of the arteries.

A key mechanism implicated in the altered oxida-
tion status of LDL, and thus vascular dysfunction, is
the interaction between NO and O2

·−. Endothelium-
derived NO has a high tendency to react with oxidants,
in particularly O2

·−. During cellular stresses, this can
lead to the formation of the potent-free radical
ONOO·− (Pryor and Squadrito 1995). O2

·− and
ONOO·− production have both been shown to increase
with age and elevated levels of these radicals have
been proposed to enhance adduct formation and thus
contribute to the age-related decline in vascular function
(Rodriguez-Manas et al. 2009). ONOO·− formation di-
rectly removes NO from the vascular endothelium and

can therefore reduce the vasodilatory capacity of the
vessel. ONOO·− can also interact with the tyrosine res-
idues of proteins (e.g. protein component of LDL),
which results in the formation of 3NT, a compound
recognised as a stable marker of protein nitration
(Hensley et al. 1997). ONOO·−-modified LDL interac-
tion with invading macrophages is directly linked with
the progression of atherosclerosis (Leeuwenburgh et al.
1997). Large quantities of modified LDL can be loaded
into macrophages via enhanced uptake by “scavenger
receptors” (Goldstein et al. 1979). This unregulated
accumulation of modified LDL can lead to the forma-
tion of atherosclerotic lesions within the vasculature,
directly narrowing blood vessels and reducing blood
flow capacity. Enhanced O2

·− and ONOO·− formation
within aged vasculature can therefore functionally and
morphologically impair vascular function, by reducing
NO bioavailability to the endothelium and hence reduc-
ing the ability to dilate and by physically narrowing
blood vessels due to plaque formation.

Inflammation and vascular dysfunction with age

Inflammatory proteins (Il-1β, TNF-α, IL-6 and CRP)
are continuously upregulated during the ageing pro-
cess, inducing higher systemic concentrations of in-
flammatory mediators (Roubenoff et al. 1998).
Numerous factors are associated with increased in-
flammation as we age, notably enhanced sarcopenia
and decreased sex hormones (Chung et al. 2009).
Increased visceral adiposity is associated with en-
hanced release of IL-6 and TNF-α (Trayhurn and
Wood 2005), via the redistribution of macrophages
to the excess adipose tissue (Singh and Newman
2011). Correlations between IL-6 and TNF-α with
sarcopenia in elderly subjects also link inflammation
with reduced muscle mass in ageing (Visser et al.
2002). Additionally, elevated concentrations of IL-6
seen with age have been correlated with reduced sex
hormones oestrogen and androgen (Ray et al. 1997). It
is worth noting that dehydroepiandrosterone, an abun-
dant precursor for testosterone and known to have anti-
oxidant properties (Aldred and Griffiths 2004), is also
decreased with age (Labrie et al. 1997). This is an
example of a number of indirect associations between
oxidative stress and the inflammatory process in ageing.

The observed increase in inflammatory mediators
seen with age can initiate numerous processes that
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lead to impaired vascular function and promotion of
cardiovascular and metabolic complications (Kim et
al. 2006). CRP and TNF-α can directly disrupt the
balance of vasoactive factors within the vasculature by
downregulating the expression of eNOS (Singh et al.
2007; Zhang et al. 2009) and by activating ET-1
(Verma et al. 2002). This shift has also been linked
to an enhanced expression of CAMS within the vas-
culature (Pasceri et al. 2000). Overexpression of
CAMS during low-grade inflammation can result in
invading leukocytes, present during inflammation, ad-
hering to the endothelial wall (Willerson and Ridker
2004). Over time, inflammation-induced leukocyte
adhesion can progressively alter the structure of the
vessel wall (Sluiter et al. 1993), reducing blood flow
capacity as described earlier. Similar to the oxidative
stress/vascular function interaction, these effects are
both direct and indirect mechanisms of reducing NO
bioavailability to the endothelium and thus impairing
vascular function. Hence, it appears that both oxidative
stress and inflammatory processes can induce a marked
reduction of endothelium-derived NO.

NO bioavailability with age

In addition to reduced NO availability as described
above, previous research has also suggested that oxi-
dative stress and inflammatory processes seen in age-
ing may disrupt the chain of NO synthesis and
function. Nitric oxide synthase (NOS) is the key reg-
ulatory enzyme in the synthesis of NO, comprising
endothelial (eNOS), inducible (iNOS) and neuronal
(nNOS) isoforms, regulated under specific conditions.
Notably, eNOS is responsible for producing relatively
small amounts of transient NO, involved in dilating
the endothelial layer (Moncada and Higgs 1993),
whereas during periods of elevated inflammation,
iNOS produces much larger amounts of NO in a
sustained response to kill invading microorganisms
(Vane et al. 1994). NOS utilises the substrate L-argi-
nine and cofactor tetrahydrobiopterin (BH4) to form
NO with molecular oxygen (Lundberg et al. 2008).
Recent evidence has demonstrated decreased avail-
ability of L-arginine (Bode-Böger et al. 2003) and
BH4 (Eskurza et al. 2005) in sedentary older adults.
Additionally, evidence has directly linked these reduc-
tions in L-arginine availability to eNOS, with elevated
levels of oxidised LDL (Wang et al. 2011).

Despite conflicting evidence from animal-based lit-
erature showing increased (van der Loo et al. 2000),
decreased (Rippe et al. 2010) and unchanged (Yang et
al. 2009) eNOS expression in ageing animals, recent
evidence in humans has indicated that NO production
is well preserved in older adults (Rodriguez-Manas et
al. 2009). Rodriguez-Manas et al. (2009) showed sim-
ilar levels of eNOS in all subjects across a wide age
range (18–91 years); however, mRNA levels of iNOS
were markedly increased in the microvascular tissue of
older subjects, alongside an age-related decline in
NO-mediated vasodilatation. Additionally, subjects
showed increased production of O2

·−, and also
ONOO·−with age, indicating enhanced O2

·− scavenging
of NO. Hence, a paradox appears whereby in ageing
humans there is elevated NO production within the
vasculature, associated with reduced NO bioavailability,
due to free radical scavenging. Firstly, the production of
NO via iNOS is a markedly different response to that of
NO via eNOS. Beyond the low levels of NO needed to
transiently dilate smooth muscle cells, the large amounts
of NO produced via iNOS surpass the physiological
amounts required to dilate the vessel in a long and
sustained manner, acting toxic, as well as also being
susceptible to oxidative reactions (Guzik et al. 2003).
As shown by Rodriguez-Manas et al. 2009 and previ-
ously (van der Loo et al. 2000), there are higher levels of
ONOO·− formation in older adults when higher levels of
NO and O2

·− are coexistent. In addition to this, substrate
and cofactor availability can indirectly exacerbate levels
of oxidative stress further in ageing. In vitro evidence
has demonstrated that under conditions of low substrate
and/or cofactor availability that NOS may directly pro-
duce O2

·− (Xia 2007). Seeing as iNOS, not eNOS, is
chronically upregulated in ageing (Rodriguez-Manas et
al. 2009) it seems likely that iNOS is the NOS isoform
depleting substrate and cofactor availability in ageing.
However, with no direct evidence of this in older
humans, it is possible that both isoforms present within
vasculature may directly formO2

·−. Indeed, in older rats,
reduced BH4 availability has been associated with in-
creased O2

−· production by eNOS (Jacobson et al.
2007), an increased presence of nitrolysated proteins
on eNOS and reduced endothelial-dependent dilation
(Yang et al. 2009).

NO production by eNOS appears to be preserved
with age, and the age-associated upregulation of iNOS
may initially act to counteract conditions of high ox-
idative stress and inflammation, to aid NO-mediated
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dilation. However, a vicious cycle may then develop
whereby production of NO from iNOS is scavenged
by O2

·−, forming ONOO·−, in the process abolishing
negative feedback to iNOS to reduce the production of
further NO. The resultant stimuli (i.e. oxidative stress
and/or inflammation) to produce excessive amounts of
NO may then: (a) reduce cofactor and substrate avail-
ability, thus increasing O2

·− formation by NOS (eNOS
or iNOS), thus enhancing further radical scavenging or
(b) produce excessive quantities of NO in a sustained
manner that may act toxic to cells. All these factors,
coupled alongside enhanced production of vasocon-
strictive factors, such as ET-1 with age (Donato et al.
2009a), can act to disrupt endothelial homeostasis and
impair vascular function. Further research is required
to elucidate the precise mechanisms involved in the
known age-dependent decline in NO availability that
link impaired vascular function with increased oxidative
stress and inflammation.

Oxidative stress and inflammation—interactions/
similarities

The separate interactions between oxidative stress and
inflammation with vascular dysfunction are well char-
acterised and some of the key aspects are described
within this review; however, the specific interaction
between oxidative stress and inflammation has
never been fully elucidated. Oxidative stress and pro-
inflammatory processes are often deemed to bemutually
dependent, with many studies suggesting that oxidative
stress is a direct stimulus for inflammation and vice
versa (Kim et al. 2006). Both are implicated in a number
of diseased states, most notably rheumatoid arthritis
(RA) (Seven et al. 2008), a chronic systemic disease
characterised by persistent high-grade systemic inflam-
mation. Seven et al. (2008) noted that the higher levels
of systemic inflammation found in RA patients correlat-
ed with enhanced protein carbonyl and lipid hydroper-
oxide formation, as well as reduced GSH levels.
Similarly, RONS (Donato et al. 2007) and inflammatory
cytokines (Pierce et al. 2009) have both been shown to
stimulate the redox-sensitive transcription factor NF-
κB, and although NF-κB is a relatively non-specific
transcription factor, this does link oxidative stress and
inflammationwith a common integrative source. NF-κB
is a transcription factor expressed in mammalian cells
that mediates the expression of genes controlling

cellular inflammation, redox status and tissue specific
enzymes (Ungvari et al. 2007). Different oxidative and
inflammatory signals can have markedly different
effects on NF-κB transcription in different cell and
tissue types. The propagation of signals from upstream
kinases such as the mitogen-activated protein kinase
(MAPK) can transmit extracellular to intracellular sig-
nals with a great degree of variety or specificity (Seger
and Krebs 1995), differentially activating NF-κB.

Evidence in support of the mechanistic pathways
between oxidative stress and inflammation are lack-
ing. It has been established in vitro that neutrophils
present during an inflammatory response may directly
produce ROS, such as O2

·− (Babior et al. 1973). Of the
limited studies that assess oxidative stress-induced
inflammation, the majority have done so in vitro, link-
ing enzymes and intermediate signalling molecules
with an enhanced inflammatory response, during peri-
ods of heightened oxidative stress. However, the role
of prostaglandins and thioredoxin (TRX) in the inter-
actions between oxidative stress and inflammation are
worth noting. Prostaglandins are compounds derived
from fatty acids that regulate cellular growth and dif-
ferentiation near the site of their release. It has been
proposed that prostaglandins may directly modify
components of the electron transport chain, thus dis-
rupting ATP generation and elevating radical leakage
(Kondo et al. 2001). Equally, prostaglandins have
been shown to be elevated 1,000 times above their
baseline concentrations at the site of both acute
(Offenbacher et al. 1986) and chronic inflammation
(Gilroy et al. 1999). Of interest are the interactions of
15-deoxy-delta-12,14-prostaglandin J2 (15 d-PGJ2)
with NF-κB. 15 d-PGJ2 is a dehydrated product of
prostaglandin D2 and a ligand for the transcription
factor PPARγ. It appears that radicals produced from
15 d-PGJ2-induced disruption of the electron transport
chain can signal via MAPK to directly upregulate
expression of IL-8 cytokines and initiate inflammation
(Fu et al. 2002). It is well documented that RONS can
signal through the MAPK family (Cuadrado and
Nebreda 2010), and IL-8 is a cytokine known to
recruit neutrophils at the beginning of the inflammatory
response (Utgaard et al. 1998).

TRX is a ubiquitous oxidoreductase protein present
within the cytoplasm, nuclei and mitochondria of cells
(Go et al. 2007). TRX can exist in a reduced or
oxidised state, dependent on the level of systemic
oxidative stress and activity of TRX reductase and

710 AGE (2013) 35:705–718



peroxidase. When in a reduced state, TRX can act as
an antioxidant, utilising its thiol group to directly
scavenge ROS, as well as activating the expression
of various antioxidant enzymes (Burke-Gaffney et al.
2005) and regenerating GSH (Tan et al. 2010) and
vitamin C (May et al. 1997). However, recent evi-
dence has implicated a TRX binding protein,
thioredoxin-interacting protein (TXNIP), as a link be-
tween elevated oxidative stress and inflammation
(Zhou et al. 2010; World et al. 2011). In resting cells,
TXNIP is bound to TRX via a disulphide bound,
promoting TRX in its oxidised form (Patwari et al.
2006). An increase in ROS has been shown to promote
dissociation of TXNIP from TRX, enabling TRX to
scavenge ROS, whilst TXNIP activates the inflamma-
tory cytokine, IL-1β via the NLP3 inflammasome
(Zhou et al. 2010). Previous evidence supports TRX
involvement with inflammatory cytokine production
(IL-1α, IL-6, IL-8, TNF-α and IL-2) (Yamada et al.
2003; Schenk et al. 1996). It therefore appears that
despite the antioxidant properties of TRX, it may also
act indirectly via TXNIP to enhance the inflammatory
signal during periods of heightened oxidative stress.
Additionally, overexpression of TXNIP has been as-
sociated with impaired NO-dependent endothelial cell
function (Schulze et al. 2006) and is thus of interest in
the progression of cardiovascular pathologies (Spindel
et al. 2012).

It may be possible that TRX, prostaglandins and
other unidentified mediators are responsible for am-
plifying the inflammatory signal under conditions
where oxidative stress is enhanced, rather than RONS
inducing inflammation directly. However due to a lack
of studies in this area, this is mainly a speculation.
Additionally, oxidative stress-induced damage to cel-
lular biomolecules such as proteins, lipids and DNA
may well initiate inflammation in response to damage
(Ungvari et al. 2010).

NF-κB and vascular dysfunction

In addition to NF-κB being a transcription factor com-
mon to both inflammation and oxidative stress, it has
been established that NF-κB activity correlates with
the reduced EDD seen in ageing (Pierce et al. 2009),
thus making NF-κB an integral factor in the proposed
vascular health triad (Donato et al. 2009b). The role of
NF-κB in age-related vascular dysfunction is reviewed

in greater detail by Donato et al. (2009b). Donato et al.
(2007) showed that older men had an increased activity
of NF-κB, higher CRP and 3-NT levels and reduced
endothelial function than younger men. A subsequent
study by Pierce et al. directly underlined the role of
NF-κB in vascular dysfunction by inactivating NF-κB
with salsalate in overweight adults (52–68 years) (Pierce
et al. 2009). Endothelial function was markedly in-
creased (74 %) following salsalate administration, con-
current with reduced 3-NT and NADPH oxidase
activity. Taken together, there is overwhelming evidence
to suggest that redox-sensitive NF-κB is poignant in the
transcriptional activation of further pro-inflammatory
and pro-oxidative genes, which culminates in reduced
vascular function.

The vascular health triad

Evidence strongly suggests that a pro-inflammatory
phenotype throughout the vascular tree is paralleled by
higher levels of cellular and tissue oxidative stress. From
the evidence discussed in this review, it is clear that this
predisposes the vasculature to impaired vascular func-
tion throughmultiple mechanisms, notably reduced NO,
damaged LDL and enhanced adhesiveness for circulat-
ing leukocytes. We therefore propose a tightly regulated
model (Fig. 2), integrating inflammatory and oxidative
processes with vascular dysfunction, primarily mediated
by the transcriptional factor NF-κB and targeting down-
stream NO bioavailability. This model is cyclic in na-
ture, with vascular dysfunction creating an environment
that favours further inflammation and oxidative stress.

Evidence in support of this model has been demon-
strated previously (Clapp et al. 2004). Clapp et al. (2004)
induced an inflammatory response in healthy subjects
and observed a decrease in total antioxidant status as well
as reduced endothelial function. Despite no direct mea-
sure of radical production, this study lends support to our
model (Fig. 2), indicating that inflammation-induced
oxidative stressmay impair endothelial function, through
reductions in NO availability.

The effect of exercise on oxidative stress
and inflammation in ageing

Exercise is beneficial for health and is known to im-
prove cardiovascular function, physical fitness and
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psychosocial health (Metsios et al. 2008). Regular
exercise is associated with a reduction in multiple
cardiovascular risk factors such as correction of lipo-
protein profiles, lowered fat mass and blood pressure
(Shephard and Balady 1999) as well as improved
vascular function (Clarkson et al. 1999) and enhanced
NO release (Lewis et al. 1999). Implicated within the
Vascular Health Triad, low-grade systemic inflamma-
tion (Colbert et al. 2004) and oxidative stress (Donato et
al. 2010) are two processes also seen to independently
decline as a result of regular exercise.

The interactions between oxidative stress and in-
flammation during and after exercise are frequently
researched, primarily concerning the links between
muscle metabolism and muscle damage (Peake et al.
2007). At a cellular level, exercise in humans is known
to stimulate an outflow of inflammatory mediators and
free radicals across the active muscle bed (Bailey et al.
2003), with markers of both oxidative stress and in-
flammation seen for hours, even days following ces-
sation of exercise (Michailidis et al. 2007; Petersen
and Pedersen 2005). From a number of recent studies
using antioxidant supplementation, the essential role

of free radicals and inflammatory cytokines has been
outlined in the body’s adaptations to exercise. These
studies aimed to attenuate exercise-induced muscle
damage via decreases in both oxidative stress and
inflammation. However results showed that antioxi-
dant supplementation blocked essential adaptations,
such as mitochondrial biogenesis and endurance ca-
pacity (Gomez-Cabrera et al. 2008). Interestingly also,
antioxidant supplementation has been shown to block
the anti-inflammatory response to exercise, by reduc-
ing muscle-derived IL-6 production (Fischer et al.
2004; Vassilakopoulos et al. 2003). This underpins
further the links between oxidative stress and inflam-
mation. Evidence suggests that it is only when the
exercise intensity is high or exhaustive, then it may
be associated with an overwhelming burst of oxidants
and inflammatory mediators, that may subsequently
damage cellular biomolecules such as proteins and
lipids (Packer 1997; Radak et al. 1999).

Age-related changes in cellular structure and func-
tion, combined with the enhanced exercise-induced
muscle damage and reduced muscle repair and regen-
eration seen with age (McArdle et al. 2002), may well
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exaggerate cellular and vascular oxidative damage and
inflammation in response to exercise in older age (Ji
2001). Indeed, there is evidence to suggest that the
age-related decline in vascular function is present not
only under resting conditions but also in response to
acute exercise (Donato et al. 2010). However, an
adaptive vascular response to exercise still exists in
older age (DeSouza et al. 2000; Donato et al. 2010;
Wray et al. 2009). Indeed, regular exercise has been
shown to attenuate multiple factors associated with
age-related vascular dysfunction, independent of tra-
ditional cardiovascular profile changes (Green et al.
2003). Colbert et al. (2004) determined lower levels of
TNF-α, IL-6 and CRP in physically active older sub-
jects than sedentary counterparts (70–79 years). Sim-
ilarly, Donato et al. (2010) assessed brachial artery
vasodilation in young and old subjects before and after
6 weeks of training, concurrent with either pre-exercise
placebo or antioxidant supplementation. Prior to train-
ing, brachial artery vasodilation was impaired in older
subjects; however, antioxidant supplementation restored
normal vascular function comparable to that in younger
subjects. Training independently improved brachial ar-
tery vasodilation, but repeated antioxidant supplemen-
tation had no effect on vascular responsiveness.
Training in older subjects appears to have induced an

increase in antioxidant capacity, therefore diminishing
the effect of exogenous antioxidants. Elderly muscle
therefore appears to have a hemodynamic reserve (Wray
et al. 2009) that is masked by a high background of
oxidative stress but reversed with regular exercise.

Exercise in the ageing population would appear to
be a beneficial behavioural intervention to improve
cardiovascular health. However, future studies are still
required to ascertain the optimal exercise dose (i.e.
intensity, frequency, duration and modality) to achieve
optimal vascular adaptations in individuals with higher
baseline levels of oxidative stress and inflammation.
The relationship between the type of exercise performed
and the magnitude of free radical production has yet to
be established. In ageing in particular, a fine line may
well exist between the production of free radicals that
can achieve optimal adaptations within skeletal muscle
and an amount that may cause damage.

NO availability and exercise in ageing

Despite the outlined reduction in NO bioactivity with
age, improvements in vascular function have been
seen in exercise studies in older age (DeSouza et al.
2000). This suggests that improvements in NO release

Fig. 3 The Progression of
Ageing. Overview of the
mechanisms that contribute
to cardiovascular patholo-
gies with age. Question
mark represents potential
additional mechanisms not
discussed in current review
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(i.e. increased substrate and cofactor) and reduced
scavenging of NO may be achieved using exercise
interventions. Recent evidence from studies investi-
gating NOx has shown an impaired ability of aged
vasculature to produce NO (Lauer et al. 2008; Brinkley
et al. 2009a). Lauer et al. (2008) showed that exercise
stress to exhaustion increased plasma levels of NO2

·−in
younger subjects (+38 %), but there was a reduced
capacity in older subjects (+13 %), concurrent with
reduced endothelial function. Extending these findings
to ascertain whether training-induced improvements in
NO bioactivity could occur in older subjects, Brinkley et
al. (2009a) assessed NOx before and after a 24-week
exercise intervention (75 % VO2MAX) in older subjects
(50–75 years), with simultaneous measures of forearm
blood flow (FBF). Surprisingly, regular exercise was
associated with no changes in plasma NOx or FBF,
despite associated improvements in maximum oxygen
consumption, HDL cholesterol, triglycerides and body
fat. In contrast to these observations, training-induced
improvements in vascular function have been recently
demonstrated in older subjects (Donato et al. 2010).

Future studies are required to clarify how levels of
NOx are perturbed in response to exercise, both acutely
and chronically, and in relation to the vascular health
triad model. Determining markers of oxidative stress
and inflammation in response to exercise, alongside
markers of vascular function will help ascertain
whether: (1) the exercise intensity utilised was too high,
thus inducing higher levels of oxidative stress that may
mask the increases in NO production in older adults or
(2) that the exercise stimulus utilised was insufficient to
stimulate enhanced NO production. Our proposed mod-
el (Fig. 2) suggests that all factors regarding vascular
health are integrative, and hence it would be advanta-
geous to measure oxidative stress (adduct formation and
antioxidant capacity), inflammation and vascular func-
tion (both functionally and metabolically) in the same
study.

Summary and future perspectives

The vascular health triad implicates high levels of
inflammation and oxidative stress with impaired vascu-
lar function. This model is intrinsically accelerated by
the ageing process, promoting multiple cardiovascular
and metabolic complications (Fig. 3). It seems clear that
insufficient generation and availability of NO is the

primary factor linking these three processes. Despite
this, there is ample evidence to suggest that exercise
could act to restore the age-related decline in vascular
function, through reductions in both oxidative stress and
inflammation. Future studies need to examine the asso-
ciations between all these factors in ageing and ascertain
the optimal intensity and duration of exercise in the
ageing population, with the aim to improve vascular
function and reduce the risk of age-related vascular
pathologies.
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