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Fundamental to understanding how tissues function is 
understanding how the cells that compose them communi-
cate. In most tissues and organs, cells do not exist as homo-
typic monolayers but rather coexist as multiple different 
cell types in close proximity to one another. In some cases, 
these relationships are random and have no functional sig-
nificance; others are symbiotic, where the presence and 
proximity of a neighboring cell are vital to another cell’s 
quiescence, specification, maturation, function, survival, 
and so on. Although biochemical, genetic, genomic, and 
proteomic methods have revealed a wealth of molecules 
known to participate in cell signaling pathways, many such 
signaling networks have been established using in vitro sys-
tems, and thus it is still unclear how cells within a three-
dimensional (3D), functional tissue environment use these 
pathways.

This question and the increasing importance of 3D micro-
environments in cancer (Håkanson et al. 2011) and stem cell 
biology (Doetsch et al. 1997; Shen et al. 2008; Tavazoie et al. 
2008; Kazanis et al. 2010) have stimulated the generation of 
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Summary

Intercellular signaling is a fundamental requirement for complex biological system function and survival. Communication 
between adjoining cells is largely achieved via gap junction channels made up of multiple subunits of connexin proteins, 
each with unique selectivity and regulatory properties. Intercellular communication via gap junction channels facilitates 
transmission of an array of cellular signals, including ions, macromolecules, and metabolites that coordinate physiological 
processes throughout tissues and entire organisms. Although current methods used to quantify connexin expression rely 
on number or area density measurements in a field of view, they lack cellular assignment, distance measurement capabilities 
(both within the cell and to extracellular structures), and complete automation. We devised an automated computational 
approach built on a contour expansion algorithm platform that allows connexin protein detection and assignment to 
specific cells within complex tissues. In addition, parallel implementation of the contour expansion algorithm allows for 
high-throughput analysis as the complexity of the biological sample increases. This method does not depend specifically on 
connexin identification and can be applied more widely to the analysis of numerous immunocytochemical markers as well as 
to identify particles within tissues such as nanoparticles, gene delivery vehicles, or even cellular fragments such as exosomes 
or microparticles. (J Histochem Cytochem 61:283–293, 2013)
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new methods to quantitatively map protein expression and 
distribution within intact tissues using automated methods, 
with the goal of developing models of cell signaling that can 
further be tested in a tissue-specific context. In many cases, 
these new methods use automated segmentation and co-local-
ization of immunostaining for specific proteins and factors 
within tissue sections. However, co-staining with markers to 
delineate all possible cell types and signaling molecules, as 
well as further assigning them to particular cells, is not always 
possible, as methods such as co-localization depend on over-
lapping or contiguous signals. One such family of proteins 
that has been difficult to map within 3D microenvironments is 
gap junctions and their connexin subunits. We are specifically 
interested in understanding the role that connexin proteins 
play in defining cellular microenvironments.

Gap junctions consist of plaques of membrane channels, 
each comprising two connexon hexamers that form at the 
interface of adjoining cells, allowing for transport of small 
molecules, ions, and metabolites between coupled cells (Beyer 
1993). In addition to mediating cell-cell communication, 
recent evidence suggests that the connexin proteins that make 
up the connexon hemichannels serve signaling roles, feeding 
into growth and survival pathways. There are currently 21 
known human connexin proteins, each exhibiting unique 
selectivity and regulatory properties. Previous studies have 
demonstrated a critical role for cell-specific connexin protein 
expression in organ development and function, such as in the 
cardiovascular system (Brisset et al. 2009). In addition, gap 
junctional intercellular communication is required to maintain 
neural stem and progenitor cells in non-differentiated and  
proliferative states (Cheng et al. 2004; Todorova et al. 2008). 
Although such cell culture studies have increased our under-
standing of the role of specific connexin proteins in regulatory 
processes, our ability to study how multiple connexin proteins 
collectively coordinate tissue homeostasis, growth, and repair 
has been limited by our inability to characterize cell-specific 
connexin protein expression in complex organ microenviron-
ments. Thus, we aimed to devise a strategy to quantify  
connexin expression in situ.

Automated segmentation of signals localized to well-
defined structures, such as the nucleus or other subcellular 
compartments, can now be performed routinely due to 
steady development in this area (Lin et al. 2003, 2005, 2007; 
Al-Kofahi et al. 2010). However, the analysis of some sig-
nals, such as connexin expression, still remains a challenge. 
Connexins are localized in clusters within and on the surface 
of cells, appearing as puncta in immunohistochemical data. 
Because of their extremely small size and punctate labeling 
pattern (Fig. 1, arrows), current methods to quantify con-
nexin expression in fluorescent images involve density mea-
surements of plaque or surface area, volume, and number 
(Yamanaka et al. 2005; Penuela et al. 2007; Ionta et al. 2009; 
Romek and Karasinski 2011). Although puncta can be seg-
mented with relative ease, assigning puncta to a specific cell 
can be challenging. The methods presented here address this 

problem and complement current cytoplasmic segmentation 
methods (Al-Kofahi et al. 2010) used when the cytoplasm is 
not labeled by a fluorescent marker. In this case, fluorescent 
markers confined to the nuclear surface or its vicinity 
(Jaiswal et al. 2004; Jablonski et al. 2010) allow assignment 
of puncta to specific cells.

Here, we present a method to detect connexins while 
simultaneously associating them with adjacent cells. This 
method is based on positive connexin expression within a 
“nuclear neighborhood”, thus establishing a probability for 
whether expression is associated with the cell’s nucleus. By 
creating a custom computer program that identifies a cell’s 
nucleus and implements a simple contour expansion algo-
rithm, we are able to search the immediate vicinity of a 
nuclear surface at single-pixel resolution to detect and 
assign connexin expression in fluorescent images to a spe-
cific cell type. Although we have directly applied this 
method to the automated quantitation of connexin expres-
sion, it can easily be adapted to detect any punctate signal, 
including those derived from other protein expression pat-
terns, or even from nanoparticles, gene delivery vehicles, 
and cellular fragments such as exosomes or microparticles.

Materials and Methods
Animal Use and Tissue Preparation

Two- to 3-month-old CD1 Swiss-Webster mice were used 
in accordance with Baylor College of Medicine institu-
tional guidelines. BrdU (Sigma; St. Louis, MO) (7.5 mg/
ml) was injected intraperitoneally (375 mg/kg) twice daily 

Figure 1. A representative confocal microscope image of connexin 
43 expression in the murine subventricular zone (SVZ) (coronal 
view). BrdU (green) marks a subpopulation of quiescent astrocytic 
cells that are presumed to be neural stem cells (NSCs) (Shen  
et al. 2008; Tavazoie et al. 2008; Kazanis et al. 2010). The algorithm 
described herein allows detection and assignment of connexin 
expression to BrdU+ NSCs (arrows) by performing a nuclear 
neighborhood search at a pixel-level resolution. Bar = 10 µm.
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for 5 days. Mice were sacrificed by cervical dislocation 30 
to 40 days after the last injection. Brains were dissected 
into cold DMEM/F12 and washed in PBS to remove debris. 
The subventricular zone (SVZ) was microdissected into 
cold DMEM/F12 and fixed in 4% paraformaldehyde (PFA) 
in PBS at 4C overnight. Whole brains were fixed in 4% 
PFA/0.1% Triton X-100 in PBS at 4C overnight, and 70-µm 
coronal sections were subsequently cut using a Leica 
VT1000S vibratome (Allendale, NJ).

Immunostaining
Sections used for immunostaining and computational anal-
ysis correspond to coordinates (mm) relative to bregma: 
anterior (A), posterior (P): –0.5, 2. Fixed coronal sections 
were pretreated with 2 N HCl for 30 min at 37C followed 
by a 10-min neutralization step in 100 mM sodium tetrabo-
rate. Sections were then washed in PBS, treated with 0.5% 
Triton X-100 in PBS for 10 min, blocked using mouse Ig 
blocking reagent (Vector Labs; Burlingame, CA) for 6 to  
8 hr at room temperature, and incubated with primary anti-
bodies in 0.08% M.O.M protein concentrate diluent (Vector 
Labs) in PBS for 24 hr at 4C. Tissue was washed in PBS and 
incubated with appropriate secondary antibodies at room 
temperature for 2 hr and washed in PBS. DAPI (0.002 mg/ml) 
(Sigma) was added and tissue was washed in PBS before 
mounting on a glass slide and coverslipped in MOWIOL 
(Calbiochem; San Diego, CA). Antibodies used were the 
following: Connexin 43, rabbit IgG, 1:500 (Abcam; San 
Francisco, CA); BrdU, mouse IgG, 1:50 (Becton Dickinson; 
Franklin Lakes, NJ). Primary antibodies were visualized 
using Alexa Fluor-conjugated (Invitrogen; Carlsbad, CA) 
secondary antibodies.

Image Acquisition
Coronal sections were imaged using an inverted Zeiss LSM 
510 confocal laser scanning microscope (Carl Zeiss; Jena, 
Germany). Imaged areas were selected at random within 
the SVZ. The z-stacks were acquired using a Zeiss 
C-Apochromat 40×/1.2 NA water objective lens. All 
z-stacks were taken with a zoom factor of 3, at which the 
lateral pixel resolution was 0.1 µm. The step size between 
adjacent images in the z-stacks was 1.0 µm. The different 
fluorescent markers (DAPI, BrdU, and connexin) were 
excited with 405-nm, 488-nm, and 543-nm lasers, respec-
tively. The z-stacks consisted of images with an area of 512 
× 512 pixels and a pixel depth of 8 bits.

Image Analysis
The workflow of our image processing is shown in Fig. 2. 
Briefly, the main steps in image processing are nuclear 
segmentation using FARSIGHT (Lin et al. 2003, 2005, 
2007; Al-Kofahi et al. 2010) followed by application of the 

contour expansion algorithm using custom MATLAB pro-
grams. The image-processing steps are discussed in detail 
in the following paragraphs.

Nuclear Segmentation
The nuclei were segmented using FARSIGHT, followed by 
index assignment to each cell under investigation. Following 
segmentation, an output matrix is created that corresponds to 
the same number of elements as the number of pixels in the 
z-stack. For a more detailed description, see the Results section.

Contour Expansion Algorithm
The nuclear boundary is obtained from the segmented 
image using a neighborhood search algorithm. The neigh-
borhood search algorithm is a modification of the con-
nected component analysis commonly used in image 
analysis (Russ 2002). The serial and parallel programs were 
written using the MATLAB version R2008a (MathWorks; 
Natick, MA). The serial MATLAB code was optimized 
using the profile function available in MATLAB before 
applying the parallelization scheme. The programs are 
available from the authors (JSG or TJV) upon request. For 
a more detailed description, see the Results section.

Results
Image Analysis Workflow

The image analysis workflow used here is shown in Fig. 2. 
The first step in image analysis uses FARSIGHT to segment 

Figure 2. A schematic of the image analysis workflow. Each image 
in the z-stack is a three-color RGB image. FARSIGHT reads in the 
confocal z-stack file and segments the nuclear channel of interest 
(Lin et al. 2003, 2005, 2007; Al-Kofahi et al. 2010). Following 
segmentation, the confocal z-stack and the FARSIGHT output file, 
containing the indices of the segmented nuclei, are used as input 
to the MATLAB programs.
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the nucleus, which is followed by a nuclear neighborhood 
search of the nucleus using the contour expansion algo-
rithm. Throughout the segmentation process, indices are 
assigned to each cell of interest, allowing an output matrix 
to be built containing equivalent numbers of elements and 
pixels that are both derived from the original z-stack. In this 
way, each pixel of every nuclear cross section in each plane 
of the z-stack is represented by a specific cellular index. The 
advantage of this type of analysis is that interspatial rela-
tionships, between different cell types and structures, are 
preserved while information is captured in a 3D context.

The contour expansion algorithm is then applied to the 
FARSIGHT-segmented image to extrapolate strength and 
location of expression. The first nuclear contour (black ring, 
Fig. 3A) is established after a neighborhood search algo-
rithm identifies the neighborhood pixels of the nuclear 
boundary; these neighborhood pixels, excluding those 
within the nucleus, eventually become the contour ring. 
Thus, the neighborhood is expanded consecutively in a sim-
ilar fashion, where neighborhood pixels corresponding to 
the previous nuclear contour are used to form the next con-
tour ring (red, green, and blue rings, Fig. 3A). A pixel-level 

Figure 3. Illustration of the nuclear 
neighborhood search algorithm. (A) A 
schematic of the contour expansion 
approach in which the nuclear 
neighborhood is scanned starting at 
the surface of the nucleus (black ring) 
and extending to layers (red, green, 
and blue layers) beyond the surface 
layer of pixels. Each layer is one pixel 
wide in an eight-neighborhood sense. 
(B) The contour expansion approach 
is illustrated at the pixel level. Pixels 
labeled as 1, 2, and 3 correspond 
to different layers starting from the 
surface of the nucleus. (C) A nuclear 
neighborhood filter is then constructed 
from the contour pixels shown in (B). 
The filter image of the nucleus has 
the same dimension as the original 
fluorescent image. (D) The connexin 
channel in the original fluorescent 
image is illustrated here. Each pixel in 
the connexin channel image is then 
multiplied with the corresponding pixel 
in the filter image to extract the pixels 
in the nuclear neighborhood that are 
occupied by connexins (E).



Associating Connexins to Cells	 287

schematic of the contour expansion approach is illustrated 
in Fig. 3B. In addition, a contour filter image (Fig. 3C), 
reflecting the same dimensions as the original fluorescent 
image, is also constructed from the nuclear neighborhood 
pixels obtained from the contour expansion. To extract the 
connexin pixels in a given nuclear neighborhood (Fig. 3E), 
a pixel-by-pixel dot product of the contour filter image with 
the binarized connexin channel image (Fig. 3D) was per-
formed. Furthermore, the number of connexin pixels in 
each loop can be enumerated by summing over the non-zero 
pixels in the binarized image (Fig. 3E), yielding informa-
tion about subcellular localization, where differential loca-
tions can sometimes lead to distinct functions. For example, 
connexin 43 predominantly resides at the plasma membrane 
to facilitate intercellular communication but at times can 
translocate to the nucleus to regulate gene transcription and 
growth control (Moorby and Patel 2001; Dang et al. 2003). 
Therefore, because the contour expansion algorithm is 
applied to each image of the z-stack, an accurate 3D recon-
struction reflecting connexin expression is created that 
allows for strength, location, and cellular assignment to be 
determined.

Program Fidelity
Our goal is to use this method for completely automated 
feature extraction; therefore, we tested the fidelity of the 
method using synthetic data. As controls, images of a disk 
with a concentric ring separated from the disk by an arbi-
trary set of empty pixels (Suppl. Fig. S1) and a z-stack 
consisting of two copies of the disk and ring image (Suppl. 
Fig. S1) were used to evaluate accuracy and consistency of 
the contour expansion–based pixel detection. The output of 
the program, when applied to a simple synthetic image of a 
circular disk, is shown in the supplemental material (Movie 
1), where the contours are added concentrically with 
respect to the disk (Movie 1). Starting at the boundary of 
the disk, loop extension proceeds outward in increments of 
one pixel to expand the nuclear neighborhood.

The fidelity of our program was further tested by using a 
test image consisting of a circle concentric with a disk but 
separated from the disk by empty pixels (Suppl. Fig. S1). 
The number of pixels in the ring was enumerated by first 
applying a simple threshold to binarize the test image, mak-
ing intensity values below the threshold equal to zero and 
above the threshold equal to 1, and then the number of pix-
els with a value of 1 was counted. Subsequently, the disk in 
the test image was segmented using FARSIGHT, and the 
MATLAB program was applied to enumerate the number of 
pixels in the ring surrounding the disk. In the end, the num-
ber of pixels that constituted the ring in both cases was the 
same. A z-stack of the test image was created by adding 
another copy to the existing image. As expected, applica-
tion of the algorithm to the z-stack produced an output that 
was twice the number of pixels in the ring of the test image. 

Taken together, these results strongly demonstrate consis-
tent fidelity of our MATLAB program.

Performance Analysis
To evaluate the performance of the program, execution 
times were measured using synthetic images and z-stacks 
that mimic potential in vivo scenarios commonly encoun-
tered during confocal image acquisition. The performance 
of the custom MATLAB program was assessed by measur-
ing the time it takes to complete the contour expansion for 
10 loops using synthetic data. The execution time or dura-
tion of the calculations was measured using the tic-toc com-
mands in MATLAB. First we used a z-stack consisting of a 
different number of images from 1 through 20. Each image 
in the z-stack consisted of 512 × 512 pixels. In each image 
of the z-stack, a single circular disk with a diameter of  
220 pixels was used as a model for the nuclear cross section 
of a cell. The durations of the calculations for z-stacks of 
different thicknesses are presented in Fig. 4A. As a result, 
the duration of the program scales linearly with the number 
of images in the z-stack.

The program is not limited to specific magnifications of 
objective lens used during image acquisition. To assess the 
performance of the program in such a scenario, the execu-
tion times of the program on images that consist of circular 
disks of different diameters were measured (Fig. 4B). It is 
not surprising that execution times are independent of the 
diameter of the disks because the entire image is scanned 
when constructing the nuclear neighborhood filter. In prac-
tice, at a lower magnification, to scan the same distance 
covered by 10 loops at a higher magnification, it suffices to 
decrease loop number because the size of a pixel at a lower 
magnification is always larger than that at a higher 
magnification.

Finally, to estimate the scaling of program execution 
time with the number of cells in an image, we used images 
with different numbers of circular disks for comparison. 
The diameter of each disk in these images was 45 pixels. 
From Fig. 4C, it is clear that the execution time of the pro-
gram scales linearly with the number of disks, planes, and 
cells in the image.

Overall, these studies demonstrate consistent and accu-
rate pixel detection under a broad range of user-defined cri-
teria mimicking common imaging scenarios. Regardless of 
cell diameter, number of planes, or objective magnification 
used during image acquisition, our contour expansion–
based pixel detection method is able to detect and assign 
positive pixels to a specific cell. This validation of the 
robustness of the method is the first step in the design of an 
automated approach that can be applied to high-throughput 
analysis of complex tissues. We next explored whether 
these methods could be implemented using a parallel 
approach to maximize the efficiency when the method is 
applied to complex tissues with a large number of cells.
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cards, computer arrays in a network) being used. This 
reduces wait time of program execution that would other-
wise be performed sequentially on a single-processor com-
puter. Image analysis using parallel algorithms is possible 
using a variety of software, such as MATLAB, OpenCV, 
and Adobe Photoshop. Here, we used the parallel MATLAB 
Toolbox developed by Dr. Jeremy Kepner (Lincoln 
Laboratory, MIT, Cambridge, MA) to build a parallel 
MATLAB program of our algorithm. The toolbox makes 
use of Message Passing Interface (MPI) to implement 
MATLAB programs on multiple processors (http://www 
.ll.mit.edu/mission/isr/pmatlab/pmatlab.html). Although 
we are using MPI for parallelization, the communication 
between different processor cores in our parallel implemen-
tation is minimal so that the workload arising from com-
munications between the processor cores is very low.

Accordingly, we chose to submit z-stacks (original z-stack 
from the microscope and the FARSIGHT segmentation file 
containing the indices of the segmented nuclei) to each pro-
cessor of an Intel Duo Core processor (1.30 GHz and  
4 GB RAM) laptop, with additional information to instruct 
processor-specific execution on non-overlapping nuclei indi-
ces. This ensures that each processor is responsible for analy-
sis of a different data set. Figure 4C (dashed line) illustrates 
the scaling of the execution time with the number of disks for 
a custom-built parallel MATLAB program that implements 
the algorithm discussed above. The same synthetic data used 

Figure 4. Testing the performance of the MATLAB program 
using synthetic data. (A) Program execution times were measured 
when the number of images in the z-stacks varied. Each image in 
the z-stack consisted of 512 × 512 pixels. A circular disk with a 
diameter of 220 pixels was used as the test object in each image 
of the z-stack. The number of contours used in each image in 
the z-stack was 10. The execution time scales linearly with the 
number of planes (R2 = 0.99, n=3). The error bars are one unit 
of standard deviation of the mean values and are smaller than 
the symbols representing the data points. (B) The mean values of 
the execution times, to scan 10 contours around circular disks of 
varying diameters in single-plane images of 512 × 512 pixels each 
(n=3), were recorded. The error bars are one unit of standard 
deviations of the mean values. (C, solid line) The durations of the 
program to perform the loop calculations for varying numbers 
of circular disks of fixed diameter in single-plane images of 512 
× 512 pixels each are illustrated here. The diameter of a single 
circular disk in these images is 45 pixels. The execution time of 
the program scales linearly with the number of disks (R2 = 0.98, 
n=3). (C, dashed line) The dashed line represents the linear scaling 
of the execution time with the number of disks for the custom-
built parallel program (R2 = 0.99, n=3). The parallel program is 
significantly faster than the serial program (solid line). The error 
bars are one unit of standard deviations of the mean values and 
are smaller than the symbols used to represent the data points. 
The execution times were calculated using the standard MATLAB 
commands to measure time.

Parallel Implementation

A parallel implementation of the image analysis algorithm 
can be used to expedite calculations when the number of 
cells in the z-stack is large (Vadakkan and Bassler 2005). 
This allows distribution of the workload among the cores/
processors (e.g., multicore processors, multicore graphics 
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with the serial MATLAB program discussed earlier were 
used here as well. A significant improvement in the execution 
times is achieved (dashed line) with the parallel program 
compared with the serial program (solid line).

In summary, the execution times of the program scale lin-
early with the number of z-stacks as well as the number of 
nuclei in the image (Fig. 4A). Similarly, the execution times 
of the parallel program also scale linearly with the number of 
nuclei (Fig. 4C); however, the execution times when com-
pared with their serial counterparts are reduced by a factor that 
is approximately equal to the number of cores in the multicore 
processor (Fig. 4C, compare between dotted and solid lines). 
Therefore, it is clear that adding more processors will enhance 
the execution time, until the number of processors equals the 
number of cells, but for simple routine use, this approach ben-
efits greatly from a parallel approach available on many com-
monly used computers and will only improve as personal 
computers evolve to include even more processors.

Application to the SVZ Reveals Connexin 43 
Expression in Adult Neural Stem Cells

After validating the fidelity of the MATLAB program and mea-
suring its performance, we tested its application in the context of 
neural cell associations and gap junction expression in the adult 
SVZ. Several reports indicate that connexin 43 is expressed in 
radial glia, the in vivo precursors to adult neural stem cells, and 
that it plays an important role in neocortical development. 
Therefore, we used the program to quantify the expression of 
connexin 43 in adult neural stem cells residing within the SVZ. 
We immunostained sections of the SVZ with antibodies against 
connexin 43 and counterstained the tissue with DAPI to identify 
cell nuclei. Confocal z-stack images were acquired and sub-
jected to the neighborhood contour expansion algorithm to 
analyze the distribution of connexin 43–positive puncta within 
the vicinity of each neural stem cell nucleus. Figure 1 shows a 
representative image from one such data set.

The z-stacks consisted of 8-bit three-channel images 
corresponding to connexins and BrdU- and DAPI-stained 
nuclei. The BrdU-stained nuclei were segmented using 
FARSIGHT. The confocal z-stack image and the segmenta-
tion output file from FARSIGHT were given as input to the 
MATLAB program. The program created 10 concentric 
loops starting at the segmented nuclear surface in each 
plane of the z-stack. The loops created by the program for a 
representative image in the z-stack are shown in Fig. 5B–D 
and in Movie 2 (supplemental material). For the imaging 
parameters used, 10 loops covered a mean distance of 1 µm 
from the surface of the nucleus to recapitulate reported 
cross-sectional areas of SVZ neural stem cells (NSCs) 
(Doetsch et al. 1997). The connexin channel image was 
binarized by applying an intensity threshold of 100. The 
nuclear neighborhood filter extracted by the program was 
used to take a pixel-by-pixel product with the binarized 
connexin channel image to enumerate the number of con-
nexin-positive pixels in each loop surrounding the nuclear 
surface. The output from the program for a representative 
z-stack is summarized in Table 1.

The program may be used to classify the nuclei in a con-
focal z-stack based on their connexin expression (Fig. 6 and 
Suppl. Fig. S2). Figure 6A is an image from a confocal 
z-stack consisting of 28 nuclei, where nuclei are stained 
with DAPI. The red loops around each nucleus are the sur-
face pixels of the nuclei detected by FARSIGHT. We enu-
merated the number of connexin-positive pixels in the 
vicinity of each nucleus using the contour expansion algo-
rithm (Fig. 6B). Nuclei (Fig. 6C) were then pseudo-colored 
based on the number of connexin-positive pixels in their 
neighborhood. Red nuclei have the maximum number of 
connexin-positive pixels in their neighborhoods, whereas 
the nuclei colored in blue have the least number of con-
nexin-positive pixels in their neighborhoods. The program 

Figure 5. Application of contour expansion algorithm to a 
representative confocal z-stack image. The z-stack consists of 10 
images, and each image consists of 512 × 512 pixels. The x and y 
pixel scaling is 0.1 µm each, and the axial pixel scaling is 1.0 µm. 
(B–D) The white loops around the BrdU (green)-stained nucleus 
(blue) are the contours created by the MATLAB program, labeled 
as L1, L5, and L10, respectively (Table 1). L1 consists of pixels 
adjacent to the surface pixels of the nucleus. The surface pixels 
are obtained following nuclear segmentation using FARSIGHT. 
The contours sweep the neighborhood of the nucleus starting 
at the nuclear surface, where each contour is one pixel wide 
in an eight-neighborhood sense. Similar contours are created 
with respect to the nuclear surface in all images in the z-stack 
containing a cross section of the nucleus (Movie 2 [supplemental 
material]). Bar = 10 µm.



290		  Goldberg et al.

also identified and assigned connexin 43 expression to two 
astrocytic cell types residing adjacent to one another, con-
firming previous reports describing connexin 43 in astro-
glial cells (Pannasch et al. 2011) (Suppl. Fig. S2). These 
data show that the loop expansion program can be used to 
detect the unique staining patterns of connexins in fluores-
cent images and quantify, with subcellular resolution, fluo-
rescent expression to the vicinity of the nuclear surface.

Discussion
The computational approach presented here allows us to 
assess connexin expression within cells using an automated 
quasi-3D nuclear neighborhood scan. The ability to calcu-
late the fraction of connexin-expressing cells in an image 
and associate them with specific cell types is biologically 
important as it allows us to monitor how a population of 
cells reacts to and changes connexin expression under 
pathological conditions and in normal biological processes. 
In situations where strength, balance, and location of con-
nexin expression dictate the degree and type of intercellular 
signal that is propagated, the power to record the minutest 
change is critical. Toward this goal, the present approach 
provides a foundation on which computation-based tech-
niques can be used to explore the interaction of particular 
cell types, as well as their relationship to extracellular struc-
tures, and how these may regulate neurogenesis in the SVZ 
(Shen et al. 2008; Tavazoie et al. 2008; Kazanis et al. 2010).

The adult SVZ represents one of two primary germinal 
regions in the brain where persistent neurogenesis and 
regeneration occur. Here, neural stem cells are spatially 
restricted and give rise to migrating progenitor cells that ter-
minally differentiate into olfactory bulb interneurons. In the 

current study, we were able to associate BrdU-positive 
nuclei in the SVZ with connexin expression. Our contour 
expansion algorithm allowed us to not only detect connexin 
43 expression in this rare stem cell population but also 
quantify the strength and subcellular detection of connexin 
43–positive puncta, providing insight into potential func-
tions within the neural stem cell population.

Our contour expansion method enables a thorough inter-
rogation of the image to the full extent of the spatial resolu-
tion. We not only can detect connexin expression within a 
segmented nucleus but, because each pixel is included in 
the analysis, can also identify positive pixels in the neigh-
borhood of a nuclear boundary and define the precise prox-
imity. Although analysis of each pixel is computationally 
intensive, we have shown that parallelization can signifi-
cantly reduce the time burden. Differences in subcellular 
location may translate to different functions and thus pro-
vide a window into the dynamics of neural stem cell behav-
ior. The computational method presented is easily adapted 
to include differentiated markers, where correlating physi-
ological ranges of connexin 43 puncta to differentiation sta-
tus remains an attractive possibility.

The algorithm discussed in this article conducts a quasi-
3D scan of a nuclear neighborhood where the neighborhood 
of each nuclear cross section in each plane is searched using 
the loop expansion algorithm. The program may be easily 
modified to output the x, y, and z coordinates of the pixels 
belonging to the connexins to calculate the mean distance of 
the plaques from the centroid of the nucleus. Significant 
insights relating to the proximities of cells have been 
revealed within the subventricular zone, making such mea-
surements important for future studies (Shen et al. 2008; 
Kazanis et al. 2010). Real 3D analyses could be carried out 

Table 1. Output from the MATLAB Program for a Representative Confocal z-Stack

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Z1 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0
Z3 0 0 0 4 3 0 0 0 0 0
Z4 0 0 0 0 0 0 1 0 0 2
Z5 2 0 0 0 0 0 4 6 7 7
Z6 8 7 3 5 9 7 9 13 13 9
Z7 26 27 24 19 16 14 14 14 11 10
Z8 0 8 11 14 16 21 26 21 20 19
Z9 0 0 0 0 0 0 0 0 0 0
Z10 0 0 0 0 0 0 0 0 0 0

Z1 through Z10 are the labels of images in the confocal z-stack taken within the subventricular zone (Fig. 1). L1 through L10 are the labels of the loops 
created by the MATLAB program. The entries in the table are the total number of pixels in each loop whose intensity in the connexin channel is above 
a defined intensity threshold. An intensity threshold of 100 was used to delineate the connexin-positive pixels. The nucleus extends in the z-stack from 
Z2 through Z8. Even though the nuclear surface starts in Z2, there were no connexin pixels with an intensity greater than 100 in Z2. Therefore, the 
number of connexin-positive pixels in all loops (L1–L10) in Z1, Z2, Z8, and Z10 is zero. The total duration of the calculations was ~8 sec. Images labeled 
as Z1, Z2 . . . Z10 correspond to images labeled as Plane 0, Plane 1 . . . Plane 9 in Movie 2 (supplemental material).
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in a similar manner to what has been proposed here, where 
the nearest neighbor would now consist of surrounding pix-
els in all directions; however, this is much more computa-
tionally intensive and will not significantly affect the 
distance measurements over estimates based on the same 
image stacks that establish the x, y, and z coordinates. Thus, 
although possible, real 3D analysis would not add much 
value compared with the quasi-3D analysis described here.

By performing a quasi-3D scan of the nuclear neighbor-
hood, meaning that a series of two-dimensional images 
from an image stack were analyzed (see Materials and 
Methods), the program automatically detected and associ-
ated gap junction plaques with the nucleus under consider-
ation. The program may be easily modified to output the x, 
y, and z coordinates of the pixels belonging to the connexins 
as well. These data can then be used to calculate the mean 
distance of the plaques from the centroid of the nucleus 
(Shen et al. 2008; Kazanis et al. 2010).

Here we have described a new approach to define the 
distribution of connexin 43 within the brain, a complex tis-
sue with densely packed nuclei. Although connexin expres-
sion was the primary motivation for this study, several other 
proteins are also known to have punctate expression  
patterns—for example, desmin (Isobe et al. 1994) and cad-
herins (Kuijpers et al. 2007). In addition to protein localiza-
tion, there is also a growing interest in characterizing the 
delivery and distribution of nanoparticles and quantum dots 
within tissues and whole organisms (Minami et al. 2012; 
Mykhaylyk et al. 2012), as well as the distribution of  
microparticles and exosomes released by cells and often 
associated with pathology or the activation of specific sig-
naling pathways (van der Pol et al. 2010). The analysis pre-
sented here would also be applicable to images containing 
these types of particles and thus could be of value to 
researchers studying a wide range of biological problems. 
Overall, the ability to quantify changes in the distribution of 
key proteins or particles within cells is fundamental to being 

Figure 6. Application of FARSIGHT output to a z-stack 
consisting of 28 DAPI-stained nuclei. (A) The loops (yellow lines 
around the nuclei) are the surface pixels of each nucleus. The 
loop expansion algorithm was applied to the FARSIGHT output 
data to measure the number of connexin pixels. (B) Histogram 
depicting the number of connexin pixels detected in 10 loops 
around each nucleus. (C) The nuclei were then grouped based on 
the number of connexin pixels and color coded corresponding to 
pixel number. Blue corresponds to nuclei with the least number 
of connexin pixels detected, whereas red indicates those with 
maximum pixel detection.
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able to further understand their function in complex cellular 
microenvironments. Success in this area will no doubt 
require the development of sensitive and robust methods 
with a high statistical throughput such as the one reported 
here.
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