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Abstract
Adipose tissue is an abundant, easily accessible, and reproducible cell source for musculo-skeletal
regenerative medicine applications. Initial derivation steps yield a heterogeneous population of
cells collectively termed the stromal vascular fraction (SVF), which consist of endothelial cells,
immune cells, pericytes, and pre-adipocytes. Subsequent selection of an adherent cell subset from
the SVF results in a relatively homogeneous population of adipose-derived stromal/stem cells
(ASCs). Mammalian ASCs exhibit the ability to selectively differentiate into chondrogenic,
myogenic, and osteogenic lineages in response to inductive stimuli in vitro (when cultured on
scaffolds in bioreactors) and in vivo (when implanted in pre-clinical animal models). Unlike
hematopoietic cells, ASCs do not elicit a robust lymphocyte reaction and instead generate and
release immunosuppressive factors, such as prostaglandin E2. These unique immunomodulatory
features suggest that both allogeneic and autologous ASCs will engraft successfully following
application for tissue regeneration purposes. The differentiation and expansion potential of ASCs
can be modified by growth factors like bone morphogenetic protein 6, bio-inductive scaffolds, and
bioreactors providing environmental control and biophysical stimulation. Gene therapy
approaches using lentiviral transduction can also be used to direct differentiation of ASCs along
particular lineage pathways. We discuss here the utility of ASCs for musculo-skeletal tissue repair
and some of the technologies that can be implemented to unlock the full regenerative potential of
these highly valuable cells.
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2. Introduction
Tissue engineering is an emerging field that integrates advances in the fields of biomaterials,
cytokines/growth factors, and stem cell biology towards repair and regeneration of damaged

Corresponding author address: Jeffrey M. Gimble MD PhD, Stem Cell Biology Laboratory, Pennington Biomedical Research Center,
6400 Perkins Rd, Baton Rouge LA 70808, (225) 763-3171, office (225) 763-0273 fax, gimblejm@pbrc.edu.

NIH Public Access
Author Manuscript
Front Biosci (Schol Ed). Author manuscript; available in PMC 2013 April 26.

Published in final edited form as:
Front Biosci (Schol Ed). ; 3: 69–81.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tissues and organs. Musculo-skeletal defects due to acute trauma, congenital malformations,
degenerative diseases, and neoplasia are potential targets for cell-based regenerative
therapies. While scaffolds can be manufactured from either native or synthetic biomaterials,
and regulatory signals (molecular and physical) can be provided using advanced bioreactors,
large scale production of stem cells and the definition of environmental conditions necessary
for these cells to drive the repair processes continue to present major challenges. Stem cells
are living biological products whose production requires quality controls for contaminating
infectious agents, post-cryopreservation functional testing, tumorigenicity, and viability. It is
estimated that de novo creation of a single cubic centimeter of bone tissue will require ~7 ×
107 cells (1), necessitating the derivation of ~ 109 stem cells from a single donor. Adipose
tissue has the potential to meet this demand in a highly reproducible manner (2). This review
contains information from recent studies surrounding the isolation and characterization of
human adipose-derived cells (ASCs) for musculo-skeletal applications, scaffold and
bioreactor technologies used for directed differentiation of these cells, and some of the
current pre-clinical and clinical trial data.

3. A. Isolation of stromal vascular fraction and adipose-derived stem cells: frequency and
yield

Subcutaneous adipose tissue is a relatively accessible reservoir for adult stem cell harvest.
Plastic surgeons routinely perform >300,000 elective tumescent lipoaspiration procedures on
patients in the U.S. each year, yielding liter volumes of subcutaneous adipose tissue.
Routinely, this biological material has been discarded; however, new tissue engineering and
regenerative medical approaches are being developed to use it as a source of stromal
vascular fraction (SVF) cells and adipose-derived stromal/stem cells (ASCs) (3–6). Several
companies have begun marketing closed system surgical devices to harvest and process the
lipoaspirate intra-operatively (7, 8). The point of care devices are designed to minimize the
risk of tissue contamination and to optimize the reproducibility and reliability of the cell
product. Most isolation procedures have the same basic steps (detailed in (9)). First, the
contaminating erythrocytes are removed with a phosphate buffered saline rinse. Then, the
tissue is digested with collagenase type I (0.075 to 0.1%) for a period of 30 to 90 minutes at
37°C. Some investigators also include dispase and/or hyaluronidase in their digestion buffer
to improve cell recovery. The SVF cells are separated from the mature, lipid-laden
adipocytes by centrifugation at speeds of 300 × g (6). The resulting SVF cell pellet consists
of a heterogeneous population of endothelial cells, erythrocytes, lymphocytes, macrophages,
pericytes, and pre-adipocytes.

A single milliliter of human subcutaneous adipose tissue typically yields between 100,000 to
500,000 nucleated cells (10–13). A nearly identical SVF cell population can be recovered
from the bloody fluid collected during the lipoaspiration procedure without the requirement
of a collagenase digestion step (13). Flow cytometric analyses have determined that a
significant and reproducible percentage of SVF cells express the following hematopoietic
surface antigens: CD11b, CD14, CD34, CD45, HLA-AB, and HLA-DR (12, 14).

The SVF cells have been used without further processing for intraoperative tissue
engineering procedures. Clinician investigators have reported excellent outcomes using SVF
cells for soft tissue reconstruction of breast and facial defects (3, 4, 15). Despite this, the
SVF cells frequently are innoculated onto plastic culture-ware with or without extracellular
matrix coating such as collagen or fibronectin (6). Following a period of several hours to
several days, the non-adherent cells are removed and the remaining adherent cells are
identified as ASCs. Approximately 1 out of 30 SVF cells will adhere to the tissue culture
surface and between 105 and 106 ASCs can be cultured from a single cubic milliliter of
human lipoaspirate after 3 to 7 day (12). ASCs have a distinct surface immunophenotype as
assessed by flow cytometric analyses. With progressive passage, the majority of ASCs
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express the stromal markers CD9, CD10, CD29, CD44, CD73, CD90, and CD166 while,
with the exception of HLA-AB, the presence of hematopoietic markers declines relative to
the original SVF cells (10, 12, 14, 16, 17). Furthermore, ASCs are positive for pericytic
markers such as 3G5 and CD146 (18, 19). Several groups have begun to use combinations
of surface proteins as “immune-tags” with which to enrich or isolate ASCs from the SVF
cells directly (20). This has been effective in pre-clinical studies but it has yet to be
determined if such approaches will prove to be sufficiently robust and cost-efficient for
future clinical applications. At present, adhesion to plastic or matrix substrate remains the
most common method for direct isolation of ASCs from large volumes of human
lipoaspirate. The ASCs are capable of releasing a range of cytokines and growth factors,
having significant paracrine effects (21–24). Furthermore, the ASCs exhibit multipotent
differentiation potential in vitro and in vivo (5, 6, 25). Since these features have been
covered in several excellent reviews (5, 6, 25), we focus only on those pathways most
directly related to musculo-skeletal repair - Chondrogenic, Osteogenic, and Skeletal
Myogenic differentiation.

3. B. Advantages and limitations relative to amnion, bone marrow, and placental derived
stem cells

Human subcutaneous adipose tissue offers several advantages as a stromal/stem cell source.
First, with the widespread incidence of obesity, most adult subjects have abundant adipose
tissue. Second, the tissue is accessible via a relatively non-invasive harvest technique. The
procedure is well accepted by the public as evidenced by the fact that hundreds of thousands
of individuals incur significant costs to undergo elective liposuction procedures each year.
This is a sharp contrast to the harvest of bone marrow-derived mesenchymal stromal/stem
cells (BMSCs) by bone marrow aspiration, a painful procedure that is associated with
significant donor site morbidity. Third, the frequency of stromal/stem cells per unit volume
of adipose tissue, which are 10–100 times more abundant per unit volume than bone marrow
(12), combined with the liter volumes of adipose tissue available makes the isolation and
expansion of billions of ASCs within a minimal time frame feasible.

Despite these advantages, there are reported limitations to ASC use. First and foremost,
human ASCs maintained in culture for extended periods of time (>3 months) cause
sarcomas in immunodeficient mice (26). This underscores the risks of ex vivo stromal/stem
cell manipulation and supports the need for minimal cell handling. Second, a number of
investigations have compared ASCs and BMSCs side by side. While some investigators
have concluded that they function equally well with respect to chondrogenic and osteogenic
differentiation, others have concluded that BMSCs show some superior qualities with
respect to differentiation potential (27) (28–33). While it should be noted that these studies
have used inductive conditions optimized for the BMSC population, these findings suggest
that for some musculo-skeletal applications, there may be certain advantages to using
BMSCs until culture conditions are further optimized for ASCs. Finally, the biological age
of the donor affects the telomere length of harvested ASCs and BMSCs (34). This contrasts
to amniotic, umbilical cord, and placental derived adherent stromal/stem cells which retain
their maximal telomere length and, through the expression of telomerase, their renewal
capacity (35–41). Hence, it is likely that the relative life span and regenerative properties of
stromal/stem cells from perinatal and adult tissues will vary. On the other hand, as “adult”
stem cells, ASCs and BMSCs are available for harvest throughout an individual’s lifetime,
whereas amniotic, umbilical cord, or placental stems cells would require perinatal cell
banking and long term storage for autologous use or allogeneic transplantation. Further
investigation is necessary to determine the potential effect of donor age and tissue type on
the efficacy and function of stromal/stem cells.
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3. C. Chondrogenic potential
Chondrogenic differentiation can be induced in ASCs in vitro by exposure to combination of
factors such as dexamethasone, transforming growth factor (TGF) β1 or β3, and bone
morphogenetic protein 6 (BMP6) (16, 42–46) (Table 1). Positive Alcian Blue staining or
Safranin O staining confirms chondrogenesis within a 2 to 4 week period (16, 42, 43).
Differentiation is most robust in 3-dimensional, as compared to 2-dimensional, culture
conditions as determined by expression and synthesis of proteoglycans and chondrocyte-
specific genes and proteins. A variety of 3 dimensional approaches have been employed
(47–49). The simplest is the use of micromass cultures, where 2.5–5 × 105 ASCs are
pelleted by centrifugation and maintained for up to 3 weeks under chondrogenic culture
conditions (49). At the next level, ASCs are suspended at concentrations of 4 to 10 × 106 per
ml in gels of alginate, agarose, or gelatin followed by chondrogenic induction (42, 47, 48).
As a third alternative, ASCs are seeded onto porous solid scaffolds constructed from
collagen, elastin, synthetic materials (polyvinylpropinate, polyglycolic/lactic acid), or
cartilage extracellular matrix extracts (50). The chondrogenic potential of ASCs increases
with extended passage in vitro; cells at passage 9 exhibited more robust expression of
differentiation markers compared to passage 4 (51). Furthermore, the ASC’s culture
expansion conditions in monolayer prior to culture in a 3-dimensional or micromass
condition influences their chondrogenic potential (52).

3. D. Osteogenic potential
ASCs can be induced to undergo osteogenic differentiation in vitro by exposure to a
combination of ascorbate, β glycerophosphate, various BMPs, dexamethasone, and/or
vitamin D3 (16, 43, 53, 54) (Table 2). Within a 2 to 4 week period, matrix mineralization is
evident based on positive Alizarin Red or von Kossa’s staining (16, 43, 53, 54). This mineral
formation is accompanied by increased expression of osteogenic proteins and mRNAs,
including alkaline phosphatase, bone morphogenetic proteins and their receptors, bone
sialoprotein, Cbfa1/Runx2, and osteocalcin (16, 43, 53, 54). Osteoinductive or
osteoconductive matrices have been found to further enhance the ASC expression of such
markers (please see Section G below). In vitro, the osteogenic capacity of ASCs on scaffolds
can be enhanced using a perfusion bioreactor (55). When combined with tricalcium
phosphate/hydroxyapaptite matrices, human ASCs form osteoid-like structures when
implanted subcutaneously in immunodeficient mice (56, 57). Furthermore, murine ASCs
exposed to BMP2 and retinoic acid can repair critical sized craniofacial defects in syngeneic
animals; however, the repair process is time dependent (58, 59). After extended periods of
time, osteoclast cells infiltrate and resorb the newly formed bone (58, 59). Further studies
are required to understand the underlying mechanism for these observations. Clinical trials
have begun using ASCs for craniofacial defect repair. The REGEA Institute and Helsinki
University Central Hospital in Finland reported the successful repair of a hard palate defect
in a 65 year old patient (60). In successive procedures, subcutaneous autologous ASCs were
harvested, expanded in culture over 3 weeks, and seeded onto tricalcium phosphate matrices
in the presence of BMP2 (60). The cell product was placed within a titanium cage designed
in the shape of the patient’s defect and implanted into the patient’s rectus abdominus muscle
(60). After bone formation was confirmed by radiograph after 6–8 months, the construct was
harvested and re-implanted into the defect site. Blood supply was reestablished by
anastomosis with the facial artery (60). The construct completely integrated and the patient
had full recovery of function (60). The REGEA group has treated ~20 subjects to date with
>90% successful outcomes based on integration of the bone based on radiographic analyses
and reconstruction of dentition (personal report, Riita Suuronen, Susanna Miettinen). Similar
success in weight bearing bones with autologous or allogeneic human ASCs will
significantly advance treatment of orthopedic injuries.
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3. E. Skeletal muscle potential
ASCs can be induced to express biochemical features consistent with skeletal myogenesis
by exposure to low serum conditions and/or horse serum (16, 43, 61–63) (Table 3). In
response to these factors, ASCs express mRNAs encoding myogenic proteins, including the
transcriptional regulators MyoD and myogenin as well as structural proteins such as myosin
heavy chain (16, 43, 61–63). Based on histological evidence, ASCs fuse to form
multinucleated myotubes in vitro. To date, pre-clinical animal and clinical trials using
human ASCs for skeletal muscle myogenesis have not been reported. In contrast, there is
significant and growing interest worldwide in using ASCs for cardiac myogenesis (64–69).
These studies have been included in previous reviews (6, 70, 71). A comparison of the
biomarkers used to distinguish the musculoskeletal differentiation of ASCs is presented in
Table 4.

3. F. Immunogenic features – autologous vs allogeneic transplantation
As noted above, the immunophenotype of adipose-derived cells alters as a function of their
adherence to tissue culture plastics and passage in vitro. In contrast to SVF cells, passage 2
and greater ASCs lose their expression of HLA-DR and CD86 which serve as recognition
markers for T cells (14). While SVF cells elicit a robust mixed lymphocyte reaction from
allogeneic peripheral blood monocytes, passaged ASCs are relatively non-reactive (14, 72).
Furthermore, the presence of ASCs suppresses on-going mixed lymphocyte reactions
between allogeneic peripheral blood monocytes (14, 72). The immunosuppressive properties
of ASCs are due, in part, to their production of prostaglandin E2 and indoleamine 2,3-
dioxygenase (73, 74). In a variety of disease models, ASCs have been found to suppress
inflammatory cytokine expression by T cells and to reduce Th1/Th17 cell expansion (75–
79). The presence of ASCs also stimulated the expression of interleukin 10, an anti-
inflammatory cytokine (75–78). These ASC immunomodulatory features are similar to those
described in BMSCs (80–84). In fact, allogeneic BMSCs are being transplanted in on-going
clinical trials and similar engraftment of allogeneic ASCs may prove feasible as well.
Consistent with this prediction, transplantation of allogeneic ASCs elicits minimal immune
response in a spinal fusion model (85, 86). These early findings have significant
implications with respect to the manufacture and quality control of a clinical ASC product
that has yet to be tested in clinical trials.

3. G. Tissue engineering by using ASCs, 3D scaffolds and perfusion bioreactors
Tissue engineering (TE) methods are being increasingly adopted for translating the multi-
lineage potential of ASCs into therapeutic applications. In general, tissue engineering
outcomes depend on ability to predictably guide the ASC assembly into functional
differentiated tissues, which in turn requires the combined application of biological,
structural and mechanical cues enabling cell differentiation and patterning. Within the body,
developmental and regenerative processes are orchestrated by cascades of physiological
factors, which vary in space and time, yet are acting in concert to elicit coordinated cellular
responses. To recapitulate some of these regulatory cascades in vitro, a ‘biomimetic’
approach has been established (87) that attempts to recapitulate in vitro (using engineering
tools) the in vivo cell/tissue milieu (present during tissue development and remodeling). In
an ideal case, the cellular niche is tightly regulated to mimic the native environment of a
specific tissue, thereby prompting the cells (individually and collectively) to exhibit
differentiated phenotypes unique to that tissue.

In a tissue engineering system, a three-dimensional (3D) scaffold provides a structural and
logistic template for cell attachment and tissue formation, and a bioreactor provides
adequate nutrient transfer and imparts biophysical stimuli to the cultured cells (Figure 1).
The substrate properties and bioreactor conditions are directed by biological requirements,
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and chosen to closely mimic the native environment of the specific tissue that is being
regenerated. For example, hydrogels are frequently chosen to induce chondrogenic
responses as they enable the cells to adopt spherical morphologies and facilitate the
distribution of compressive stresses that might be applied to the construct. In contrast,
osteogenic outcomes are favored by using rigid, porous scaffolds as this structure is
reflective of native bone. A recent article reviews distinct techniques that have been utilized
for a number of musculo-skeletal tissues with different starting cell populations (87). Here,
we review the use of scaffolds and bioreactors as they have been applied specifically to
ASCs.

3D substrates are designed to have specific biochemical, topographical and mechanical
properties, to direct the cells to spatially organize, to form functional contacts with other
cells and the matrix, and to secrete and assemble tissue-specific extracellular matrix (ECM)
when provided with the appropriate lineage-specific stimuli. Various groups have combined
ASCs with 3D gels or solid scaffolds to form bone- (88–91), cartilage- (92, 93) and fat-like
(94–96) tissues in vitro and in vivo.

The biochemical characteristics of the scaffold stimulate the developing ASCs and, together
with soluble growth factors, impart lineage-specific information. It has been shown that
ASCs implanted in hydroxyapatite-tricalcium phosphate (HA-TCP) scaffolds enabled
osteogenic differentiation with far greater efficiency (80 %) than the same cells seeded in
Collagraft™ scaffolds (20%) when both scaffolds were implanted subcutaneously into SCID
mice and allowed to develop for 6 weeks (88). The mineral component of the HA-TCP
scaffold (and possibly, the increased stiffness relative to Collagraft™) appeared to favor an
osteogenic phenotype in ASCs. Likewise, increases in the osteogenic differentiation of
human ASCs were observed when cells were cultured on different ceramics - akermite vs. β-
TCP scaffolds - under otherwise similar in vitro conditions (89). The akermite scaffolds
contained calcium (Ca), magnesium (Mg), and silicone (Si) ions on the surface, which are
capable of dissolving into the culture medium and affect the degradation profile of the
biomaterial. Other studies, not involving ASCs, have demonstrated that the surface
topography and mechanical properties of the scaffolds also influence cellular characteristics
and may be equally important in guiding cellular differentiation and determining functional
outcomes in orthopaedic applications (97–99). Knowledge gleaned from these studies may
enable the functional characteristics of the scaffolds to be determined a priori so that their
properties can be tailored suit specific outcomes.

A major technical hurdle preventing the immediate clinical translation of tissue-engineered
constructs has been their small size. Due to the diffusion limitations of nutrients and
metabolic products, only relatively thin layers of viable tissue can be grown under static
conditions. Bioreactors are employed to improve nutrient distribution and facilitate the
development of homogenous tissues (100). The method for inducing convective flow and
specific biophysical stimuli should correlate with the functional characteristics of the tissue
being engineered. In vivo, cartilage tissues are exposed to dynamic compressive stimuli
(101, 102), bone constructs (103) and blood vessels (104) require pressure and shear stresses
for proper development, tendons and ligaments respond to tensile and shear stresses (105,
106), and myocardial tissues utilize electrical (107) and contractile (108) stimuli. These
stresses, in addition to eliciting cell-specific responses, improve the convective mass
transport parameters governing the exchange of nutrients and waste occurring at the inner
regions of constructs. The application of such biophysical forces in bioreactors can be
coupled with soluble growth factors as to induce lineage-specific stem cell differentiation
and assembly into functional tissues.
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Relatively few studies have been published thus far with ASCs cultured on scaffolds in
bioreactors. In contrast, multiple studies performed with bone marrow-derived stem cells
have validated the utility of bioreactor systems as a means of improving cell growth in bone
(103, 109–111), cartilage (112) and ligament (105) constructs. Yet, two relatively recent
studies investigating in vitro bone formation by ASCs in bioreactor configurations have
been particularly instructive.

In the first study, Scherberich et al (113) employed bioreactor cultivation as a means to
avoid conventional monolayer cultivation and better preserve the native multi-lineage
capabilities of ASCs. The stromal vascular fraction (SVF) cells were seeded directly into
hydroxyapatite scaffolds and cultured for 5 days in a perfusion bioreactor prior to implanting
subcutaneously into nude mice. The osteogenic and vascular components within these
constructs were assessed after 8 weeks of subcutaneous cultivation. In parallel, SVF cells
were culture-expanded for 5 days using traditional monolayer methods prior to implantation
into the hydroxyapatite scaffolds. These constructs were also implanted into nude mice and
assessed after 8 weeks. It was found that the two methods of in vitro cultivation yielded
considerably different cell numbers (monolayer cultures resulted in almost double the
number of cell obtained from bioreactor cultures after only 5 days), but they had similar
percentages of stromal (CD 90+) and endothelial (CD34+/CD31−) progenitors. However, a
major difference was observed at the end of the subcutaneous implantation: both types of
constructs demonstrated vascular formations (CD34+/CD31+), but only constructs grown in
the bioreactors exhibited bone formation. Within the same study, SVF cells seeded directly
into scaffolds and implanted without bioreactor cultivation also failed to form bone. This
suggests that the osteogenic capabilities were not lost during monolayer expansion, but that
the effects of the scaffold biochemistry and bioreactor cultivation were somehow combined
to prime the cells along an osteogenic lineage.

A more recent study offers insights into the ‘priming’ of ASCs in vitro by their cultivation
on osteogenic scaffolds in a bioreactor with medium perfusion, to obtain thick bone
constructs (Figure 2) (114). ASCs at the 3rd passage were seeded into 4 mm thick scaffolds
made of decellularized trabecular bone, at a high initial density, and cultivated either in
perfusion bioreactors or in static conditions for 5 weeks to evaluate the in vitro bone-
forming properties of ASCs. The same osteogenic supplements (dexamethasone, β-
glycerophosphate and ascorbic acid) were used under both cultivation conditions. Medium
flow through the interstitial pore spaces of the seeded constructs significantly enhanced ASC
viability and tissue uniformity relative to constructs cultured without perfusion (Figure 2). It
was postulated that the improved cell-cell contacts, in particular within the central region of
the constructs, resulted in improved collagen matrix deposition and expression of bone-
specific proteins (bone sialoprotein and osteopontin). This study further supports scientific
advantages of using bioreactor systems providing environmental control and biophysical
signaling for directed differentiation of stem cells in general and ASCs in particular. The
related manufacturing and regulatory issues that need to be considered to make this
technology clinically viable are being addressed in current studies (115, 116).

3. H. Combination with gene transduction vectors
Human ASCs can be transduced with a variety of viral vectors to express specific genes of
interest (117, 118). Comparative analyses have determined that lentiviral vectors infect
ASCs more efficiently than adenoviral or retroviral vectors (117). Bone formation has been
enhanced in rat models by ASC delivery vehicle of BMP2 as a virally expressed protein
(118). Similarly, human ASCs with a lentiviral expression vector for MyoD displayed
improved myogenic potential in a murine model of muscular dystrophy (119). Recently,
human ASCs have been transduced with lentiviral vectors expressing four transcription
factors (c-myc, klf4, oct-4, sox2) to create induced pluripotent stem (iPS) cells (120).
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Human ASC derived iPS cells express surface markers comparable to embryonic stem cells,
displayed pluripotent differentiation potential in vitro, and form teratomas following in vivo
implantation (120). The frequency of iPS cell induction is low, but pluripotent cell lines
derived from human ASCs have direct value for musculo-skeletal discovery research and
future clinical applications.

4. Perspective and conclusions
Human ASCs offer major practical and theoretical advantages for future tissue engineering
and regenerative medical applications, with several challenges that are being addressed in
ongoing studies. The abundance, accessibility, reproducibility, and ease of isolation of ASCs
are among the major reasons for using ASCs in musculo-skeletal repair. While some studies
have raised concerns about the inferiority of ASCs relative to BMSCs with respect to
chondrogenic or osteogenic differentiation in vitro, it should be noted that such studies were
conducted using osteoinductive conditions that were optimized for BMSCs. Work by Estes
(45), Henning (44), and their colleagues has demonstrated that appropriate combinations of
growth factors, different from those routinely used for BMSCs, are necessary to augment
chondrogenic capacity of ASCs. Similar approaches, using growth factors and/or scaffolds,
have the potential to further improve the myogenic and osteogenic differentiation of ASCs.
Over the past decade, human ASC research has progressed from its focus on in vitro and
pre-clinical animal models to human clinical trials. The next decade is likely to yield
definitive studies supporting the safety and efficacy of using ASCs for bone, cartilage, and
muscle repair. Such outcomes will most likely enhance our ability to treat disabilities that
routinely impair quality of life for patients of all ages.
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Figure 1. Tissue Engineering approach
ASCs are combined with scaffolds and bioreactors that act in tandem to provide
developmental cues to undifferentiated ASCs, to result in a 3D engineered construct with
functional properties.
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Figure 2. Engineering bone from ASCs
(A) Schematic of bioreactor design (taken from (123) and reproduced with permission from
Liebert Inc.) (B, C) Trichrome stains and osteopontin immunohistochemical stains for
constructs cultured under static (B) and perfused (C) conditions. Matrix and cell distribution
are greatly improved in perfused constructs. (D) μCT (left) and SEM images (middle and
right) of bone constructs cultured with ASCs in perfusion bioreactors. SEMs show
alignment of matrix with mineral deposits. (Images modified from (55) and reproduced with
permission from Liebert Inc.)
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Table 1

ASC Chondrogenesis: Conditions and Monitoring Methods (16, 42–45, 47–49, 121)

Chondrogenic Induction DMEM (high glucose) Medium supplemented with 10 % Fetal Bovine Serum, 1 X Antibiotics
(Penicillin/Streptomycin), 1 X ITS (Insulin, Transferrin, Selenium), Dexamethasone (100 nM), L-
Ascorbic Acid 2-Phosphate (50 μg/ml), TGFβ1 or TGFβ3 (10 ng/ml), BMP6 (10 or 500 ng/ml).
Maintain ASCs in pellet culture or suspended in a biomaterial scaffold (agarose, alginate) with
inductive cocktail for 3 to 4 weeks.

Dimethyl-Methylene Blue Assay
(DMMB)

Quantifies the content of sulfated glycosaminoglycans in the extracellular matrix, an indicator of
chondrogenic differentiation.

Hydroxyproline Assay (OHP) Quantifies the total collagen in the extracellular matrix following chondrogenic differentiation.

Safranin-O/Fast Green Histological
Stain

Stains the negatively charged proteoglycans in the collagenous matrix.

Immunohistochemistry (IHC) Can be used to detect cartilage protein components consistent with chondrogenesis such as aggrecan
and collagen II, components of mature cartilage extracellular matrix; Collagen I, a marker of fibrous
matrix; Collagen X, a marker of hypertrophic cartilage; Chondroitin sulfate, the most prevalent
glycosaminoglycan; Sox 9, a transcriptional regulator of chondrogenesis.

Quantitative PCR (qPCR) Quantifies the mRNA levels of chondrogenic genes associated with the extracellular matrix (aggrecan,
collagens type I, II, and X) or transcriptional regulation (Sox 9)

In Vivo Bioassay Implantation of human ASC chondrogenic scaffold subcutaneously in immunodeficient rodent model
for periods of 4 to 12 weeks with subsequent analysis of implant graft by histochemical and/or PCR
based method for detection of human cells embedded in a cartilaginous matrix
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Table 2

ASC Osteogenesis: Conditions and Monitoring Methods (16, 43, 49, 54, 56, 118, 122)

Osteogenic Induction DMEM (high glucose) or BGJb Medium supplemented with 10% Fetal Bovine Serum, 1 X Antibiotics
(Penicillin/Streptomycin), 10 mM β-Glycerophosphate, 50 μg/ml L-Ascorbic Acid 2-phosphate, 10 nM
Dexamethasone and/or 10 nM 1,25 Dihydroxy Vitamin D3 and/or BMP2 (10 to 100 ng/ml). Maintain ASC
under osteogenic conditions for periods of 2 to 4 weeks.

Mineralization Assay Monitor the extent of calcium phosphate mineralization of the extracellular matrix by staining the fixed
cultures with Alizarin Red or von Kossa. The matrix staining with Alizarin Red can be quantified in an
individual well of ASC under osteogenic conditions by elution with cetylpyridinium chloride monohydrate
and subsequent optical density (OD540) determination. The level of osteogenic-induced ASCs can be
normalized relative to a well of uninduced ASCs maintained and stained for an equivalent time period.

Alkaline Phosphatase Assay Quantify the activity of bone alkaline phosphatase (ALP), an osteoblast associated enzyme induced transiently
during matrix mineralization. This can be quantified by a liquid biochemical assay in cell lysates or monitored
in fixed cultures of ASCs microscopically.

ELISA Assay Monitor the secretion of osteoblast associated proteins as a function of differentiation including: Osteocalcin
(bone matrix protein), Osteoprotegerin (osteo-regulatory cytokine), RANKL (osteo-regulatory cytokine).

Immunohistochemistry (IHC) Can be used to detect the expression of protein biomarkers associated with osteogenesis including: Bone
Sialoprotein (BSP) and Osteocalcin (OCN), osteoblast specific proteins associated with the extracellular
matrix; Collagen I, the predominant collagen in bone; Cbfa1/Runx2 and Osterix, transcriptional regulators of
osteogenesis; Osteonectin (ON) and Osteopontin (OSP), extracellular matrix proteins found in bone as well as
other tissues; Osteoprotegerin (OPG) and RANKL, osteo-regulatory cytokines secreted by bone marrow
stromal cells.

Quantitative PCR (qPCR) Quantifies the mRNA levels of osteogenic genes associated with the extracellular matrix (ALP, BSP, OCN,
ON, OSP), transcription (Cbfa1/Runx2, Osterix), or cytokine regulation (OPG, RANKL).

In Vivo Bioassay Differentiated human ASCs can be loaded onto biomaterial scaffolds (tricalcium phosphate/hydroxyapatite
ceramic ± collagen type I) and implanted subcutaneously in an immunodeficient rodent model for periods of 4
to 12 weeks with subsequent analysis of implant graft by histochemical and/or PCR based method for
detection of human cells embedded in a calcified matrix.
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Table 3

ASC Myogenesis: Conditions and Monitoring Methods (16, 43, 61–63)

Myogenic Conditions DMEM (high glucose) supplemented with 10% Fetal Bovine Serum, 5% Horse Serum, 1% Antibiotic
(Penicillin/Streptomycin)/Antimycotic (Amphotericin), 50 μM Hydrocortisone maintained for periods of up to
3 weeks.

Histochemical Assay Toluidine blue staining to determine the presence of multinucleated myotubules in the culture.

Immunohistochemistry (IHC) Detects proteins associated with myogenesis including the transcription factors MyoD, Myf5, Myf6, and
Myogenin and the structural protein Myosin Light Chain.

Quantitative PCR (qPCR) Quantifies the mRNA levels of myogenic genes associated with transcription (MyoD, Myf5, Myf6,
Myogenin) and function (Myosin Light Chain, Myosin Light Chain Kinase).
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Table 4

Lineage Specific Markers

Lineage Differentiation Pathway Transcriptional Marker Extracellular, Structural or Cytoplasmic Marker

Chondrogenic Sox 9 Aggrecan, Collagen Type II, Chondroitin Sulfate

Myogenic MyoD, Myf5, Myf6, Myogenin Myosine Light Chain, Myosin Light Chain Kinase

Osteogenic Cbfa1/Runx2, Osterix Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteonectin,
Osteopontin, Osteoprotegerin, RANKL

Front Biosci (Schol Ed). Author manuscript; available in PMC 2013 April 26.


