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Background: Phosphatidic acid (PA) is a class of membrane lipid mediators synthesized in response to various stresses in
plants.
Results: PA binds to cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) and promotes proteolytic cleavage of
GAPC2 in Arabidopsis.
Conclusion: PA-GAPC interaction constitutes a mechanism for PA signaling in plants.
Significance: PA-GAPC interactionmay provide amolecular linkmodulating coordinately carbohydrate and lipidmetabolism.

Phosphatidic acid (PA) is a class of lipid messengers involved
in a variety of physiological processes. To understand how PA
mediates cell functions in plants, we used a PA affinity mem-
brane assay to isolate PA-binding proteins from Camelina
sativa followed by mass spectrometric sequencing. A cytosolic
glyceraldehyde-3-phosphate dehydrogenase (GAPC) was iden-
tified to bind to PA, and detailed analysis was carried out subse-
quently using GAPC1 and GAPC1 from Arabidopsis. The PA
and GAPC binding was abolished by the cation zinc whereas
oxidation of GAPCs promoted the PA binding. PA had little
impact on the GAPC catalytic activity in vitro, but the PA treat-
ment of Arabidopsis seedlings induced proteolytic cleavage of
GAPC2 and inhibited Arabidopsis seedling growth. The extent
of PA inhibitionwas greater inGAPC-overexpressing thanwild-
type seedlings, but the greater PA inhibition was abolished by
application of zinc to the seedling. The PA treatment also
reduced the expression of genes involved in PA synthesis and
utilization, and the PA-reduced gene expression was partially
recovered by zinc treatment. These data suggest that PA binds
to oxidized GAPDH and promotes its cleavage and that the PA
and GAPC interaction may provide a signaling link coordinat-
ing carbohydrate and lipid metabolism.

Biological membranes are composed of different types of lip-
ids with distinct properties and functions. Lipids in the mem-
brane not only structurally compartmentalize the cell but also
act as second messengers to transduce cellular signals. Signal-
ing lipids normally exist in a trace amount in themembrane and
are synthesized rapidly and transiently in response to external

stimuli to activate downstream signaling pathways. The minor
membrane lipid phosphatidic acid (PA)2 has been shown as an
important lipid messenger that mediates a variety of cellular
and physiological processes in plants (1–3). The cellular level of
PA is increased under various stress conditions, such as treat-
ments of abscisic acid (ABA) (4), osmotic stress (5–7), oxidative
stress (8), pathogen infection (9, 10), and cold and freezing con-
ditions (11–13). In addition, PA is involved in regulating nor-
mal plant growth and development, particularly in roots (14,
15) and pollen tubes (16, 17).
Onemode of action bywhich PAmediates cellular effect is by

its direct interaction with effector proteins to convey signals
(1–3). PA was found to interact with abscisic acid-insensitive 1
(ABI1), a protein phosphatase, constitutive triple response 1
(CTR1), a protein kinase, and phosphoethanolamine N-meth-
yltransferase (PEAMT) and inhibit their phosphatase or kinase
activities (18–20). PA stimulates the catalytic activity of a phos-
phoinositide-dependent protein kinase (PDK1), sphingosine
kinases (SPHK1/2), NADPH oxidases (RbohD/F), a mitogen-
activated protein kinase (MPK6), and a SNF1-related kinase
(SnRK2) by direct interaction (21–24). In addition to regulating
the catalytic activity, PA may tether its binding proteins to
membranes. PA tethers ABI1 to the plasma membrane, result-
ing in prevention of ABI1 from translocation into the nucleus
where it binds to ATHB6, a transcription factor that negatively
regulates ABA responses (18, 25). A similar process was
observed in yeast that PA bound and prevented a transcrip-
tional repressor Opi1 from entering the nucleus where it sup-
presses lipid biosynthesis (26, 27). Thus, PA-mediated seques-
tration of proteins to membranes seems to be a conserved
mechanism for the transcriptional regulation of gene expres-
sion in response to PA turnover in different organisms.
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To understand how PA functions as a lipid mediator, we
undertook an untargeted approach to identify PA-interacting
proteins and found cytosolic glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as a potential PA-interacting protein.
GAPDH catalyzes the conversion of glyceraldehyde 3-phos-
phate to 1,3-bisphosphoglycerate in glycolysis, which provides
substrate for acetyl-CoA for synthesis of various cellular com-
pounds including lipids (28). Arabidopsis has two cytosolic
GAPDHs, GAPC1 and GAPC2, and a recent study showed that
both GAPCs interact with phospholipase D� (PLD�), which
directly produces signaling PA by hydrolyzing common mem-
brane phospholipids (29). These observations raise intriguing
questions about the function and significance of PA-GAPC
interactions. This report describes the identification and char-
acterization of PA-GAPC interaction and its physiological sig-
nificance in Arabidopsis seedling growth.

EXPERIMENTAL PROCEDURES

Plant Materials and Growth Conditions—Arabidopsis thali-
ana wild-type (Col-0) and T-DNA insertion knock-out lines of
gapc2 (SALK_016539 and SALK_070902) were obtained from
ABRC (Ohio State University). The knock-out mutants were
screened for homozygotes as described previously (29). Trans-
genic lines overexpressing GAPC2 were generated by cloning
GAPC2 (At1g13440) cDNA into p35S-FAST/eYFP vector and
transforming the DNA constructs into Arabidopsis by floral
dipping. Seeds were surface-sterilized with 70% (v/v) ethanol
and 20% (v/v) bleach followed by washing four times with
water. Seeds were stratified at 4 °C for 2 days and germinated in
1/2 Murashige and Skoog medium with 1.5% (w/v) sucrose
under a light cycle of 12-h light/12-h dark at 22 °C. After 5 days,
seedlings were transferred to 1/2 Murashige and Skoog
medium supplemented with various reagents depending on
experiments. For lipid treatment, lipids (Avanti Polar Lipids,
Alabaster, AL) were prepared by drying the chloroform under a
gentle stream of nitrogen gas and resuspending the dried lipid
in water followed by sonication before being added to the
medium.
Nitrocellulose Membrane Binding Assay and Protein Identi-

fication by Mass Spectrometry—Approximately 1 g of 3-week-
old wild-type Camelina (Camelina sativa) seedlings grown in
soil was groundwith liquid nitrogen. Proteinswere extracted by
adding 4 ml of protein extraction buffer (50 mM Tris-HCl, pH
7.3, 50 mM NaCl, 5% (v/v) glycerol, 1 mM DTT, 0.5 mM PMSF)
and cleared by centrifugation at 1,500 � g for 10 min at 4 °C.
Protein concentration in the supernatant was determined by
the Bradford assay, and �500 �g of total proteins was used for
nitrocellulose membrane binding assay. The assay was carried
out as described previously (30) with some modifications.
Approximately 10�g of lipid dissolved in chloroformwas spot-
ted on a piece of nitrocellulose membrane (0.45-�m pore;
Whatman) and air-dried for at least 30min. Themembranewas
incubated with TBST buffer (10 mM Tris-HCl, pH 7.4, 140 mM

NaCl, 0.1% (v/v) Tween 20) containing 0.5% (w/v) fatty acid-
free BSA for 1 h to block the membrane, washed three times
with TBST buffer, and incubated with proteins overnight at
4 °C. The membrane was washed three times with TBST buffer

to remove unbound proteins, and bound proteins were either
eluted or probed by immunoblotting as described below.
Proteins bound to the PA-nitrocellulose membrane were

eluted by incubation of themembrane with 9 M urea for 1 h and
recovered as described previously (31). The resulting protein
pellet was dissolved in 50�l of SDS-PAGE sample buffer, boiled
for 5 min, and subjected to SDS-PAGE separation. The protein
bands were carefully excised from the gel, and proteins were
in-gel digested with trypsin (Sigma-Aldrich) at 37 °C overnight
following the manufacturer’s instruction. The digested pep-
tides were run on the LC-tandem MS using an LTQ-Orbitrap
Velos mass spectrometer (Thermo Scientific). The database
search was done with peptide mass fingerprint data using
MASCOT v2.2 database search engine (Matrix Science, Bos-
ton, MA) against the NCBI database for A. thaliana. The crite-
ria for a significant protein identification were both at least two
unique peptides per protein identified and each peptide show-
ing a probability �80% (MASCOT ion score �30).
Liposome Binding Assay—The assay was performed as

described previously (22) with some modifications. Liposomes
were prepared according to the Avanti Polar Lipids Technical
Support. PC and PA (or PE) weremixed in themolar ratio of 3:1
and with the total amount of 10 �mol and dried with a gentle
stream of nitrogen gas. Lipids were rehydrated for 1 hwithHBS
buffer (20 mM HEPES, pH 7.5, 100 mM NaCl, 0.02% (w/v)
sodium azide). Small unilamellar vesicles were produced by a
mild sonication using a bath sonicator until the solution
becamenearly clear, and centrifugation at 50,000� g for 15min
removed large particles. The liposome pellet was resuspended
in binding buffer (25 mM Tris-HCl, pH 7.5, 125 mM KCl, 1 mM

DTT, 0.5 mM EDTA) and incubated with 10 �g of purified pro-
teins for 1 h. Liposomes were harvested by centrifuging at
16,000 � g for 30 min, washed three times with the binding
buffer, and resuspended in SDS-PAGE sample buffer for
immunoblotting.
SDS-PAGE and Immunoblotting—Protein samples were dis-

solved in SDS-PAGE sample buffer, boiled for 5 min, and
loaded on 10% (v/v) polyacrylamide gel. The gel was run at 100
V for �1 h and stained with Coomassie Brilliant Blue for 1 h,
followed by washing with methanol:water:acetic acid (3:6:1,
v/v/v) to remove background stain. For immunoblotting, pro-
teins were electrophoretically transferred from the gel onto a
polyvinylidene fluoride (PVDF) membrane using the Semidry
Trans-Blot apparatus (Bio-Rad). Themembranewas blocked in
TBST buffer containing 5% (w/v) nonfat milk for 1 h, followed
by washing three times with TBST buffer. The membrane was
incubated with primary antibodies (anti-His6 from Sigma-Al-
drich, anti-FLAG and anti-histone H3 from GenScript, and
anti-PEPC from Rockland, Gilbertsville, PA) for 1 h. After
washing three times with TBST buffer, the membrane was
incubatedwith secondary antibodies frommouse or rabbit con-
jugated with alkaline phosphatase (Sigma-Aldrich) for 1 h, fol-
lowed by colorimetric detection of the proteins using alkaline
phosphatase conjugate substrate (Bio-Rad) according to the
manufacturer’s instruction.
Surface Plasmon Resonance (SPR) Analysis—SPR assay was

performed as described previously (22). Briefly, a sensor chip
preimmobilized with nitrilotriacetic acid was used to capture
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purified, His-tagged GAPC1 or GAPC2. Response unit (RU)
was monitored using a Biacore 2000 system as liposomes com-
posed of 18:1PA�18:1PC (1:3 in molar ratio) or 18:1PC only
were injected onto the chip. The sensorgrams were plotted by
Microsoft Office Excel (2007), and kinetic constants were cal-
culated by Prism v5 (GraphPad Software).
Gene Cloning, Protein Purification, and Activity Assay—

GAPC was cloned into pET-28a-c(�) vector, expressed in
BL21(DE3)pLysS, and purified using nickel-nitrilotriacetic
acid-agarose (Qiagen) as described previously (29). An NAD-
dependent GAPDH activity assay was performed by spectro-
photometric quantification (340 nm) ofNADHproduced in the
reaction according to the method described previously (32).
SPHK1 was expressed in Escherichia coli and purified as
described previously (22).
Nuclear Protein Isolation—Nuclear proteins were extracted

as described previously (33) with somemodifications. Plant tis-
sues were ground with extraction buffer (50 mM MES, pH 8.5,
25mMNaCl, 5mMMgCl2, 30% (v/v) glycerol, 5% (w/v) sucrose,
0.1% (v/v) �-mercaptoethanol, 0.5% (v/v) Triton X-100, 0.5mM

spermidine) and centrifuged at 3,400� g for 20min at 4 °C. The
pellet was washed with the extraction buffer without Triton
X-100 four times at 2,200 � g for 10 min, 1,700 � g for 10 min,
1,700 � g for 8 min, 1,700 � g for 6 min, all at 4 °C. The final
pellet was resuspended in homogenization buffer (100 mM

Tris-HCl, pH 7.2, 0.1% (v/v) �-mercaptoethanol, 10% (w/v)
sucrose, 5 mM EDTA) and used as a nuclear fraction. Superna-
tant from the centrifugation at 3,400 � g was centrifuged at
150,000 � g for 30 min at 4 °C, and the resulting supernatant
was used as a cytosolic fraction.
Reverse Transcription (RT)-PCR and Quantitative Real-time

(qRT) PCR—Total RNA was extracted from plant tissues using
TRIzol� Reagent (Invitrogen) according to the manufacturer’s
instructions. RNA was quantified by Nanodrop 2000 spectro-
photometer (Thermo Scientific) and checked for integrity by
agarose gel electrophoresis. Genomic DNA was digested by
RQ1 RNase-free DNase (Promega) at 37 °C for 30 min, and the
enzymewas inactivatedwith RQ1DNase Stop Solution at 65 °C
for 10min. cDNAwas synthesized by a qScript cDNASynthesis
Kit (Quanta BioSciences, Gaithersburg, MD) with a blend of
random and oligo(dT) primers. The reactionwas at 42 °C for 30
min with preincubation at 22 °C for 5 min and enzyme inacti-
vation at 85 °C for 5 min. The cDNA was amplified with a Taq
polymerase using gene-specific primers (supplemental Table
S1) through the following thermal cycling conditions: predena-
turation at 95 °C for 5 min, 40 cycles of 95 °C for 30 s, 60 °C for
30 s, and 72 °C for 30 s, and final polymerization at 72 °C for 10
min. PCR products were resolved and visualized on 1% (w/v)
agarose gel. RNA extraction and cDNA synthesis were con-
firmed by amplifying ubiquitin 10. For qRT-PCR, PCR progress
was monitored by adding SYBR Green dye using the Step One
Plus Real-Time PCR System (Applied Biosystems). The gene
expression was normalized with ubiquitin 10 as an internal
standard.

RESULTS

Identification of PA-binding Proteins—To discover PA-bind-
ing proteins, we used a PA-on-nitrocellulose membrane to

incubate with total proteins extracted from an oilseed crop C.
sativa in an initial attempt to study thePA signaling in seed lipid
metabolism. Proteins bound to the membrane were eluted and
subjected to SDS-PAGE (Fig. 1A). Several protein bands were
present or increased in the PA affinity membrane fraction, but
they were absent or detected in a lower level in the membrane
applied with the carrier solvent (chloroform) only. These pro-
teins were sequenced by mass spectrometry. Because theCam-
elina genome has not been fully sequenced, the protein
sequences were blasted against theArabidopsis data base based
on genetic similarity between the two closely related plant spe-
cies (�90% in genomic identity) (34).
The mass spectrometry-based protein sequencing identified

several candidate PA-binding proteins. Some of them were
enzymes involved in carbohydrate metabolism, such as
GAPDH, fructose bisphosphate aldolase, and phosphoglycer-
ate kinase.We also identified knownPA-binding proteins, such

FIGURE 1. Identification of PA-binding proteins. A, SDS-PAGE image of the
candidate PA-binding proteins. Total proteins from C. sativa were incubated
with PA-spotted nitrocellulose membrane, and proteins bound to the mem-
brane were resolved by SDS-PAGE. Asterisks indicate the proteins present in
the PA-spotted membrane but not in the solvent-only spotted membrane. B,
metabolic pathway showing the potential role of GAPDH in lipid biosynthe-
sis. Dashed arrows indicate multistep pathway.
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as annexin, a PA-binding protein found in animals (35), and
some isoforms of heat shock protein (Hsp81-3), and tubulins
(�2/4) previously identified (36). Among the protein candidates
identified, GAPDH was particularly of interest because it was
recently found to interact directly with PLD� (29), an enzyme
responsible for PA production. In addition, GAPDH is one of
the key enzymes involved in the glycolytic pathway that is crit-
ical for energy production and biosynthesis for various com-
pounds, including acetyl-CoA and lipids (Fig. 1B). Thus, the
present study is focused on the characterization of the PA and
GAPDH interaction.
PA Binds to Two Cytosolic GAPDHs—Arabidopsis has two

cytosolic GAPDHs, GAPC1 and GAPC2, which share high
amino acid sequence identify (�95%; supplemental Fig. S1).
GAPC1 and GAPC2 cDNAs were cloned from Arabidopsis,
expressed in E. coli as recombinant proteins, and affinity-puri-
fied to near homogeneity (Fig. 2A). Both purified GAPC1 and
GAPC2 effectively converted their substrate (glyceraldehyde
3-phosphate) into product (1,3-bisphosphoglycerate), and thus
they were catalytically active (Fig. 2B).
The nitrocellulose membrane binding assay using the puri-

fied proteins demonstrated that both GAPCs bound to PA on
themembrane, but not to other phospholipids tested, including
PC, PE, PS, PI, or PG (Fig. 3,A and B). No binding was detected
in the empty vector control. SPHK1, a sphingosine kinase
known to bind to PA (22), was included as a positive control for
the PA binding assay. In addition, GAPCs did not bind to either
of two common polyphosphoinositides PI(4)P or PI(4,5)P2 (Fig.
3C). Exposure of the membrane to iodine indicated the pres-

ence of the two phosphoinositide lipids on the membrane, sug-
gesting that the failure of detecting positive bindingwas not due
to absence of the lipids from the membrane (Fig. 3C). We then
performed a liposome binding assay to further confirm the
interaction between PA and GAPC. Because liposomes are
unlikely to be formed by PA alone due to the small size of its
head group forming a cone-shaped structure (37), we generated
liposomes composed of PA and PC. Both GAPCs bound to PA-
containing liposomes as SPHK1 did, but negligibly to those
composed of either PC only or PC and PE (Fig. 3D), suggesting
that the binding was specific to PA. The membrane binding
assay using PA species with different acyl chain compositions
indicated that both GAPCs bound virtually to all PA types
tested except dioctanoyl (8:0) PA (Fig. 3B). However, GAPCs
bound to liposomes containing 8:0 PA and PC (Fig. 3E). One
explanation for the difference in the binding assays is that
unlike other PA species, the highly soluble nature of 8:0 PAmay
have caused solubilization of the lipid from the nitrocellulose
membrane in the process of assay.
The PA-GAPC interaction was quantified by SPR analysis.

Both GAPCs demonstrated an association/dissociation re-
sponse with an increased RU when PA�PC liposomes were
injected and a decreased RU when liposome injection was
stopped (Fig. 4, A and B). The response was highly dependent
on liposome concentration. The carrier lipid, PC only lipo-
somes, barely increased RU, indicating again that GAPCs inter-
act with PA specifically (Fig. 4C). We tested the SPR response
using a mutated Myb protein as a negative control and SPHK1
as a positive control (22). When the same amounts of proteins
were used as that of GAPCs, SPHK1 displayed the binding
response to PA�PC liposomes as reported previously (22),
whereas a negligible response was obtained from the negative
control protein (Fig. 4D). GAPC1 had slightly higher associa-
tion and dissociation rate constants (Ka and Kd) than GAPC2
did (Fig. 4E). Themaximumbinding (Bmax) was estimated to be
1,225 RU for GAPC1 and 1,678 RU for GAPC2. The equilib-
rium binding constant (KD) indicates that GAPC2 has a slightly
higher affinity for PA than GAPC1 (Fig. 4E).
The PA-GAPC Interaction Is Inhibited by Zn2� but Enhanced

by Oxidation—Many lipid-binding domains found in lipid-
binding proteins have a cationic surface responsible for the
electrostatic attraction to anionic lipids (38). The physical
interaction between proteins and lipids are often dependent on
the existence of divalent cations, such as Ca2� and Zn2�, on the
cationic surface (38). Thus, we tested the effect of different
divalent cations on the PA-GAPC interaction. The interaction
was not significantly affected by either Ca2� orMg2�, but com-
pletely abolished by Zn2� (Fig. 5A). It has been reported that
the catalytic activity of mammalian GAPDH is inhibited by a
low nanomolar concentration of Zn2� (39). Consistent with
this property, both Arabidopsis GAPCs were inhibited specifi-
cally by Zn2� in a dose-dependent manner, whereas Ca2� or
Mg2� displayed no inhibitory effect on their catalytic activity
(Fig. 5, B and C).
GAPDH is known to be reversibly oxidized at a cysteine res-

idue to lose its catalytic activity depending on the redox state of
the cell (40). In addition, our recent result indicates that oxi-
dized GAPCs bind stronger to PLD� (29). To test in what state

FIGURE 2. Purification of GAPC from E. coli. A, SDS-PAGE image of the puri-
fied proteins. Proteins were purified by affinity chromatography and sub-
jected to SDS-PAGE. Proteins were eluted from the column twice with the
identical volume of elution buffer. 1, first eluent; 2, second eluent; SPHK1,
sphingosine kinase 1. B, GAPDH activity assay. The assay was performed by
quantifying NADH formed by GAPC in the reaction. Protein expressed from
the empty vector was used as the control. Error bars represent means � S.D.
(n � 3).
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GAPC binds to PA, we performed a PA-GAPC binding assay in
the presence of hydrogen peroxide (H2O2) and DTT as an oxi-
dant and reductant, respectively. The PA interaction of both
GAPCs was slightly enhanced by H2O2 treatment but was sub-
stantially compromised in the presence of DTT (Fig. 5D). Add-
ing an excessive amount of H2O2 restored the PA-GAPC1
interaction disrupted byDTT (Fig. 5D), suggesting that PA pre-
fers binding to the oxidized form of GAPCs.
PA Does Not Affect GAPC Catalytic Activity but Promotes

Proteolytic Cleavage of GAPC—To investigate whether PA
binding affects the catalysis of GAPCs, we measured the enzy-
matic activity of GAPC in vitro with increasing concentrations
of PA. The activity of either GAPC1 or GAPC2 was not signif-

icantly affected by PA even at the highest concentration tested
(100 �M; Fig. 6A). We then investigated whether PA affected
the subcellular association of GAPC. Inmammalian cells under
certain growth conditions, a portion of GAPDH is localized in
the nucleus, where it binds to transcription factors to regulate
gene expression (41). Thus, we examined whether GAPC was
localized in the nucleus of plant cells and whether PA would
have any effect on the nuclear localization. Proteins from Ara-
bidopsis seedlings were fractionated into cytosolic and nuclear
fractions. Phosphoenolpyruvate carboxylase 1 (PEPC1) and
histone H3 were used as the marker for the cytosolic and
nuclear fractions, respectively (Fig. 6B). The absence of PEPC1
in the nuclear fraction and the lack of histone H3 in the cytoso-

FIGURE 3. Confirmation of the PA-GAPC interaction. A, nitrocellulose membrane binding assay. The purified proteins were incubated with PA-spotted
membranes and probed with anti-His6 antibody. The spots on membrane indicate positive interaction between PA and the proteins. B, membrane binding
assay showing PA-specific interaction of GAPC. The purified proteins were incubated with various phospholipids and different PA-spotted membranes and
probed with anti-His6 antibody. Numbers indicate acyl chains on both sn-1 and sn-2 positions. C, membrane binding assay showing no interaction with
polyphosphoinositides. The assay was performed as in A using PI(4)P and PI(4,5)P2. A mixture of chloroform and methanol (20:1, v/v) was used as solvent to
dissolve the lipids. The lipids spotted on the membrane were visualized by exposing the membrane to iodine vapor before and after blotting with proteins to
demonstrate the lipids were still present on the membrane after blotting. D, liposome-binding assay. The purified proteins were pulled down with liposomes
and detected by immunoblotting. The bands on blot indicate the proteins co-pulled down with PA liposomes. Lipid composition of the liposomes is indicated
above the images. E, liposome binding assay showing 8:0 PA-GAPC interaction. The assay was performed as in D using 8:0 PA.
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lic fraction indicate that the cytosolic and nuclear fractions
were well separated (Fig. 6B). Using 35S::YFP-GAPC2 trans-
genic Arabidopsis, GAPC2 was detected in both the cytosolic
and nuclear fractions, with a majority being in the cytosol (Fig.
6B). The nuclear localization of GAPC is consistent with previ-
ous reports (42, 43). Semiquantification by densitometric anal-
ysis suggests that�98% of total GAPC2 is in the cytosol and 2%
in the nucleus.
Applications of PA to Arabidopsis seedlings decreased the

amount of intact GAPC2 (66 kDa including tags) in the cytosol,
but had no apparent effect on the 66-kDa banding intensity in
the nucleus (Fig. 6B). In the PA-treated samples, however, a
GAPC2 fragment with a molecular mass of �45 kDa including
tags was observed in both cytosol and nucleus, and this frag-
ment was detected only when the plants were treated with PA
(Fig. 6B). Semiquantification by densitometric analysis revealed
that �50% of cytosolic GAPC2 and approximately 80% of
nuclear GAPC2were cleaved following PA treatment. The pro-
teolytic cleavage of GAPC2 increased with the increase of PA
concentrations applied to Arabidopsis seedlings (Fig. 6C).
However, no GAPC cleavage fragment was observed when
E. coli protein extracts containing GAPC2 or purified GAPC2
were incubatedwith PA in vitro (Fig. 6D). These results indicate
that the PA-induced cleavage occurs in vivo and requires other
effectors for the cleavage.
PA Inhibits Seedling Growth—To gain insights into the phys-

iological effect of the PA-GAPC interaction and PA-induced
cleavage of GAPC, we determined the effect of PA on seedling

growth in GAPC-altered plants, using two GAPC2-overex-
pressing lines (GAPC2-1 and GAPC2-2) and two homozygous
T-DNA insertional mutants with GAPC2 disruption at differ-
ent positions (gapc2-1 and gapc2-2). Both GAPC2-1 and
GAPC2-2 produced GAPC2 protein at the expected size, and
gapc2-1 and gapc2-2 both lost GAPC2 transcript, as shown by
immunoblotting and RT-PCR analyses, respectively (Fig. 7, A
and B). Without added PA, seedlings of GAPC2-altered lines
were indistinguishable from either wild-type (WT) or a trans-
genic line with empty vector (EV; supplemental Fig. S2).
When seedlings were transferred to a medium containing

100 �M PA for 5 days, however, all lines including WT and EV
exhibited shorter roots and reduced seedling biomass (Fig. 7C).
GAPC2-1 and GAPC2-2 were significantly more sensitive than
EV control to the growth inhibitory effect of PA whereas
gapc2-1 and gapc2-2 were less responsive to PA thanWT con-
trol. This result raised the possibility that the applied PA inter-
acted with overxpressed GAPC2 that contributes to the growth
inhibition. To test that, we treated the GAPC2-altered plants
with PA andZn2� and compared their growthwithWTand EV
treated identically. We reasoned that because Zn2� disrupted
the PA-GAPC interaction (Fig. 5A), the Zn2� treatment should
alleviate the PA inhibition of seedling growth. Indeed, the appli-
cation of Zn2� restored fully the PA-suppressed growth of
GAPC2-1 and GAPC2-2 seedlings to that of EV (Fig. 7, D and
E). Zn2�-treated WT and EV were slightly less sensitive to PA
inhibition than non-zinc-treated seedlings, nearly to the level of
the knock-outmutants (Fig. 7,C–E), presumably due to disrup-

FIGURE 4. SPR quantitative analysis of PA-GAPC interaction. His-tagged proteins (0.2 �M) were first immobilized on the nitrilotriacetic acid chip followed by
injection of liposomes containing PC only or PC plus PA. The representative sensorgrams show RU values at different liposome concentrations over time
starting with the time point that liposomes were injected (0 s). Liposome injection was stopped at 235 s. A–D, PA-GAPC1 (A), PA-GAPC2 (B), PC (100 �M)-GAPC1/
GAPC2 (C), PA (100 �M)-SPHK1/Myb (D). E, summary of kinetic constants for the PA-GAPC interaction. Values were averaged from three independent assays and
are shown � S.E.
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tion of the interaction between PA and GAPC2 expressed in
basal level. More importantly, PA-treated gapc2-1 or gapc2-2
did not noticeably respond to the ion. Zn2� by itself severely
reduced growth of all plants (supplemental Fig. S3A). These
results suggest that PA-GAPC2 interaction is involved in seed-
ling growth.
We also tested whether suppression of endogenous PA pro-

duced by PLD could have an effect opposite that of the PA
treatment on seedling growth. The seedlings of GAPC2-knock-
outs and overexpression lines, as well as EV and WT, were
treated with n-butyl alcohol that diverts part of PLD-produced
PA to phosphatidylbutanol (44). n-Butyl alcohol at 0.4% sub-
stantially reduced growth of all lines as reported previously (45),
but there was no significant difference amongWTandGAPC2-
altered seedlings (supplemental Fig. S3B). This result could
mean that PLD-produced PA may operate in a manner differ-
ent from exogenous PA and/or could be explained alternatively
as under “Discussion.”
Effect of the PA-GAPC Interaction on Gene Expression—To

gain an insight into whether the PA-GAPC interaction is
involved in the regulation of gene expression, this study tested

several genes involved in PA biosynthesis and degradation. The
application of PA substantially reduced the expression of most
genes tested, with a lysophosphatidic acid acyltransferase
(LPAAT2), a lipid phosphate phosphatase (LPP1), and a phos-
pholipid diacylglycerol acyltransferase (PDAT2) being most
down-regulated (�15% of untreated; Fig. 8). PG, another acidic
phospholipid, at the same concentration of PA, did not exert as
profound effect as PAdid on the gene expression (supplemental
Fig. S4), indicating that the PA-suppressed gene expressionwas
not due to the pH effect of an acidic lipid and/or nonspecific
effect of an excessive exogenous compound. The only excep-
tion was LPP1 being more significantly down-regulated by PG
than by PA.
Furthermore, we reasoned that if the PA-reduced gene

expression is through direct interaction with GAPC, PA should
not be able to affect the gene expression when the interaction is
disrupted. Thus, the Zn2� effect on the PA-suppressed gene
expression was tested. The gene expression was not significantly
affected byZn2� only; however, application ofZn2� togetherwith
PA to Arabidopsis seedlings partially recovered the expression of
many genes suppressed by the PA treatment (Fig. 8).

FIGURE 5. Effect of cations and redox on the PA-GAPC interaction. A, nitrocellulose membrane binding assay showing effect of cations on the interaction.
The proteins were incubated with the PA-spotted membrane along with a 1 mM concentration of the different cations indicated and probed with anti-His6
antibody. B, dose-dependent inhibition of GAPC catalytic activity by Zn2�. The enzymes were preincubated with Zn2� at the different concentrations indicated
prior to the reaction. Black and white bars denote GAPC1 and GAPC2, respectively. Bars represent means � S.D. (error bars; n � 3). C, effect of different cations
on GAPC catalytic activity. The enzymes were preincubated with a 10 �M concentration of the different cations indicated prior to the reaction. Black and white
bars denote GAPC1 and GAPC2, respectively. Bars represent means � S.D. (error bars; n � 3). D, nitrocellulose membrane binding assay showing effect of GAPC
redox state on PA binding. The proteins were incubated with the PA-spotted membrane along with the indicated concentrations of H2O2 or DTT and probed
with anti-His6 antibody.
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DISCUSSION

Results of this study show that PA binds to GAPCs, and the
binding is enhanced by oxidation of GAPCs. GAPDH is suscep-
tible to reversible oxidation at a reactive cysteine residue in the
active site to lose its catalytic activity and proposed to act as a
molecular sensor to perceive the redox sate of the cells (40, 46).

A recent study shows that oxidized inactive form of GAPCs
interacts directly with and stimulates PLD�, whose immediate
product is PA (29). The GAPC-PLD� interaction has been
implicated in plant response to oxidative stress and water def-
icits (29). These observations could mean that reduced, active
GAPC is involved in the glycolysis for cellular energy produc-
tion whereas its oxidized, inactive form may be utilized for cell
signaling through its interaction with other cellular com-
pounds. PLD�, togetherwith PLD�1, is known to be involved in
ABA signaling (18, 23, 29). The PA produced by oxidized
GAPC-enhanced PLD� activity may associate with GAPC in a
feedback loop to modulate the PLD� activity, possibly by
degrading GAPC as described below, to desensitize the ABA
signaling machinery (29).
The treatment of PA induces a partial proteolytic cleavage of

GAPC2. The PA-induced GAPC2 cleavage did not occur in
vitro when tested using either purified protein or E. coli lysate
expressing GAPC2, suggesting that the GAPC2 cleavage
requires other factors(s) in plants in addition to PA. GAPC was
reported to bind to a 14-3-3 protein under sugar-sufficient con-
ditions but lose its binding andundergo a selective partial cleav-
age in Arabidopsis cells starved of sugars (47). The proteolytic
fragment of GAPC was �30 kDa which was close to the size of
PA-induced proteolytic fragment of GAPC observed here, rais-
ing the possibility of whether a similar proteolytic activity is
used for both the sugar starvation-induced and PA-mediated
proteolytic cleavages of GAPC. In another study, twomembers
of the 14-3-3 protein family were identified as putative PA-
binding proteins in a PA affinity pulldown assay (36). These
observations may offer a possible mechanism for the PA-in-
duced GAPC cleavage; 14-3-3 proteins may serve as a molecu-
lar scaffold converging downstream effectors from sugar- and
PA-signaling pathways, where either PA binding or sugar dep-
rivation induces the dissociation of GAPC from 14-3-3 and
exposure of the proteolytic cleavage site on GAPC protein.
We found that exogenously added PA suppressedArabidop-

sis seedling growth and that overexpression and knock out of
GAPC2 had an opposite effect on the PA-reduced seedling
growth. GAPC could mediate the PA-triggered growth reduc-
tion by direct interaction with PA and transducing growth-
slowing signal from PA. This proposition is supported by the
finding that Zn2�, which disrupts the PA-GAPC binding,
restored the growth of all lines nearly to the levels of knock-out
mutants. In the GAPC2-knock-out mutants, this signaling
pathway is attenuated by the loss of GAPC-PA interaction, thus
rendering the mutant plants less sensitive to the PA-reduced
growth than WT. Conversely, the GAPC overexpression may
allow to meet the stoichiometry between GAPC and PA mole-
cules so that the GAPC molecules overexpressed can more
actively transduce the growth regulatory signal from the exces-
sive PA (100 �M). TheGAPC expression-dependent PA inhibi-
tion of growth and its restoration by Zn2�-mediated disruption
of PA-GAPC interaction clearly support a connection between
biochemical events of the PA-GAPC interaction and physiolog-
ical consequence of the altered growth phenotype.
We used an alcohol treatment in an attempt to corroborate

whether PLD-produced PA in plants was involved in the
GAPC-mediated effect.Arabidopsis has 12 PLDs, and there are

FIGURE 6. Effect of PA on GAPC activity and subcellular association. A,
effect of PA on GAPC catalytic activity. The enzymes were preincubated with
PA at different concentrations indicated prior to the reaction. Black and white
bars denote GAPC1 and GAPC2, respectively. Bars represent means � S.D.
(error bars; n � 3). B, effect of PA on cytosolic/nuclear localization of GAPC.
Transgenic Arabidopsis lines overexpressing GAPC2 were grown with (�) and
without (�) 100 �M PA for 2 days and fractionated into cytosol and nucleus.
The proteins were probed by immunoblotting using anti-FLAG antibody.
PEPC1 and histone H3 were used as cytosolic and nuclear protein markers,
respectively. Asterisks denote the proteolytic fragment of GAPC2. Molecular
masses of the corresponding proteins are indicated on the right. EV, empty
vector control; GAPC2, GAPC2 overexpressor. C, dose-dependent proteolytic
fragmentation of GAPC2 by PA. Transgenic Arabidopsis line overexpressing
GAPC2 was grown with PA for 2 days at different concentrations indicated,
and total proteins were probed by immunoblotting using anti-FLAG anti-
body. The position of proteolytic fragments is indicated by an arrow. D, in vitro
assay of GAPC2 proteolysis. E. coli lysate expressing GAPC2 and affinity-puri-
fied GAPC2 were incubated with (�) or without (�) 100 �M PA overnight and
probed using anti-His6 antibody on the immunoblot.
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nomutants deficient in all PLDs or inhibitors that are specific to
plant PLDs. Primary alcohols, such as n-butyl alcohol, are
sometimes used to suppress PLD-produced PA. The alcohol
treatment makes use of the PLD transphosphatidylation activ-
ity that forms phosphatidylalcohol at the expense of PA. It
should be noted that the treatment of primary alcohols to plants
often activates PLD, even though it diverts part of the phos-
phatidyl moiety from PA to phosphatidylalcohol (1). The alco-

hol-induced increase in phospholipid hydrolysis may have
other consequences. Thus, the data with alcohol treatment
need to be interpreted with caution. The lack of the opposite
effect of the n-butyl alcohol treatment on seedling growth from
that of applied PA on GAPC2-overexpressing seedling could
result from the nonspecific effect of the alcohol. In addition to
PLD, PA can be produced by other routes, such as diacylglyc-
erol kinases andde novo biosynthesis (1). Therefore, the cellular

FIGURE 7. Effect of GAPC2 expression on PA-reduced seedling growth. A, confirmation of GAPC2 overexpression by immunoblotting. The proteins from
10-day-old transgenic seedlings were probed using anti-FLAG antibody. EV, empty vector control. B, confirmation of gapc2 disruption by RT-PCR. Total RNA was
extracted and reverse-transcribed. The resulting cDNA was amplified by GAPC2 primers and visualized on an agarose gel. Ubiquitin was used as a loading
control. C and D, growth phenotype of the GAPC2-altered lines grown with PA (C) or PA plus Zn2� (D). Arabidopsis seedlings were grown with 100 �M PA and
1 mM ZnCl2 for 5 days, harvested, and measured in terms of root length (left) and fresh weight (right). Values are percentage of untreated seedlings, indicating
the PA suppression of seedling growth. Bars represent means � S.D. (error bars; n � 10). Single and double asterisks denote a statistical significance from
Student’s t test paired with EV and WT, respectively (p � 0.01). E, representative images of controls (WT and EV), GAPC2 overexpressors (GAPC2-1 and GAPC2-2),
and GAPC2-knock-outs (gapc2-1 and gapc2-2) grown as in C and D. Scale bars, 1 cm.
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source of PA that interacts with GAPCs requires further
investigation.
GAPCs have been regarded as two phosphorylating cytosolic

forms of GAPDH, but our results show that GAPC2 and its
cleavage product are present both in the cytosol and the
nucleus. This raises questions on the function of the nuclear
GAPCs. Inmammalian cells, GAPDH, in addition to the role as
a glycolytic enzyme, has multiple functions, such as the regula-
tion of gene expression, cell signaling, and membrane traffick-
ing (41). GAPDH functions in both transcriptional and post-
transcriptional regulations of gene expression through diverse
molecular mechanisms. GAPDH is able to regulate gene
expression by maintaining DNA integrity in the nucleus and
modulating mRNA stability in the cytosol, via protein-nucleic
acid interaction, as well as by associating with transcription
factors (48–50). Glycolytic activity is not required for many of
these novel functions of GAPDH. The present study tested the
effect of PA and potential PA-GAPC interaction on the expres-
sion of several genes involved in PA biosynthesis and degrada-
tion. Treatment with PA inhibited the expression of many
geneswhereas PA/Zn2� co-treatment prevented PA inhibition.
Among them, LPAAT2wasmost responsive to both PA inhibi-
tion and Zn2� restoration. LPAAT is an endomembrane-asso-
ciated enzyme that catalyzes the synthesis of PA by incorporat-
ing an acyl chain to lysoPA. Thus, LPAAT expression may be
suppressed by PA as a feedback inhibition, possibly beingmedi-
ated by GAPC. GAPC is likely to behave in a manner similar to
the mammalian system to regulate the gene expression in Ara-
bidopsis cells, and this process may be modulated by the PA
binding through the PA-induced proteolysis of GAPC. PAmay
compromise GAPC protein integrity by inducing proteolysis,
possibly through being mediated by 14-3-3 as described, to
impede its regulatory activity. Otherwise, the cleavage products
of GAPCmay have an activity in the regulation of gene expres-
sion. The small size of fragments may permit the polypeptides
to enter the nucleus where they have influence on the gene
expression, which is supported by a slightly more abundance of
the fragment in the nucleus than in the cytosol demonstrated in

this study. Alternatively, the cytosolic fragment of GAPC may
regulate the gene expression posttranscriptionally, possibly by
modulating mRNA stability in the cytosol as mammalian
GAPDH does. It will be of interest in future studies to elucidate
the detailed mechanism for the alteration of GAPC regulatory
function by PA binding.
We propose that PA physically interacts with oxidized, inac-

tive GAPC to induce proteolysis of the protein. GAPC catalyzes
a reaction in the glycolytic pathway important for energy pro-
duction and for providing metabolic intermediates for other
biosynthetic processes, including lipids. PA is a key intermedi-
ate in glycerolipid biosynthesis. The identification ofGAPCas a
PA-binding protein in Camelina and Arabidopsis raises an
intriguing question of whether the PA-GAPC interaction pro-
vides a metabolic link coordinating carbohydrate and lipid
metabolism. It will be of great interest in further studies to
determine whether and how the PA-GAPC interaction plays a
role in plant metabolism, biomass accumulation, and stress
response.

Addendum—While thework described in the paperwas submitted for
publication, another study screening for PA-binding proteins under
NaCl stress in Arabidopsis also identified GAPC interacting with PA
(51).
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