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Abstract: Although the motions of proteins are fundamental for their function, for pragmatic reasons, the consideration of 

protein elasticity has traditionally been neglected in drug discovery and design. This review details protein motion, its 

relevance to biomolecular interactions and how it can be sampled using molecular dynamics simulations. Within this con-

text, two major areas of research in structure-based prediction that can benefit from considering protein flexibility, bind-

ing site detection and molecular docking, are discussed. Basic classification metrics and statistical analysis techniques, 

which can facilitate performance analysis, are also reviewed. With hardware and software advances, molecular dynamics 

in combination with traditional structure-based prediction methods can potentially reduce the time and costs involved in 

the hit identification pipeline. 
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INTRODUCTION 

 Proteins are flexible macromolecular structures that can 
undergo a wide range of motions considered fundamental for 
their function. Movement can be subtle, including bond vi-
brations and side chain reorientation. Larger motion is also 
typical and includes hinge-like rigid domain translations and 
rotations, backbone rearrangements that may result in alter-
native secondary structure and loop region flexibility. Flexi-
bility can also entail an equilibrium distribution among iso-
energetic conformations that are intrinsically disordered. 
This hierarchy of motion is relevant in structure based dis-
covery and design. For example, many known proteins have 
been co-crystallized in alternative conformations, distinct 
from the unbound crystallized state. This implies motion is 
fundamental to the co-crystallized complex, and suggests 
alternative conformational states may exist that are relevant, 
and imperative, to the discovery of other potential ligands. 
While historically, protein flexibility has been largely ig-
nored in high-throughput methods used in drug discovery 
and design, recent software and hardware advances have 
allowed for the consideration of implicit or explicit protein 
motion [1-6].  

 Ideally, the use of computational methods should reduce 
the cost and time involved in structure-based drug discovery. 
We highlight here the general concepts behind protein mo-
tion and its relation to molecular interactions. Two major 
types of predictions are discussed including binding site 
classification, and virtual screening. During hit discovery, 
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prediction, carried out in a high-throughput fashion, assists 
practically in the process of research and discovery. Methods 
should be carefully evaluated on a system-dependent basis, 
and quantfiable validation should be established at the onset 
to enable the user to critically decide between several meth-
ods and convey the results to potential collaborators with 
confidence. This review discusses these concepts and how 
molecular dynamics conformational diversity can enhance 
the structure-based drug design process.  

MOLECULAR FLEXIBILITY AND ITS ROLE IN 
DRUG DISCOVERY AND DESIGN 

 Protein motion is key to functional mechanisms that re-
quire biomolecular association, such as catalysis, chaperone-
assisted folding, protein-protein and protein-nucleic acid 
interactions, and allosteric regulation. Ligand binding is de-
signed to enhance or interrupt these functions, and therefore 
may be tightly coupled to protein motion. Ligand association 
can be as simple as substrate binding prior to enzyme turn-
over, or as complex as the signal transduction cascades that 
orchestrate life on the cellular level. It has been shown that 
most ligands are buried upon association with a protein, sug-
gesting fundamental rearrangement of the receptor is re-
quired for complexation [7]. These motions can involve a 
single side chain movement, such as the repositioning of a 
catalytic residue in an enzyme, or a coordinated isomeriza-
tion that occurs concertedly among a group of residues. The 
timescales for relevant biophysical phenomena cover a wide 
range, from femtosecond bond vibrations to collective mo-
tions requiring seconds to occur. Methyl rotation, loop mo-
tion and side-chain rotamer relaxation all happen on the pi-
cosecond to microsecond time scale [8]. Frequently, there is 
a compensation of enthalpy changes, or changes of the aver-
age internal energy of a system, and entropy changes, or 
changes in the measure of favorable disorder of a system. 
For example, one might observe a favorable decrease in en-
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thalpy upon binding, as strong hydrogen bonds form be-
tween the ligand and receptor. This offsets the entropic pen-
alty that results from rotational and translational ligand con-
finement. Often enthalpy is the primary consideration in po-
tency optimization, but entropy can also be factored into the 
strategy [9]. Furthermore, the free energy of the water at the 
binding site may also play an important, even active role in 
molecular association [10]. Flexibility-function studies can 
lead to novel design strategies, and broaden the idea of drug 
action, through correlated networks of residues [11]. 

 Flexible degrees of freedom, in addition to titratable side 
chains and non-bonded coulombic and dispersive interac-
tions, produce a rugged, multidimensional energy landscape. 
The relative populations of the energy wells along this land-
scape define the thermodynamic properties of the system, 
while the transitions between them yield the system’s kinet-
ics. Both thermodynamics and kinetics are fundamentally 
important considerations to understand proteins in motion. 
Developing efficient sampling methods for understanding 
minima and the transitions between them are current active 
areas of research [12]. This multidimensional complexity is a 
challenge for computational modeling with respect to drug 
discovery and development. Often, an approximate, rapid, 
high-throughput method is more appropriate for fast-paced 
pharmaceutical settings than a potentially more accurate, but 
time-consuming, technique. Among current theories of mo-
lecular association, two main concepts prevail, namely, in-
duced fit and conformational selection. Induced fit theory 
assumes that the ligand influences the shape the protein re-
ceptor takes upon binding. Conformational selection hy-
pothesizes that the bound-state conformation exists in the 
apo protein ensemble, and that upon ligand binding, the 
population shifts such that the bound-state conformation 
becomes the most populated conformer [13, 14]. For differ-
ent targets, these two theories are not necessarily mutually 
exclusive and can be considered simultaneously, sequen-
tially, or independently [15, 16]. 

 Protein motion can be quantified with a number of ex-
perimental techniques. These include hydrogen deuterium 
exchange, Förster and bioluminescence energy transfer 
(FRET/BRET), nuclear magnetic resonance, solution X-ray 
scattering, circular dichroism, electron microscopy, and X-
ray crystallography. One classic scenario from early crystal-
lographic studies, that implies the requirement of protein 
flexibility in ligand association, is the experimentally ob-
served conformations of the heme-based oxygen binding 
proteins, myoglobin and hemoglobin. Space-filled models of 
these proteins revealed no clear oxygen binding pathway to 
the heme [17]. It was clear that thermal fluctuations were 
necessary to facilitate the ligand binding process. Other ex-
perimental methods demonstrate the relationship between 
conformational reorganization and biomolecular function. A 
second, more contemporary, example is the use of NMR to 
classify dynamics relevant for adenylate kinase catalysis. 
Kern and co-workers proposed a linkage between picosecond 
to nanosecond motions and larger amplitude domain rear-
rangements that are important in facilitating catalytic activity 
[8]. Observations such as these inextricably link motion to 
function, and should be exploited for discovery and design 
purposes.  

PREDICTION OF MOLECULAR RECOGNITION 
SITES 

 Molecular recognition site detection can be used early on 
in the pipeline of structure-based drug design (SBDD) to 
identify where a drug could possibly bind. Here we refer to 
three of the most commonly targeted types of binding sites, 
active sites, allosteric sites and protein-protein interaction 
sites. Most drugs are discovered or designed to bind the 
known active site, where an enzymatic reaction happens. 
Allosteric sites, distinct from the active site, are where a 
molecule binds and influences receptor activity and can also 
be targeted. These types of interactions have the advantage 
that they are often not conserved, and therefore can be more 
unique, or selective for the desired target, circumventing off-
target interactions. Finally small molecules can be designed 
to target protein-protein interfaces, to prevent protein asso-
ciation into functional complexes. Due to crystallographic 
conditions, a binding site on a protein may at some point 
exist in an alternative shape, extend to interact with crystal-
lographically undetected residues, or be completely distinct 
from a known binding site where a small molecule has al-
ready been observed.  

 Binding pockets are characterized by shape and comple-
mentarily to prospective binders, but traditionally would 
include detection of active and allosteric sites. The nature of 
a binding site is constantly in fluctuation, including the con-
tour, the side-chain dihedral angles, and potential polar and 
charged contacts. High affinity and specificity is a careful 
balance between opposing forces and interactions. There are 
a variety of different binding site detection methods. 
Broadly, these can be characterized into three main classifi-
cation algorithms: geometric methods based on the surface 
of the site, energetic methods based on physical and chemi-
cal properties of the binding site, and knowledge-based 
methods that incorporate data gathered from other sources 
besides the protein structure [18-20]; methods that fall into 
these groups have been recently reviewed [19].  

 Defining what constitutes a binding site is problematic, 
particularly for the detection of druggable pockets in protein-
protein interaction sites. Protein-protein interaction sites, 
tend to be shallow, hydrophobic, and extended surfaces [21]. 
Clackson and Wells defined hot spots as residues at a pro-
tein-protein interaction (PPI) site that are essential for asso-
ciation, and dominate the binding free energy [22]. These hot 
spots can be utilized as starting points for molecular docking 
and design optimization protocols. [23-25]. Computational 
prediction methods for these crucial areas have also been 
recently reviewed [26]. While targeting PPIs with small 
molecule inhibitors has been challenging, the concept of 
identifying epitopes important for binding is relevantly ex-
tended to other types of molecular recognition where clear 
binding cavities are not obvious, such as nucleic acid-protein 
or lipid-protein binding sites. 

SMALL MOLECULE DOCKING AND VIRTUAL 
SCREENING 

 Docking and virtual screening can be used to identify 
potential small molecules binders, and most docking pro-
grams reduce the search space and computational time by 
requiring the user to specify the putative binding site. Small 
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molecule docking is the process of computationally fitting a 
ligand into a biomolecule, typically held rigid in a single 
conformation. To expedite the required calculations, early 
docking programs also fixed the ligand conformations and 
often relied on steric complementarities to rank the plausibil-
ity of the predicted compound orientations [27]. As Moore’s 
law [28] evolved and processor speed increased exponen-
tially, ligand flexibility was introduced [29], and force fields 
were used to provide a classical estimate of ligand-receptor 
interactions. Flexibility allowed the ligand to relax in re-
sponse to the binding pocket requirements, which were still 
held rigid, while the force field guided physically reasonable 
interactions, such as hydrogen bonds. Today, these force 
field descriptions are generally known as “scoring functions” 
[30, 31] and may be augmented by a variety of energetic 
terms, such as solvation and entropy; these typically provide 
a rough estimate of binding affinity. To further speed the 
calculations and facilitate the rapid docking of large com-
pound databases, scoring function interactions can be pre-
calculated and stored on grids for speedy look up [31-33]. 
Many docking programs are grid-based, and current state-of-
the-art methods are very fast, which allows routine screening 
of large compound databases [34]. Moreover, the growth in 
docking technology has resulted in a large number of high-
quality, freely available docking programs. Many of these 
programs can be found at click2drug.com, an excellent com-
pendium resource of valuable in silico drug design tools. 

 Docking is an important tool in contemporary lead dis-
covery. Its value lies in the potential to improve the effi-
ciency and reduce the costs of modern high throughput 
screens (HTS) and ultra high throughput screens (uHTS) 
during hit discovery. Since its initial development in the 
early to mid 1990’s, modern HTS has grown to dominate 
lead discovery efforts and has undergone an increasing trend 
toward miniaturization [35]. Miniaturization resulted in 
smaller well volumes and a larger number of wells on each 
assay plate. Still, the cost of reagents and other consumables 
can be significant, particularly when large corporate or com-
mercial databases, with compounds numbering in the 
millions, are considered [35]. To reduce costs, rather than 
randomly screening an entire database, docking can be used 
to rationally prioritize a subset for testing. This prioritization 
process is known as virtual high throughput screening 
(vHTS). In a typical vHTS, database compounds are docked 
into a single crystal structure and ranked according to their 
predicted binding affinities. Ideally, all of the binders would 
be ranked ahead of all of the non-binders, tremendously re-
ducing experimental HTS expenditures. In practice, these 
results are never achieved, and even carefully validated 
docking protocols may fail to identify novel hits.[36, 37] 
Nevertheless, vHTS has demonstrated success across a range 
of targets, from dengue virus protease [38], to HIV-1 reverse 
transcriptase[39] to the RNA editing ligase from Try-
panosma brucei, the causative agent of African sleeping 
sickness [40, 41], among others [34]. Despite successes, ef-
forts to improve vHTS performance, including ensemble-
based methods [42-44], are a vibrant area of research today. 

PREDICTION AND PERFORMANCE EVALUATION 

 As virtual screening method performance can vary from 
system to system, a sound, rigorous method of evaluation is 

important when developing a protocol. While we focus on 
virtual screening examples here, the concepts introduced are 
general and apply to other classification problems that occur 
in SBDD. Regardless of the classification method, we want 
to employ the very best protocol at our disposal to ensure 
project success. In the case of a virtual screen, this means 
that the list of compounds we recommend for testing con-
tains as many true binders as possible. In the next section, 
we introduce the Receiver Operating Characteristic (ROC) 
curve [45] and the area under the curve, or AUC, as classifi-
cation metrics and gauges of virtual screening performance. 
We also discuss the origins and statistical characterization of 
performance variability. 

ROCing Performance 

 Numerous virtual screening performance metrics have 
been published in the literature and have been discussed at 
length [46, 47]. Some popular examples include the enrich-
ment factor EF, robust initial enhancement (RIE) [48], and 
the Boltzmann-Enhanced Discrimination of ROC (BED-
ROC) [46]. However, the AUC of a ROC curve is perhaps 
the most frequently applied and has been championed as the 
virtual screening performance metric [49, 50]. Below, we 
characterize the properties of ROC curves, and their corre-
sponding AUC values, through several numerical illustra-
tions.  

 For the purposes of assessment, virtual screening is a 
binary classification problem [45], and the ROC curve is an 
easily interpreted graphical representation of docking proto-
col performance. During a virtual screen the estimated bind-
ing affinities, or binding free energies, can be used to rank 
compounds. Compounds with more favorable binding affini-
ties will receive a better rank and are more likely to be rec-
ommended for subsequent experimental validation. To un-
derstand how a ROC curve is constructed, and why it reflects 
docking performance, it is useful to plot the distribution of 
predicted binding affinities for both the binders and non-
binders. For example, Fig. (1A) represents a hypothetical 
virtual screening experiment in which the predicted distribu-
tions of the binders and non-binders are represented by black 
and gray curves, respectively. These normal distributions 
were constructed to have means of -5 and -3 kcal/mol, re-
spectively, and identical standard deviations of 2 kcal/mol. A 
binding affinity threshold can be chosen such that all of the 
compounds with higher binding affinities will be tested. For 
example, the vertical black dashed line represents a -5 
kcal/mol threshold. All of the compounds to the left of the 
dashed black line will be tested and all of the compounds to 
the right will not. Since the compounds represented by the 
black curve are binders, integrating from negative infinity up 
to the threshold gives the fraction of the binders we’d expect 
to discover if we chose a -5 kcal/mol threshold. These are the 
“true positives,” i.e. the compounds predicted to bind that 
actually bind. The value of the integral is often called the 
“true positive rate,” or TPR. On the other hand, if the gray 
curve is integrated from negative infinity up to the threshold, 
the fraction of non-binders we’d expect to recommend for 
experimental validation is given. These compounds are 
“false positives.” That is, the compounds that were predicted 
to bind that actually do not. Similarly, the value of this inte-
gral is often called the “false positive rate,” or FPR. By re-
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peating the integration process while continuously varying 
the threshold, the true and false positive rates can be deter-
mined as functions of the threshold value Fig. (1B). In the 
language of probability theory and statistics, these curves are 
called cumulative distribution functions. Plotting the TPR as 
a function of the FPR yields a ROC curve Fig. (1C). This 
information is useful, as docking protocols that yield higher 
TPRs at a fixed FPR are expected to produce a greater num-
ber of actives at a given threshold. Indeed, the TPR at FPR 
of 0.5%, 1%, 2%, and 5% have been suggested as standard 
measure of virtual screening enrichment [49].  

 

 

Fig. (1). Receiver Operating Characteristic (ROC) plots. A) 

Predicted binding affinity probability distribution functions (pdfs) 

of the actives, shown in black, and inactives, shown in grey, for a 

hypothetical virtual screening experiment. A -5 kcal/mol threshold 

is shown as a grey, vertical dashed line. Compounds whose scores 

lie to the left of the line are experimentally assayed. Compounds 

whose scores lie to the right are not. B) The integrals of the pdfs, or 

cumulative distribution functions (cdfs). The black cdf is equivalent 

to the true positive rate (TPR), while the grey cdf is equivalent to 

the false positive rate (FPR). C) A ROC plot, generated by plotting 

the gray cdf along the X-axis versus the black cdf along the Y-axis. 

 The area under the ROC curve is a valuable metric of 
virtual screening performance. To understand why, it is 
again useful to consider the distribution of predicted binding 
affinities, their corresponding cumulative distribution func-
tions, and ROC curves. If a docking protocol has no dis-
criminatory ability, then the distribution of predicted binding 
affinities, as well as their cumulative distribution functions, 
will be identical for the binders and the non-binders. Since 
the TPR and FPR are identical, this will result in a ROC 
curve that bisects the unit square Fig. (2A). In this case, the 
area under the ROC curve is simply one-half the unit square, 
or 0.5. Thus, a protocol that has no discriminatory power 
(equivalent to random selection), yields an AUC of 0.5. As 
discriminatory power improves, the binding affinity distribu-
tions and cumulative distribution functions are more widely 
separated. This shifts the ROC curve toward the upper left 
hand corner, and the AUC increases to a value between 0.5 
and 1 Fig. (2B & C). When discrimination is perfect, the 

binders and non-binders are completely separated and the 
AUC value is 1. Significantly, it can be shown that the AUC 
value is identical to the probability that a randomly selected 
binder will be ranked ahead of a randomly selected non-
binder, which is equivalent to the Wilcoxian statistic [51]. 

Performance Variability 

 Conceptually, a null-hypothesis test can determine 
whether a docking protocol performs better than random in a 
statistically significant way. As a result of performance vari-
ability, a virtual screening protocol that performs randomly, 
on average, will also yield results that are better or worse 
than random. For example, Fig. (3A) shows the distribution 
of AUC values that result from a hypothetical randomly per-
forming docking protocol. While, on average, the distribu-
tion is centered on an AUC of 0.5, performance variability 
results in much higher and much lower AUC values. For 
virtual screening purposes, it is desirable to create a method 
that on average performs better than random and to simulta-
neously assess the confidence of the results. Confidence can 
be quantified through probability, i.e. assuming the method 
performs randomly, what is the probability of observing an 
AUC value as large, or larger, than the value we estimated? 
The smaller the probability, the less likely it is that the value 
we observed was due to a randomly performing protocol.  

 In practice, a null hypothesis test can be carried out using 

the recipe outlined here. First, the null hypothesis: “the vir-

tual screening protocol performs randomly” is assumed. The 

second step is to determine the corresponding null distribu-

tion, which can be determined using the central limit theo-

rem and an analytic estimate of the standard error as in [45, 

48, 49] (see, for example, Fig. (3B); note that the gray curve 

is the null distribution, centered on an AUC value of 0.5). In 

the third step, the null distribution is used to determine the 

so-called “p-value”, or the probability of observing an AUC 

value as large, or larger, than the value that was estimated 

(see the shaded region in Fig. 3B). The fourth step is to con-

sider the size of the p-value to decide whether the null hy-

pothesis should be rejected in favor of an alternative hy-

pothesis. If the p-value is smaller than some threshold, or 

significance level, we reject the null-hypothesis, replace it 

with an alternative hypothesis, and deem the result statisti-

cally significant. Popular significance levels for rejecting the 

null-hypothesis are 5% and 1% [52], though we note that 

these levels are arbitrary [53]. If the null hypothesis was re-

jected during the fourth step, the fifth step is to make the 

alternative hypothesis: “the protocol of interest performs 

better than random.” Subsequently, the alternative distribu-

tion must be determined, again using the central limit theo-

rem and an analytic estimate of the standard error [45, 48, 

49]. The average of the alternative distribution is typically 

taken as the AUC value of the virtual screening experiment 

(see, for example, the black curve in Fig. 3B). The alterna-

tive distribution is important because it allows us to estimate 

confidence intervals. In the event that the null hypothesis 

was not rejected during the fourth step, one might consider 

alternative virtual screening protocols and repeat steps one 

through four until the null hypothesis can be rejected at the 
desired significance level. 
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Fig. (2). The area under the ROC curve and virtual screening performance. In figures A) through C), plots in the leftmost column de-

scribe the predicted binding affinity probability distributions. Plots in the middle column give the corresponding cumulative distribution func-

tions. The binders are shown in solid black, while the non-binders are shown in dashed grey. Plots in the right column show the correspond-

ing ROC curves. AUC values are shown for three different hypothetical virtual screening protocols with A) no discriminatory power, B) im-

proved discriminatory power, or C) near perfect discrimination. 

 If two virtual screening protocols perform identically, on 
average, then the distribution of AUC difference values 
( AUC) will have an average of zero, as the gray curve in 
Fig. (3C) illustrates. To insure that the calculated AUC is 
not due to the variability of two methods that perform identi-
cally (on average), a null hypothesis test must be carried out. 
This can be accomplished by following the recipe outlined in 
the previous paragraph, but assuming a different null hy-
pothesis and distribution. The correct null hypothesis is: “the 
two different protocols perform identically.” The corre-
sponding AUC null distribution is centered on zero and can 
be estimated using the central limit theorem. Importantly, the 
standard error estimate must account for compound ranking 
correlation between methods [45, 48, 49]. Neglecting corre-
lation may artificially inflate the standard error causing the 
null hypothesis to be inappropriately retained. The p-values 
are then determined as the shaded regions under the gray, 
null distribution, curve in Fig. (3C). The alternative distribu-
tion determined is shown in black in Fig. (3C). 

 Assessing how much performance variability to expect is 
necessary when considering a virtual screening protocol. For 
example, given an initial AUC value of 0.90, when a second 

database is screened, should an AUC value of 0.65 be sur-
prising? Confidence intervals, a range of values that includes 
the true value with a given probability (confidence level), 
help address this question. The confidence level is typically 
taken at 95% [52], which implies that the true average AUC 
will be contained within identically constructed intervals in 
95 of 100 identically performed virtual screens (with differ-
ent databases). If we assume that the central limit theorem 
holds, then we can use the analytic estimates of the standard 
error to estimate the confidence intervals [53]. For example, 
Fig. (3D) illustrates a 95% confidence interval [54]. Typi-
cally, confidence intervals are estimated on the alternative 
distributions, discussed in the paragraphs above. 

GENERATING RECEPTOR CONFORMATION 
VARIABILITY WITH MOLECULAR DYNAMICS 

 Molecular docking, virtual screening and the other com-
putational structure-based drug design methods discussed in 
previous sections have traditionally been performed on a 
single protein conformation. Despite this precedence, it is 
widely agreed that macromolecular structures have hetero-
geneity that cannot be represented by a single conformation, 
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such as the crystallographic models deposited into the Pro-
tein Data Bank [55, 56]. In solution, proteins move and in-
teract with their environment, and a crystallographic coordi-
nate model can be represented as a network of physically 
interacting atoms by an equation and parameters called a 
force field. A force field allows us to calculate the potential 
energy of a system. Force field models are based on a variety 
of assumptions; most notably, the Born-Oppenheimer ap-
proximation, which allows us to describe the system solely 
as a function of nuclear coordinates. The simplified interac-
tions are described by mathematical functions with few pa-
rameters, such as a harmonic potential and its corresponding 
spring constant. Making the physics simple allows parame-
ters for the model, such as spring constants for bond vibra-
tions, to be transferable to many different types of systems. 

 

Fig. (3). Performance evaluation statistics. A) Distribution of a 

virtual screening protocol that performs randomly, on average. B) 

An example p-value for a hypothetical virtual screening experiment 

with an AUC of 0.65 is illustrated as the shaded area under the null 

distribution, shown in grey. The alternative distribution, corre-

sponding to the alternative hypothesis, is shown in black. C) The 

null distribution corresponding to the null hypothesis, “the two 

docking protocols perform identically,” is shown in grey. The p-

value corresponding to two virtual screening experiments whose 

AUC value is 0.25 is illustrated as the shaded areas under the grey 

null-distribution curve. The corresponding alternative distribution is 

shown in black. D) The 95% confidence interval of a hypothetical 

virtual screening protocol with an observed AUC value of 0.65. The 

95% confidence interval is bounded by the grey shaded region, 

which contains 95% of the distribution. 

 

 While much insight is gleaned from crystallographic 
models, many complex interactions and reactions require 
more dynamic detail. Molecular dynamics (MD) is a simula-
tion method that propagates the system described by a poten-
tial function and numerical integration of Newton’s second 
law. Structural coordinates are propagated through time us-
ing fixed integration steps (typically 1 or 2 fs), according to 
the forces acting on the system. After each integration step, 
the forces on the atoms are recalculated and combined with 
the current velocity and positions resulting in new velocities 
and positions. The underlying physics of the fastest motions 
in the system, bond stretching, dictate a time step limitation 
of 1-2 fs. The positions calculated during a MD simulation 

are saved at periodic intervals generating a trajectory of 
snapshots in time, which approximate a statistical sample 
from an ensemble of configurations of the protein system at 
thermal equilibrium. Using this sample, time-averaged prop-
erties can be determined and connected to ensemble-
averaged properties through the concept of ergodicity and 
the laws of statistical mechanics. While the accuracy of these 
averages depends heavily on proper equilibration and sam-
pling of the system, qualitatively useful estimates can be 
determined in relatively short simulation times for small sys-
tems.  

 Initially, one must decide on the type of force field to use 
when modeling a pharmaceutically relevant system. The 
energy models consistently used when examining atomic 
interactions are classical fixed-charge force fields such as 
AMBER, CHARMM, or OPLS [57-60]. These are typically 
used with one of several water models, such as TIP3P or 
SPC, and a generalized organic force field for ligand pa-
rameters, such as CGenFF or GAFF [61-63]. It is best to 
review the literature on the compatibility of water models 
with protein and generalized force fields being selected for 
use, as some energy functions were parameterized to be 
compatible only in specific circumstances [64, 65]. 

 With most computational methods, a dangerous outcome 
is that results can be produced regardless of the expertise of 
the user. The fundamental learning curve is in setting up the 
system correctly. This entails taking into account relevant 
structures, force field parameters, protonation and ionization 
states, solvent and system sizes. A basic understanding of the 
underlying theory is critical for interpretation of the results 
produced. MD is essentially numerical statistical mechanics, 
therefore, users who have not been formally trained, should 
at least read some introductory text to familiarize themselves 
with such concepts before proceeding too far. Additionally, 
the highly technical nature of running and analyzing molecu-
lar dynamics simulations usually requires an apprenticeship 
in a laboratory specializing in these computational tech-
niques. The choice of ionic strength and temperature of the 
simulation cell should be guided by relevant experimental 
biological conditions where possible, although current MD 
simulation standard practices do not come close to standard 
conditions in a cell [66]. With this construct established, the 
system is equilibrated until several metrics of stability are 
achieved. Structural stability is commonly measured by 
monitoring kinetic and potential energy time series, as well 
as two coordinate metrics, the root mean square deviation 
(RMSD) and root mean square fluctuation (RMSF). The 
RMSD is the coordinate position deviations averaged over 
particles at a fixed time point, and the RMSF is the variation 
in atomic position averaged over time. Typically, the RMSD 
is plotted as a function of time, and is a geometric measure 
of how different a protein conformation is from a reference 
conformation, while the RMSF is plotted on a per residue 
basis to describe local structural fluctuations. In some cases, 
particularly with proteins that undergo large structural rear-
rangements, many transitions between conformational mac-
rostates will not occur, and the system will not reach equilib-
rium. However, meaningful information and structures near 
the starting conformation can still be extracted. Additionally, 
to improve conformational sampling local to a starting struc-
ture, multiple independent trajectories with different velocity 
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distributions are often used [67], and the additional informa-
tion can be integrated in the design process.  

 Free software is available to run molecular dynamics 
simulations, such as the widely used Desmond, Gromacs, or 
NAMD packages [68-70]. Other commonly used dynamics 
packages, such as AMBER and CHARMM, are available at 
minimal cost to non-profit organizations [71, 72]. Many of 
these packages can be operated with limited experience, and 
have tutorials, user manuals and forums where users can 
have questions answered by developers and experts fairly 
rapidly. While there are numerous force field comparisons 
noted in the literature, there are limited direct comparisons of 
MD packages that are implemented for parallelization and 
scalability. While good packages read several force fields 
and the results should not depend on specific software im-
plementation, often the processor number and type available 
to the user may dictate which package to use.  

 Prior to using MD snapshots in SBDD pipelines, evalua-
tion of the trajectories should be performed to assess the en-
semble sampled. In particular, one question must be ad-
dressed when considering the use of MD snapshots in a drug 
design context: is the sampled phase space relevant to inhib-
iting the targeted mechanism? Phase space is a high dimen-
sional concept representing all of the degrees of freedom of 
the system (i.e. for a system of N atoms, each atom can be 
described with 3 coordinates and 3 components of momen-
tum, resulting in 6N phase space). One way to understand 
how a simulation is changing is by quantifying the phase 
space that is being sampled. For example, principal compo-
nent analysis is a popular technique that decomposes the 
variance of atomic positions into principal modes [73]. Visu-
alizing these modes is useful in identifying the collective 
motion responsible for large conformational events, such as 
binding pocket expansion. Alternatively, clustering and 
population analysis of a trajectory identify highly populated 
conformational regions of phase space and are other tech-
niques that may be employed [24, 74]. By carefully analyz-
ing the distribution of conformational states in the context of 
the project goals, useful insights can be identified. To help 
with such analyses, many tools freely available to visualize 
and analyze molecular dynamics trajectories exist, including, 
but certainly not limited to, the widely used VMD, Amber-
Tools and Gromacs programs [69, 72, 75]. Open source tools 
for commonly used interpreted programming languages and 
packages such as Python and R are also available [76-79]. 

 Currently routine time-dependent molecular simulations 
can access microsecond timescales, although it is more com-
mon to find studies publishing hundreds of nanoseconds of 
simulation [80]. Recent advances in software and hardware 
have thrust MD timescales forward. Some software has been 
implemented to run on graphics processing units (GPUs), 
which have more arithmetic logic units than conventional 
CPUs, but are not as complex. The clock speed is slower on 
the GPU but the access to memory is faster, and 
this, combined with GPU programming language develop-
ment, has lead to potential for routinely achieving longer 
MD timescales. The promise of GPUs is further enhanced by 
massively parallel GPU hardware [81, 82]. Impressively, 
GPU hardware was recently used to sample a binding asso-

ciation event [83]. Previously, these time-scales were only 
accessible on a specialized hardware machine [83, 84].  

DEALING WITH BIG DATA: HOW TO GET THE 
MOST FROM DOCKING WITH MD 

 With ever improving hardware, molecular dynamics 
simulations will continue to be a ubiquitous biophysical 
technique, and rightly so: in the absence of multiple crystal 
structures, it is a good way to quickly and realistically gener-
ate conformational diversity. While other methods, such as 
normal mode analysis [85], can be used to generate confor-
mational diversity, MD has the benefit of approximating the 
conformational ensemble expected at thermal equilibrium, 
which may facilitate virtual screening success. Contempo-
rary MD simulations can easily result in tens of thousands to 
hundreds of thousands of receptor conformations, and a vir-
tual screen can be performed against anyone of these [86], all 
of them [87, 88], or any subset [40, 41, 89]. Moreover, there 
are multiple ways to combine the docking scores from each 
receptor. As each choice of protein receptor(s) and score 
combination method can perform differently, a large hurdle 
in MD-based ensemble virtual screens is deciding which set 
of protein conformations to pair with which score combina-
tion method. In this section, we outline a set of best practices 
to systematically evaluate ensemble performance.  

 Typically, the first step in performing a virtual screen 
using an MD trajectory is ensemble reduction. Ensemble 
docking scales linearly with the number of receptor confor-
mations, and since only finite resources are available, culling 
a tractable conformational subset is essential. Several meth-
ods have been suggested in the literature, including RMSD-
based clustering [44], QR factorization [40, 41] and binding-
site volumetric clustering [90, 91]. While the RMSD-based 
clustering and QR factorization methods can be performed 
with freely available software, the binding-site volumetric 
clustering is currently implemented in commercial software. 
However, there are several freely available pocket-volume 
calculation programs [92, 93] whose output could be used to 
cluster in a similar fashion. With the variety of ensemble 
reduction techniques available, one may naturally wonder 
which performs best. Unfortunately, to the best of the 
authors’ knowledge, a set of conformational descriptors that 
correlate strongly to virtual screening performance has not 
been definitively determined [86]. Moreover, since the best 
ensemble reduction technique may be system dependent, 
methodically evaluating the performance of several tech-
niques before performing a large-scale screen is a sensible 
approach, assuming available time and resources. With a 
set of structures in hand, an ensemble-based virtual screen 
can be carried out. Faced with designing an ensemble virtual 
screening protocol, which receptor conformations should be 
used? The simplest answer is to use them all. For example, 
given 20 receptor conformations and a database of 100 com-
pounds, each compound would be docked into each of the 20 
conformations, for a total of 2000 ligand scores. Then each 
ligand score can be a combined in some fashion yielding an 
ensemble score. While this simple approach has been used 
successfully in some cases [40, 41], it overlooks a combina-
torial subtlety, and performance may suffer as a result. Al-
ternatively, given 20 conformations, a smaller subset of m 
conformations can be chosen to constitute the ensemble [94]. 
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The number of unique ensembles that can be constructed this 
way is given by the binomial coefficient.

 

This can quickly 
result in a large number of possibilities to consider, each 
with a different performance. The number of unique ensem-
bles increases as a function of size. For example, when en-
sembles are made from any of 20 unique receptor conforma-
tions, a maximum of 184,800 combinations are possible us-
ing 10-member ensembles Fig. (4A). The total number of 
possible ensembles that can be considered is determined by 
summing the number of unique ensembles that can be con-
structed at each ensemble size. For example, when ensem-
bles are constructed from 20 unique receptor conformations, 
there are a total of 1,048,575 ensembles to consider. In prac-
tice, performance can be plotted as a function of size by ex-
tracting the top-performing member for each size [89, 94]. 
For example, Fig. (4B) plots the AUC of the top-performing 
ensemble as a function of ensemble size for a hypothetical 
vHTS experiment. While the data is contrived, the trend fol-
lows our own experiences and is similar to those that can be 
found in the literature [94]. Clearly, optimal performance 
occurs for a five-member ensemble, and this ensemble 
would then be considered against other top-performers, as 
described below.  

 Once the top-performing ensemble has been identified, 
the process can be repeated using different score combina-
tion techniques. For example, one might consider arithmeti-
cally averaging ligand scores. Alternatively, ligand scores 
could be combined in a weighted average, where the weights 
may be extracted from clustering and population analysis 
[44], or may be taken as the Boltzmann weights [95]. An-
other popular method selects only the best ligand score for 
ranking purposes [94]. Additionally, as docking performance 
varies from one target to another [96], different docking pro-
grams should also be considered. Each method can then be 
compared using the simple statistics presented in the “Pre-
diction and Performance Evaluation” section of this review 
to arrive at the optimal docking protocol for the system of 

interest. In principal, identifying the optimally performing 
ensemble method on a smaller validation database should 
increase the success of virtual screens performed on much 
larger databases. While this optimization scheme represents 
a significant resource investment, much of the analysis can 
be automated to reduce the required “hands on” time. Addi-
tionally, while this method is limited to targets with known 
actives, inexpensive semi-high through put techniques, such 
as differential scanning fluorimetry [97], coupled with free 
databases, like the National Cancer Institutes Diversity set, 
may facilitate validation database development [98]. 

 

Fig. (4). Ensemble size and virtual screening performance vari-

ability. A) For 20 receptor conformations, the number of ensembles 

that can be constructed is plotted as a function of the ensemble size. 

B) For a hypothetical ensemble-based virtual screening experiment, 

the AUC of the top-performing ensemble is plotted as a function of 

ensemble size. 

 

Fig. (5). Exponential increase in molecular dynamics citations. Searches using the quoted keywords were performed using SciFinder 

Scholar. The number of citations returned is plotted as a function of year, indicating the increasing use of molecular dynamics in drug dis-

covery. 
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CONCLUSIONS 

 Molecular dynamics is increasingly being included in 
academic high-throughput efforts for pharmaceutically rele-
vant prediction research, and the future is bright. For exam-
ple, using SciFinder Scholar to track citations involving mo-
lecular dynamics research, one can see in Fig. (5) that mo-
lecular dynamics simulations carried out with respect to drug 
design has been exponentially increasing since the 1980s, 
and has been increasing in the context of virtual screening 
and binding site prediction since the early 2000s [99]. While 
a gold standard practice for selection of MD snapshots for 
virtual screening and binding site prediction has yet to be 
established, the growing number of academic research labo-
ratories carefully considering this as part of their discovery 
toolkit improves future prospects of structure-based drug 
design. Similar optimism can be found in related reviews 
discussing methods of incorporating receptor flexibility into 
the drug design process [2, 81, 100, 101]. Molecular dynam-
ics is becoming an increasingly practical tool to enhance 
drug discovery and design efforts. The performance of 
hardware and software is continuing to improve, and a grow-
ing number of researchers are turning their minds toward 
tackling the most pressing challenges facing the field. The 
authors’ are optimistic that these factors will synergize to 
make the successful application of molecular dynamics 
simulations to structure based drug discovery and design 
problems routine.  
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