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Abstract
Modern high-throughput HLA and KIR typing technologies are generating a wealth of
immunogenomic data with the potential to revolutionize the fields of histocompatibility and
immune-related disease association and population genetic research, much as SNP-based
approaches have revolutionized association research. The Strengthening the Reporting of Genetic
Association studies (STREGA) statement provides community-based data reporting and analysis
standards for genomic disease-association studies, identifying specific areas in which adoption of
reporting guidelines can improve the consistent interpretation of genetic studies. While aspects of
STREGA can be applied to immunogenomic studies, HLA and KIR research requires additional
consideration, as the high levels of polymorphism associated with immunogenomic data pose
unique methodological and computational challenges to the synthesis of information across
datasets. Here, we outline the principle challenges to consistency in immunogenomic studies, and
propose that an immunogenomic-specific analog to the STREGA statement, a Strengthening the
Reporting of Immunogenomic Studies (STREIS) statement, be developed as part of the 16th
International HLA and Immunogenetics Workshop. We propose that STREIS extends at least four
of the 22 elements of the STREGA statement to specifically address issues pertinent to
immunogenomic data: HLA and KIR nomenclature, data-validation, ambiguity resolution, and the
analysis of highly polymorphic genetic systems. As with the STREGA guidelines, the intent
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behind STREIS is not to dictate the design of immunogenomic studies, but to ensure consistent
and transparent reporting of research, facilitating the synthesis of HLA and KIR data across
studies.
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The Goal: Consistency in Immunogenomic Studies Through Community
Data Reporting Standards

A consensus is emerging within the genomics community regarding the need for community
data-reporting and analysis standards in genetic disease association studies. For example, the
Human Genome Epidemiology Network (HuGENet) was established in 1998 by the Office
of Public Health Genomics to advance the synthesis and interpretation of population data on
human genetic variation in disease association. The publications of the ‘Strengthening the
Reporting of Observational Studies in Epidemiology’ (STROBE) and ‘Strengthening the
Reporting of Genetic Association studies’ (STREGA) statements(1, 2) represent further
advances in these efforts, enumerating specific areas in which adoption of community-based
reporting guidelines can improve the consistent interpretation of genetic studies, particularly
for genome-wide association studies (GWAS) and meta-analyses of GWAS data. Published
studies suggest that implementation of such data-reporting standards for genetic association
studies could greatly enhance the utility of individual association studies for the larger
community through increased transparency(3-7).

The STROBE and STREGA statements represent significant progress toward the
widespread adoption of such reporting standards in the field of genetic epidemiology, and
can be applied to gene-based population and evolutionary studies as well. Many of the data-
reporting issues described in these statements are pertinent to immunogenetic studies.
However, these statements pertain primarily to large cohorts and single nucleotide
polymorphism (SNP) based studies. The high level of polymorphism associated with the
HLA and KIR loci, the variety of HLA and KIR genotyping systems in use, the complexities
of transplantation studies, and the unique role played by the MHC region in predisposition to
disease require specific consideration for the development of reporting standards and
recommendations that go beyond those defined in the STROBE and STREGA statements.

The HLA and KIR gene regions play pivotal roles in adaptive and innate immunity.
Considered together, they constitute the core of the so-called immunogenome, the collection
of all immune-related genes(8). As the application of highly automated, high-throughput
genotyping systems capable of identifying individual HLA and KIR alleles becomes more
accessible, the integrated analysis of these immunogenomic data will become central for
transplantation, disease association, and population studies. The HLA community has
pioneered the development of community-based standards and guidelines in
histocompatibility research and clinical settings, but has not yet achieved a comparable level
of standardization for basic immunogenetic studies of populations and diseases. The
STROBE/STREGA statement is an important template that can be expanded upon to meet
the needs of the immunogenetics and immunogenomics communities. Here, we outline the
principle challenges to consistency in immunogenomic studies, in support of the
development of an immunogenomic-specific analog to the STREGA statement, STREIS
(STrengthening the REporting of Immunogenomic Studies). The proposed STREIS
statement presented in Table 1 extends the principles of STREGA statement to
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immunogenomic studies and, was developed by the immunogenomics data-analysis working
group (IDAWG).

Challenges to Consistency in Immunogenomic Data Management
The international nature of the HLA and KIR genotyping communities, and the diversity of
research interests within each, have resulted in a proliferation of methods for determining,
recording, encoding, storing, and exchanging immunogenomic data (referred to here as
immunogenomic data-management). In general, the various data-management methods in
use have been designed and implemented independent of each other, and are often difficult
to interrelate. In addition, the specifics of the data-management approach applied by a
particular investigator or clinical laboratory will often be informed by that group's research
goals or clinical responsibilities; a data-management approach favored by one group may be
unsuitable for another. Finally, the process of preparing immunogenomic data for analysis or
reporting (sometimes referred to as data “cleaning”) often involves the application of
assumptions that remain undisclosed, which may not be applicable to all studies or research
groups, and of which the general community may not be aware. As a result, the initial
challenge to consistency in immunogenomic studies is the inability to ascertain the
equivalence of data between research groups.

Here, we discuss some of the key challenges to consistency in immunogenomic data-
management.

Immunogenomic Genotype Datasets
Typical HLA datasets for population or disease association studies include genotypes for
anywhere from several hundred to a few thousand individuals, determined at between four
and nine of the HLA loci, and based on DNA sequence data for one or two exons. The
nature of HLA polymorphism, and the limitations of even the most robust genotyping
methods (see below), often results in extensive ambiguity for a given sample at one or more
loci. That is, for a given HLA locus, each genotyping result for a given sample may include
multiple ambiguous genotypes, any of which might include multiple ambiguous alleles. In
extreme cases [e.g. HLA-A genotyping results generated using diploid sequence-based
typing (SBT) methodology for exons 2 and 3], a genotype for a single individual may
include up to 14 ambiguous genotypes, and ambiguous allele strings may be composed of up
to 28 alleles. Bone marrow donor registry (BMDR) datasets include HLA genotypes for
several million individuals, usually typed at five to six HLA loci using multiple
methodologies. Recognizing that the long term storage of HLA data can be challenging in
the face of ongoing allele discovery, bone marrow donor registries have established
practices for storing primary sequence information for use in matching applications (9).

A KIR dataset will contain genotype data for up to fourteen KIR loci. These data are often a
combination of presence/absence typing at some KIR loci, combined with allelic typing at
other KIR loci. As with the HLA data, the allelic KIR data may be composed of ambiguous
genotypes and alleles. While the issue of ambiguity within HLA and KIR data is well known
in the immunogenetic research community, the lack of standard protocols for recording and
resolving these ambiguities can lead to major inconsistencies between data sets. Additional
inconsistency may be present due to temporal changes to HLA and KIR nomenclature and
differences in the sets of alleles that can be distinguished by different typing methods. As a
result, it is often difficult or impossible to equate and compare data sets generated by
different groups using different genotyping techniques at different time points.
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HLA Nomenclature
The WHO Nomenclature Committee for factors of the HLA system has developed a
hierarchical nomenclature for the representation of the complex polymorphisms that
comprise HLA alleles(9-15). This nomenclature incorporates considerable information about
HLA polymorphism into an allele name, and its development parallels improvements in the
scope and performance of HLA genotyping methods over the last two decades. In 1987,
HLA allele names were defined as four-digit numbers that represented a unique protein
sequence; the first two digits described each allele's serologic specificity and the last two
digits identified successive protein variants within that specificity(9). In 1990, the HLA
nomenclature was updated to include a fifth digit, representing synonymous nucleotide
polymorphisms(16). In 2002, the nomenclature was expanded to include four pairs of digits
representing serological, protein, synonymous and non-coding nucleotide
polymorphisms(14). In 2010, the nomenclature was updated to accommodate more than 99
variants in each of these polymorphic domains by explicitly defining each domain as a
colon-delimited field(15).

Since 1999, the sequence definitions for each HLA allele and the nomenclature rules
governing their names have been integrated in the ImMunoGeneTics (IMGT)/HLA
Database (17-19). New versions of this database, released every three months, reflect current
HLA sequence diversity and nomenclature rules, and are associated with a specific release
number (e.g. the July 2011 release is Version 3.5.0). Each release number provides an
unambiguous reference to a specific set of HLA allele sequences named under a specific set
of nomenclature rules. For example, except where noted, the HLA alleles discussed here are
included in release 3.5.0.

With each refinement to the nomenclature, the names of some alleles were changed (e.g., in
2002 as part of IHGT/HLA Database release number 1.16, B*1522 was changed to B*3543
after DNA sequences outside of exons 2 and 3 became available(14)). In the most recent
major nomenclature refinement (release number 3.0.0), many allele names were changed in
non-obvious ways (e.g., DPB1*0502 was changed to *104:01 when the allele names at the
DPB1 locus were reorganized in relation to the order in which each unique DPB1 protein
sequence was identified(14)), and the locus identifier for HLA-C locus alleles changed from
Cw* to C*.

Such nomenclature refinements can have ramifications for the interpretation of allele names.
For example, the concept of serologic specificity as such does not hold for the DPB1 locus;
with only two exceptions (DPB1*02:01 and *02:02, and *04:01 and *04:02) the first field of
the DPB1 allele name alone is sufficient to identify a unique protein sequence.

These nomenclature changes may not always be applied in a consistent manner to
preexisting data. Even simple allele name changes (e.g., from 01011 to 010101) become
time consuming when they must be made to large datasets, and non-obvious changes (e.g.,
changing B*1522 to B*3543) may not be adopted at all. As a result, HLA data reflecting
older nomenclature versions may continue to be analyzed, published, and circulated long
after a nomenclature change has occurred. As the IMGT/HLA Database release number for
HLA data is often not recorded explicitly or reported in published datasets, incompatible
HLA data (e.g., a dataset including both the B*1522 and B*3543 alleles) may be included in
the same analysis, especially when datasets are combined, or when new genotypes are added
to an existing dataset.

HLA Genotyping Ambiguity
The HLA region is characterized by extensive and repeated gene duplication, recombination
and gene conversion events that have resulted in a complex ‘patchwork’ of polymorphic
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sequence motifs(20). Long before the advent of copy number variation (CNV) studies(21),
the structural variation of the MHC region was well established in the HLA-DRB gene
family(22). The high homology among HLA genes and the extensive polymorphism in
exons that encode the peptide binding domain (PBD) pose challenges for the identification
of individual HLA alleles in stem cell transplantation, population and epidemiologic studies.
HLA alleles are defined by the variants at a number (~50 – 100) of polymorphic amino-acid
positions in a specific HLA gene. It is often cost-prohibitive to identify all of the
polymorphisms that distinguish closely-related alleles, and due to the patchwork of
polymorphic motifs it is sometimes impossible to distinguish between genotypes that present
identical sets of heterozygous polymorphisms. As a result, while an individual has only two
HLA alleles per locus, many HLA genotyping results can be ambiguous in that the results
for a given sample may be consistent with more than two potential alleles at a given locus.

Currently, SBT systems that assess the sequence of exon 2 for class II loci, and exons 2 and
3 for class I loci represent the gold-standard for reporting genotypes with minimal
ambiguity. In the context of a given IMGT/HLA Database release, genotyping systems that
assess fewer polymorphisms will generate HLA genotype data with greater levels of
ambiguity, while those SBT systems that assess additional exons may report less ambiguity.

In addition, the potential for ambiguity increases as innovation in typing methodology
extends knowledge of polymorphism to more regions (exons, introns, etc.) of a given gene; a
genotype that may have been unambiguous in the context of one IMGT/HLA Database
release may be ambiguous in the context of later releases (e.g. the DRB1*14:01:01 and
*14:54 alleles, discussed below) as the result of previously undetectable polymorphisms.
Knowledge of new polymorphisms in previously unassessed gene regions is necessary for
researchers to be able to determine equivalence between older and more recent typing data.

Allele ambiguity results when the polymorphisms that distinguish alleles fall outside of the
regions assessed by the genotyping system. For example, the nucleotide sequence of
DRB1*14:01:01 differs from *14:54 allele at cDNA nucleotide position 421 in exon 3. If a
DRB1 typing system does not assess exon 3, these two alleles cannot be distinguished, and
an ambiguous allele, DRB1*14:01:01/14:54, will be reported. In some cases, ambiguous
alleles can consist of large numbers of possible alleles. In an extreme example, twenty-eight
HLA-A alleles (A*02:01:01:01, *02:01:01:02L, *02:01:01:03, *02:01:08, *02:01:11,
*02:01:14Q, *02:01:15, *02:01:21, *02:01:48, *02:01:50, *02:09, *02:43N, *02:66, *02:75,
*02:83N, *02:89, *02:97:01, *02:97:02, *02:132, *02:134, *02:140, *02:241, *02:252,
*02:256, *02:266, *02:291, *02:294 and *02:305N) share the same nucleotide sequence
over HLA-A exons 2 and 3, and cannot be distinguished by genotyping systems that assess
only these exons.

Genotype ambiguity results from an inability to establish chromosomal phase between
identified polymorphisms. For example, the DRB1*04:01:01+DRB1*13:01:01,
DRB1*04:01:01+DRB1*13:117, DRB1*04:13+DRB1*13:02:01,
DRB1*04:14+DRB1*14:21, DRB1*04:35+DRB1*13:40 and DRB1*04:38+DRB1*13:20
genotypes cannot be distinguished by comparing DRB1 exon 2 nucleotide sequences, and a
DRB1 SBT genotyping system that assesses only exon 2 will report the set of these six
individual genotypes as a single ambiguous genotype. SBT genotyping systems that assess
class I exons 2 and 3, or class II exon 2 sequences can report ambiguous genotypes
composed of up to 14 or 15 individual genotypes (e.g. for HLA-A, HLA-B and DRB1).

The number of characters used to represent an ambiguous allele is often reduced by
representing the string of alleles as a specific code. For example, “G groups” include all
class II alleles that share the same exon 2 nucleotide sequence and class I alleles that share
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the same exon 2 and 3 sequence, and “P groups” include all alleles that encode the same
PBD. The number of individual genotypes in the ambiguous genotypes discussed above
includes ambiguous alleles represented as G groups. When these G grouped alleles are
considered separately, the number of individual genotypes can increase dramatically (e.g.
from 14 to 153 individual HLA-A genotypes). The DRB1*14:01:01/14:54 ambiguity can be
represented as the DRB1*14:01:01G “G group”, and the more ambiguous
DRB1*14:01:01/14:01:02/14:01:03/14:54 allele can be represented as the DRB1*04:01P “P
group”. The National Marrow Donor Program (NMDP) uses an allele code system that
assigns specific alphabetic strings to specific ambiguities that include only peptide-level
allele-names. Using this system, the ambiguous DRB1*14:01:01/14:01:02/14:01:03/14:54
allele can be recorded as the DRB1*14:BCAD NMDP allele code. Some research groups
implement their own coding systems for these purposes.

Ambiguous genotypes can also be represented in a variety of ways. In some cases, all of the
alleles in a particular allele group are combined into a single allele code, so that all of the
individual genotypes are “collapsed” into only two allele codes. For example, using NMDP
allele codes, the ambiguous DRB1*04:02:01+DRB1*11:20, DRB1*04:14+DRB1*11:16
genotype could be represented as the DRB1*04:BK+DRB1*11:YR genotype. This practice
of collapsing ambiguous genotypes to a pair of allele codes actually increases the ambiguity
of a typing, because not all genotypic combinations implicit in a given allele code are
possible in a single typing result; the information that excludes specific allele combinations
is lost in the collapse. In the above example, in addition to the two reported possible results
for the ambiguous genotype, the single collapsed genotype also includes two additional
genotypes which were excluded in the original typing (i.e., DRB1*04:02:01+DRB1*11:16
and DRB1*04:14+DRB1*11:20).

The presence of allelic and genotypic ambiguity has resulted in the use of the term “typing
resolution” to describe the extent of ambiguity in genotyping methodologies and genotyping
results . For example, so-called “allele resolution” or “high resolution” typing methods
generate “allele resolution” or “high resolution” genotyping results characterized by lower
levels of ambiguity than so-called “intermediate resolution” or “low resolution” results
generated by “intermediate resolution” or “low resolution” methods.

However, there are no universally recognized definitions for the various terms used to
describe typing resolution. Hurley et al (23) discuss low, intermediate, and high level typing
in terms of the number of alternative alleles included in a typing (i.e., the extent of
ambiguity) and the number of allele name fields that can be distinguished (e.g.
A*01:01:01:01 vs. A*01:01), and acknowledge that it is difficult to precisely define these
terms. Alternatively, the 2010 European Federation for Immunogenetics (EFI) Standards for
Providers of External Proficiency Testing defines high resolution typing as assessing, at a
minimum, differences in exons 2 and 3 for class I loci and exon 2 for class II loci(24). The
American Society for Histocompatibility and Immunogenetics (ASHI) Harmonization of
Histocompatibility Typing Terms Working Group has recently developed definitions for
low, high, and allelic resolution molecular typing results (25). This working group defines a
high resolution typing result as a set of alleles that share the same protein sequence for the
PBD and that are expressed on the cell surface (e.g. excluding null alleles), and an allelic
typing result as being consistent with a single allele in the context of a specific WHO HLA
nomenclature report. While the both the EFI and ASHI definitions of high resolution pertain
to PBD polymorphisms, the distinctions between them are significant, and a high resolution
typing as defined by EFI may involve less ambiguity than a high resolution typing as
defined by ASHI. For example, DRB1*14:01:01/14:54 is a high resolution result under the
EFI definition, while DRB1*14:01:01/14:01:02/14:01:03/14:54 is a high resolution result
under the ASHI definition.
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In addition to being poorly-defined and often conflicting, these typing resolution terms have
the potential change over time as new alleles are identified. As sequences from additional
exons and introns, as well as upstream and downstream regions, are incorporated into the
IMGT/HLA Database, a typing result described as “allele resolution” in the context of one
IMGT/HLA Database release may become a “high resolution” type with a subsequent
release, and an “intermediate resolution” type with later releases. Figure 1 illustrates the
extent to which the exon sequences for current classical HLA allele alleles are known,
unknown and imputed. The number of distinct alleles will only increase as exon sequences
that are currently unknown are determined. Similarly, knowledge about the extent to which
an allele is or is not expressed may change as well. The confusion that arises from the lack
of standardized terminology results in difficulty for researchers and clinicians in the
immunogenetics field in their ability to synthesize and equate HLA genotyping results
across typing methodologies. These difficulties are likely even more pronounced for
investigators from other disciplines, who may be less familiar with this issue. One approach
for addressing this problem of typing resolution terminology is to use objective descriptions
that identify the regions of the gene that were assessed by the typing system used. Where a
“high resolution” typing result may someday become an “intermediate resolution” result, an
“exons 2 and 3” typing result or a “PBD resolution” typing result will not change.

Resolving Ambiguity—Most population genetic and epidemiologic analytical methods,
and the tools that implement them, require genetic data that reflect the diploid genetic state
of two alleles per locus per individual. Therefore, in the case of HLA genotype data, allele
and genotype ambiguities must be “resolved” in order to make diploid allele assignments.
There are currently no standards for making these allelic assignments, or even reporting how
they were accomplished; they are based on the individual investigator's accumulated and
empirical knowledge of the data under study. This knowledge often derives from the
availability of allele-frequency distributions in different ethnic groups, established patterns
of linkage disequilibrium (LD) between alleles(resulting in haplotypes) (26), and the
categorization of individual alleles and haplotypes as being either common (likely to be
observed) or rare (unlikely to be observed) (27, 28). However, in the absence of a consistent
approach for applying this knowledge, different allelic assignments may be made by
different investigators considering the same data. Furthermore, the lack of reporting
standards for immunogenetic data means that the HLA literature often contains no reference
to the methods used for ambiguity resolution, or even to the application of these methods in
a given study. While most researchers in the field are aware that some degree of ambiguity
resolution necessarily occurred prior to publication of a ‘clean’ (completely diploid and
unambiguous) dataset, the precise methods applied will remain a mystery. More
problematically, investigators less familiar with the HLA system may be unaware that any
ambiguity resolution methods were applied prior to publication of the data.

The categorization of alleles into common and rare categories is facilitated by the
availability of HLA data for large numbers of populations worldwide. In 2007, Cano et al.
(28), defined the 2285 HLA-A, -C, -B, -DRB1, -DQA1, -DQB1 and -DPB1 alleles in
IMGT/HLA database release 2.15 as being either “common” (with allele frequencies >
0.001 in reference populations), “well-documented” (observed in at least three unrelated
individuals), or “rare” (frequencies or observations too low to be included in the other
categories), and identified 693 alleles (30%) as being common and well-documented (CWD)
and 70% as being rare. The Rare Alleles Project of the Allele Frequencies Net Database
(AFND) (27) has built on these CWD definitions by integrating allele-count data from the
AFND and NMDP database with genotyping reports from 53 participating laboratories. This
expanded reference dataset can be queried to report the number of times any of the 5827
classical HLA alleles in IMGT/HLA database release 3.3.0 have been observed(29), and
reveals that of the 5799 observed HLA-A, -C, -B, -DRB1, -DQA1, -DQB1 and -DPB1
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alleles, 2958 (63%) are rare (observed less than 3 times), and are unlikely to be present in
most datasets. However, current typing methods do not distinguish common from rare
alleles. As a result, much of the ambiguity present in HLA genotypes is due to rare alleles,
and much of the effort of modern sequence-based genotyping methods is the detection or
exclusion of rare alleles.

Furthermore, the categorization of an allele as common or rare may change as typing
methodologies improve. For example, many specimens that were originally genotyped as
having the DRB1*14:01:01 allele have recently been recognized as having *14:54 alleles; in
some cases, 88-100% of DRB1*14:01:01 alleles have been reassigned as *14:54 alleles(30,
31). As the number of exons that can be assessed in each gene by modern HLA genotyping
systems increases, it seems likely that such inversions in the perceived frequencies of well-
known and more-recently identified alleles will become more common (e.g., the A*11:02:01
and A*11:53 alleles may prove to be a second example where this occurs), requiring the
reassessment of much previously published data, with the potential for reassignment of
alleles.

It seems likely that there will always be variation in the ability of different typing systems to
detect and discriminate between closely related alleles. As long as the approaches used by
individual investigators to make any necessary allele assignments and report genotype data
continue to be applied in the absence of a reporting standard, the reported genotype for a
given specimen may vary between different laboratories, and between studies carried out at
different times. Inconsistency in the detailing and disclosure of the manner in which HLA
genotyping data have been generated and managed undermines the capacity of researchers
to determine whether significant (or non-significant) findings for HLA data are consistent
across multiple studies; such inconsistency also greatly diminishes the ability to replicate
those studies and pool data resources.

KIR Genotyping
The many technical challenges to the analysis of KIR data derive from the structural
variation of the region. KIR haplotypes include 7-12 polymorphic genes; the minimal KIR
haplotype (haplotype A), contains 7 expressed KIR genes and two pseudogenes. KIR A
haplotypes include only one activating gene (KIR2DS4), and KIR B haplotypes generally
include more than one activating gene(32, 33). Like HLA, KIR alleles are highly
polymorphic (http://www.ebi.ac.uk/cgi-bin/ipd/kir); in addition to heterogeneity in gene
content and allelic variation, KIR cell-surface expression is variable, and may be allele-
specific. Furthermore, the extensive KIR locus- and haplotype-level polymorphisms include
locus-level CNVs. For example, the locus KIR2DS3/S5 can be found in the centromeric or
telomeric regions of KIR haplotypes or in both portions(34). Additional copy number
diversity has been detected primarily through a limited number of family studies(35); while
its extent is unclear, the issue of locus copy number will be clarified with the advent of
improved allele-level typing. For example, allowing specific KIR2DS3/S5 alleles to be
assigned to a centromeric or telomeric KIR2DS3/S5 locus.

The extensive sequence homology among the KIR loci has resulted in a variety of KIR
typing methods that generate KIR data at a range of levels. The level of typing currently
reported and analyzed in the literature is predominantly the presence or absence of KIR loci
(locus-level typing). Most laboratories use 3-5 different molecular techniques [e.g., multiple
PCRs, cloning and/or sequence specific oligonucleotide probe (SSOP), sequence-specific
priming (SSP) and sequencing assays] to accomplish allele-level typing. Even with these
efforts, allele-level KIR genotyping discrepancy rates between laboratories can be very high;
the large number of exons that must be typed results in extensive ambiguity.
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Continuing new allele discovery has also presented difficulties for the allele-level typing of
KIR. In a preliminary study of allele-level KIR typing performed by the NMDP, greater than
seventy new alleles were discovered in the typing of 435 samples. Finally, allele and
genotype ambiguities also pertain to allele-level KIR typing, and as with HLA genotyping
ambiguities, KIR genotyping ambiguities are sometimes resolved to individual allelic
assignments through the use of observed allele-frequency distributions in different
populations (e.g., using the KIR Allele/Gene Frequency section of the AFND(27)).
Compounding these issues, nomenclature inconsistencies (e.g., distinct ‘loci’ that segregate
as alleles, or duplicate loci on the centromeric and telomeric ends of the cluster) confound
consistent interpretation of results by the KIR community, and can introduce analytical
biases. For example, KIR2DL2 and KIR2DL3 are the major allelic groups of one locus;
these allelic classes were previously thought to be separate loci, and are still often treated as
such in the literature and public databases.

As with the IMGT/HLA Database for HLA, the Immuno Polymorphism Database (IPD) –
KIR Database is a central repository for KIR sequence and nomenclature information(36)
and each IPD – KIR Database release number provides an unambiguous reference to a
specific set of KIR allele sequences named under a specific set of nomenclature rules.

Challenges to the Consistent Application of Analytical Methods for
Immunogenomic Data

The methods routinely used for the analysis of immunogenomic data were originally
developed and implemented for data characterized by low numbers of variants at small
numbers of loci and levels of polymorphism that were characteristic of molecular and
serological immunological data at the time. More-recently developed genomic analysis
methods and applications (e.g., PLINK(37)) have been developed specifically for use with
SNP data generated through GWAS and CNV data derived from SNPs. These data differ
significantly from immunogenomic data in that they are minimally polymorphic across
many hundreds of thousands of loci, LD between all but the most proximate loci is
negligible and, for the most part, the variants have no known function(38). As a result, these
recently developed methods cannot easily be applied to the analysis of HLA and KIR data.

Because modern immunogenomic data are characterized by high levels of polymorphism
across large numbers of functionally related loci with relatively high LD, the dilemma
facing the modern immunogenomic investigator is that neither modern genomic analytical
methods nor historically-employed genetic methods are ideally suited for the analysis of
their data. For immunogenomic investigators, the primary obstacle to analytical consistency
is the documentation of the data processing that must be done in order to perform analyses.
This is especially true when using methods that were developed for use with less
polymorphic data.

In this section, we provide a brief overview of some of the challenges to consistency in
immunogenomic data-analyses. Additional details can be found in these references
((39-44)).

Heterogeneity in Data Management
In any study, the primary data being analyzed are assumed to be valid and reliable.
However, in addition to the specific issues regarding data ambiguity and nomenclature
detailed above, the complex structure of HLA allele names renders these data prone to
specific types of errors; manual data entry and modification of allele names can result in
transcription errors, and commonly used spreadsheet applications routinely introduce a
variety of errors (e.g., 01010101 might be presented as 1010101 or 1,010,101, and 01:60
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may be presented as 0.0833333333333333), as they were not designed for HLA data-
management. Before any data analysis can be undertaken, internal quality control (QC)
measures (e.g., validating allele-names against a specific nomenclature release) must be
applied to ensure the integrity of the primary data.

For the purposes of comparing and combining different study results and larger scale meta-
analyses, there must be appropriate binning (equating allele assignments made using
different data-management methods) of alleles if the same set of alleles was not detectable
in all populations, or if the data were generated at different times (i.e., under different
nomenclature versions) or by different groups(45). For example, the DRB1*14:01:01 and
DRB1*14:54 alleles in two datasets would be binned into a common allele-category for
meta-analysis if it was not clear that DRB1*14:54 had been excluded in the typing of
DRB1*14:01:01. Failure to account for this methodological heterogeneity can lead to errors
in association studies, haplotype estimates, and genetic distance measures, and spurious
results can ensue when datasets are combined without careful consideration of this
heterogeneity.

Most statisticians, even those familiar with HLA or KIR nomenclature, do not know the
specifics of the typing systems used, and will not always recognize when appropriate
binning of data is necessary. For example, HLA data available from many public databases,
as well as online material supplementing published studies, are being studied by groups
unfamiliar with HLA. These meta-analytical studies are most prone to potential errors in the
absence of a standardized approach for documenting the management of HLA genotype
data.

Low-Frequency Alleles
Low-frequency alleles (generally with frequencies less than one to two percent, depending
on the size of the dataset) typify highly polymorphic immunogenomic data, and present
challenges to the interpretation of haplotype estimates, measures of LD and association
testing in case/control studies. Failure to properly account for low-frequency alleles can lead
to spurious or meaningless results. For tests with explicit distributional assumptions (e.g., χ2

tests), low-frequency alleles and genotypes affect the validity of asymptotic approximations
for the test statistic(40). While the impact of low-frequency alleles may not be problematic
for analyses of individual SNPs or other loci with low levels of polymorphism where
constraints on minor allele frequencies to be included in analyses are imposed, this issue
must be addressed for polymorphic loci such as HLA, KIR, and SNP haplotypes.

Haplotype Estimation
Estimated haplotypes and haplotype frequencies play a central role in most genetic studies.
Haplotype-level analyses are important to studies of the etiology of human disease, selective
forces acting on populations, and optimal sizes for bone-marrow donor registries (BMDRs).
Associations between markers and disease loci that are not evident with a single-marker
locus may be identified in multi-locus marker analyses using estimated haplotype
frequencies (HFs). However, the diversity and complexity of immunogenomic data pose
challenges for haplotype estimation. For both KIR and HLA, the frequency of the alleles, the
sample size of the dataset, the various levels of missing information, and the various levels
of LD influence the accuracy of the estimation(42, 44). In addition, the high levels of allele
diversity at these loci may result in more haplotype parameters being estimated than the
number of actual phenotypes observed.
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Linkage Disequilibrium
Extensive LD has been documented between loci across the 1MB KIR and 3.6MB MHC
regions. This LD requires pairwise computation of association measures between as many as
fourteen (e.g., in the KIR complex) highly polymorphic loci(39, 42, 43). Standard pair-wise
measures of LD have multi-allelic extensions for use with highly polymorphic data, however
these measures may not always capture important aspects of associations due to implicit
assumptions of symmetry. For example, Wn, a multi-allelic extension of the r2 LD
correlation measure, is always symmetric with respect to two loci; however, the number of
alleles reported at each locus can differ considerably leading to asymmetries. Likewise, the
other commonly used measure of overall LD, D’, is highly sensitive to the presence of rare
alleles, a major feature of immunogenomic loci. It is therefore important to explore results
from a variety of LD measures and not to over interpret any specific LD measure for a locus
pair with highly asymmetric numbers of alleles.

Association Studies
The characteristic features of immunogenomic data require careful consideration in disease
association studies, Low-frequency alleles pose a challenge in traditional association (case/
control) tests in disease studies that use the χ2 test to compare cases and controls(39, 41).
The χ2 test has been the standard approach at the overall locus-level, but this test can lead to
false acceptance or rejection of the null hypothesis when the expected genotype counts in a
contingency table are small (aka, “sparse cells”); the χ2 test is inappropriate if any expected
count is substantially less than 1, or if more than 20% of the cells in a contingency table
have expected counts less than five. For example, it is not unusual for 30 or more alleles to
be observed at the HLA loci, with a wide range of frequencies, resulting in many sparse
cells. The standard approach in these cases is to create combined classes of low-frequency
alleles. However, there are alternatives to this approach; genotypes containing low-
frequency alleles may be entirely excluded from analysis, or genotypes can be analyzed
hierarchically, beginning with the most common alleles and creating combined categories of
these alleles with successively less common alleles. Nonparametric resampling and exact
tests may be alternatives in some cases, although their application can also be problematic
for high dimensional tables with sparse cells. There are currently no standard
recommendations for the application of these procedures. In addition, the large number of
alleles at immunogenomic loci requires specific corrections for multiple comparisons; where
these corrections depend on the number of markers tested in GWAS, they may also depend
on the number of alleles tested at each marker in immunogenomic association studies.

The issue of potential population stratification is also important to consider in association
studies for immunogenetic data, since both selection and demography have shaped allele
frequency distributions within specific ethnic and geographic groups. If samples are not
collected with scrupulous attention to homogeneity of ancestry background, investigators
run the risk of misinterpreting genetic differences between cases and controls. In these cases,
heterogeneity between cases and controls due to allele frequency differences related to
population stratification may be mistaken for association with a particular locus(46).
Genome wide markers can be helpful to detect such stratification issues.

Hardy-Weinberg Testing
The Hardy-Weinberg (HW) principle provides a useful model for primary QC verification
of the integrity of genotype data, as genotyping errors may result in both individual
genotype deviations and overall deviations from HW equilibrium (HWE). Confidence in the
accuracy of HW testing is therefore crucial for confidence in subsequent analyses, as many
analytical methods (e.g., haplotype estimation) are predicated on an assumption of HW
equilibrium in the data set. HW testing can be particularly challenging for highly-
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polymorphic datasets(40, 44). As with association studies, the χ2 test has been the standard
for testing fit to HWEP. However, while the minimum number for an observed genotype
must be 1, the minimum number of expected genotypes under HWEP can be much less than
one; this can result in what appear to be significant deviations from HWEP where a
genotype with a fractional expected count is observed only once. Three approaches can be
taken to increase the accuracy of the test: (1) low-frequency alleles can be combined in a
unified class for the χ2 test to be effective; (2) an exact test enumerating all possible tables
of all possible genotypes consistent with observed allele frequencies can be undertaken, or
(3) approximations to such complete enumerations can be made via resampling.

Phylogenetic Analysis
Phylogenetic trees (or dendrograms) generated using allele and haplotype frequencies have
been used to investigate population relationships and test hypotheses regarding human
history and migration. However, many of the applications commonly employed to carry out
these analyses do not have the capacity to consider the extent of sequence differences
between alleles, and as a result, alleles that are related by descent will be evaluated in the
same manner as alleles that are un-related. For example, while the DRB1*08:07 allele
differs from the *08:02:01 allele by a non-synonymous nucleotide replacement in codon 56,
and is thought to be derived from *08:02:01, these alleles are considered to be as distinct
from each other as each is from the DRB1*01:01:01 in most frequency-based phylogenetic
analyses, and any information about the relatedness of these alleles that might be derived
from their sequences is ignored. The binning of allele names below the exon level may be an
acceptable approach for low-frequency alleles that are related by descent, but is not
appropriate for more common alleles.

Summary
In conclusion, the large number of alleles per locus (often > 50) and high haplotype diversity
(often > 1000) at the HLA and KIR systems present specific, persistent challenges in
immunogenomics research. At the same time, these features are the very reason why
immunogenomic loci should be treated as model systems for genomic research; if these
immunogenomic challenges can be met and overcome, the analytical challenges of less
complex genomic regions will seem mundane. Over the past thirty years, the
immunogenomics community has seen an exponential increase in the number of recognized
HLA alleles, leading to regular nomenclature revisions. This phenomenon now extends to
the KIR genes(47). Furthermore, in addition to the continual discovery of new alleles,
heterogeneity of typing resolution, typing techniques and allele nomenclatures are common
to both the MHC and KIR regions. In addition, KIR and HLA data are very sensitive to
ethnic background diversity. The potential for population sub-structure is particularly
relevant for immunogenomic data, as both MHC and KIR genes carry signatures of both the
selective and demographic histories of human populations. These issues are exacerbated in
BMDRs where sample sizes for specific research questions are often very large (>100,000).
Taken together, these features support the idea that the “MHC continues to provide new
insights and remains in the vanguard of contemporary research in human genomics”(48).

While the conclusions of genetic data analyses are inextricably linked to the criteria used for
data generation and management, a consistent and integrated data management and analysis
approach is currently absent from immunogenomics research, limiting the ability to pool
data resources and accurately interpret results across studies. The goal of the
immunogenomics data-analysis working group (IDAWG) is to develop consensus-based
community data standards for the HLA and KIR gene systems. The integration of standards
for both immunogenetic systems will allow for consistent, reproducible, and easily
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combined analyses for each system, and will facilitate the analysis of KIR and HLA
interactions.

The first step in achieving this approach is to build on the principles outlined in the
STREGA statement and develop a set of community-based documentation guidelines
intended to strengthen the reporting of immunogenomic studies. Consistent reporting of the
manner in which the data in immunogenomic studies are managed and analyzed will
facilitate the reproducibility of studies, enhance data-sharing and meta-analyses and make
immunogenomic research more accessible to the larger genomics community. While the
guidelines described in the STROBE and STREGA statements need to be applied to
immunogenomic studies, a STREIS statement is also needed to extend these guidelines as
described in Table 1.

It is a basic tenet in scientific research that the laboratory methods employed to generate
data must be described in sufficient detail to enable reproduction of the reported results.
With the advent of genotyping methods that generate enormous quantities of complex data
that are stored and transmitted electronically, and are publically available, the specific and
detailed reporting of data management and analysis methods is equally necessary.
Immunogenomic typing and analysis results that do not meet these minimum standards for
documentation should be treated as invalid, and should be recognized as such during the
peer-review process. Strict adherence to these guidelines by the editorial staff and expert
reviewers for the major journals in the field would allow these standards to be implemented
consistently. Furthermore, journals publishing histocompatibility, immunogenetics, and
immunogenomics studies should consider the joint data archiving policy adopted by journals
in the fields of ecology and evolution, which requires that published data be deposited in
public digital archives (49).

The time has come for the consistent application of these STREIS principles to
immunogenomic data management and analysis. We hope that this commentary will initiate
a community-wide discussion of this issue that will lead to a consensus standard as recently
promoted by Nature Genetics (50). The IDAWG has initiated a 16th International HLA and
Immunogenetics Workshop project for the development of this STREIS statement, and the
Histocompatibility and Immunogenetics community is invited to participate. More
information can be found online at www.immunogenomics.org.
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Figure 1. Known, Unknown and Imputed Exon Sequences for Classical HLA Genes
Sequence categories for all HLA-A, B, C, DPA1, DPB1, DQA1, DQB1, DRB1, DRB3,
DRB4, and DRB5 alleles in IMGT/HLA Database release 3.2.0 are color coded. Known
sequences are shown in green, unknown sequences that are 5′ of the peptide binding domain
(PBD) encoding exons (exons 2 and 3 for class I, and exon 2 for class II alleles) are shown
in blue, imputed sequences that are 5′ of the PBD exons are shown in red, imputed
sequences that are 3′ of the PBD exons are shown in purple, and unknown sequences that
are 3′ of the PBD exons are shown in aqua. The horizontal scale indicates the distance in
nucleotide bases from the start codon.
A. Sequence categories for 4268 class I alleles over exons 1-8.
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B. Sequence categories for 1248 class II alleles over exons 1-6.
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Table 1

Proposed STREIS Reporting Recommendations, Extended from STREGA Statement

Item
1

Item Number
1

Strobe Guideline
1

STREGA Guideline
1 Extension for Immunogenomic

Studies (STREIS)

Methods

Variables 7 (a) Clearly define all
outcomes, exposures,
predictors, potential
cofounders, and effect
modifiers. Give
diagnostic criteria, if
applicable.

(b) Clearly define genetic
exposures (genetic variants)
using a widely-used
nomenclature system.
Identify variables likely to
be associated with
population stratification
(confounding by ethnic
origin)

(c) Describe HLA alleles in
accordance with WHO
Nomenclature Committee for
Factors of the HLA System.
Identify the IMGT/HLA
Database release number
pertinent to the data.
(d) Describe KIR alleles in
accordance with the IPD-KIR
Database. Identify the IPD-
KIR Database release number
pertinent to the data.

Data sources/measurement 8 (a) For each variable of
interest, give sources of
data and details of
methods of assessment
(measurement).
Describe comparability
of assessment methods
if there is more than one
group.

(b) Describe laboratory
methods, including source
and storage of DNA,
genotyping methods and
platforms (including the
allele calling algorithm used,
and its version), error rates
and call rates. State the
laboratory/center where
genotyping was done.
Describe comparability of
laboratory methods if there
is more than one group.
Specify whether genotypes
were assigned using all of
the data from the study
simultaneously or in smaller
batches.

(c) Provide access to the
primary, ambiguous genotype
data for each individual.
(d) Describe the system(s) used
to store, manage, and validate
genotype and allele data, and
to prepare data for analysis.
(e) Use objective terms,
identifying the assessed
features of each gene, to
describe genotyping systems
and genotyping results. Avoid
using subjective terms (e.g.
low-, intermediate-, high-, or
allele-resolution), that that
may change over time, to
describe genotyping systems
and results.
(f) Document all methods
applied to resolve ambiguity.
(g) Define any codes used to
represent ambiguities.
(h) Describe any binning or
combining of alleles into
common categories that were
performed.

Statistical Methods 12 (a) Describe all
statistical methods,
including those used to
control for confounding.

State software version used
and options (or settings)
chosen.

(b) Discuss any modifications
made to the data in order to
have them comport to the
expectations of a method for
the purpose of analysis.
(c) Document any caveats
associated with each analysis
as they pertain to
immunogenomic data.

Discussion

Limitations 19 Discuss limitations of
the study, taking into
account sources of
potential bias or
imprecision. Discuss
both direction and
magnitude of any
potential bias.

(a) Discuss the impact of any
modifications made to the data
for the purpose of analysis.
(b) Discuss any caveats
associated with each analysis
as they pertain to
immunogenomic data.
(c) Discuss any potential
impact of ambiguity resolution
on the results.

1
Derived from Table 1 in (2).
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