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In equilibrium, a vesicle that is adhered to a horizontal
substrate by a long-range attractive, short-range
repulsive force traps a thin layer of fluid beneath
it. In the asymptotic limit that this layer is very
thin, there are quasi-two-dimensional boundary-layer
structures near the edges of the vesicle, where the
membrane’s shape is governed by a balance between
bending and adhesive stresses. These boundary
layers are analysed to obtain corrections to simpler
models that instead represent the adhesive interaction
by a contact potential, thereby resolving apparent
discontinuities that arise when such models are
used. Composite expansions of the shapes of two-
dimensional vesicles are derived. When, in addition,
the adhesive interaction is very strong, there is
a nested boundary-layer structure for which the
adhesive boundary layers match towards sharp
corners where bending stresses remain important but
adhesive stresses are negligible. Outside these corners,
bending stresses are negligible and the vesicle’s shape
is given approximately by the arc of a circle. Simple
composite expansions of the vesicle’s shape are
derived that account for the shape of the membrane
inside these corners.

1. Introduction
Vesicles are closed bilayers of lipid molecules, have
numerous biological and biomedical applications, and
have been studied in the context of many experimental
situations. Recent laboratory experiments [1] have
demonstrated how chemical patterning of a substrate,
in such a way that a vesicle is preferentially adhered
to specific regions, allows the vesicle’s spreading to
be controlled. Phase separation of a multi-component
bilipid membrane has been observed to occur, both
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experimentally [2] and in numerical simulations [3], in response to an adhesive interaction
either with another membrane or with a substrate. Smith et al. [4] computed the equilibrium
shapes of vesicles as they are pulled from flat adhesive substrates by an applied force, and
similar computations were subsequently performed for curved adhesive substrates [5]. Although
the equilibrium configurations of such systems are well studied, the dynamic evolution of a
vesicle during adhesive processes has received much less theoretical attention. We will analyse
the physical balances that govern the shapes of vesicles in equilibrium, with an emphasis on
the small-scale regions near the substrate, which control the dynamics owing to the viscous
dissipation occurring primarily inside these regions.

An important theoretical insight was made by Seifert & Lipowsky [6], who treated the adhesive
interaction as a contact potential, and gave a novel boundary condition for the meridional
curvature of an axisymmetric vesicle at its contact line using a balance between adhesive and
bending stresses. Seifert [7] gave a detailed derivation of this condition for two-dimensional
vesicles, and described the variety of shapes that are possible depending on the relative
importance of the adhesive strength and the membrane’s bending stiffness. The representation
of the adhesive interaction using a contact potential is an approximation that omits the presence
of any fluid that is trapped beneath the vesicle. Nonetheless, it has yielded good agreement with
experiments such as the forced deformation by magnetic tweezers of a vesicle that is adhered to a
substrate [8]. One significant drawback of using a contact-potential model is that any translation
or spreading of the vesicle along the substrate would cause the no-slip condition at the stationary
substrate to be incompatible with the no-slip condition at the membrane. This incompatibility
arises in the form of a non-integrable singularity in the viscous stresses at the contact point
and is analogous to the ‘contact-line singularity’ encountered in the context of spreading viscous
droplets [9]. One of our primary aims in analysing the effects of the wetting layer of fluid beneath
the vesicle is to provide an avenue by which this singularity may be resolved.

Several workers have analysed the dynamics of vesicles in a finite-ranged potential rather
than a contact potential. Cantat & Misbah [10] and Cantat et al. [11] computed numerically, and
derived scalings for, the constant-speed translation of a vesicle along a substrate in response
to a prescribed gradient in the adhesive attraction of the substrate for the vesicle’s membrane.
Cantat & Misbah [12] derived scalings for the lift force experienced by adhered vesicles under
shear flow. Numerical computations must resolve the membrane near the substrate on a length
scale comparable with that of the adhesive force and are, therefore, expensive when this length
scale is small. An asymptotic analysis of this region, developed herein, could be incorporated into
such computations to bypass this difficulty. The numerical convergence of equilibrium solutions
for a finite-ranged potential towards those of a contact potential has been discussed qualitatively
by Seifert [7], and more recently shown by Zhang et al. [13] by way of a phase-field model. The first
part of this paper performs an asymptotic analysis of these shapes, in the limit that the length scale
of the adhesive interaction is very small, thereby quantifying the above conclusions and placing
them on a firmer footing.

If the vesicle is very strongly adhered to a substrate, then it spreads out in order to maximize
its contact area. This causes the vesicle’s membrane to have large tension and its shape to be
approximately a spherical cap [6], whose curvature and contact angle are determined at leading
order by global area and volume constraints. The membrane’s tension is then related to the
adhesion strength and to the contact angle by a Young–Dupré equation. The relatively small
aspect ratio of such shapes has motivated their analysis, in two dimensions, using a long-
wave approximation [14]. However, such an approximation breaks down near the edges of
the vesicle owing to the membrane having to turn back under itself so that it lies flat on the
substrate, giving sharp corners at the edges of the vesicle. This causes there to be an apparent
discontinuity in the membrane’s slope and is a consequence of the omission of bending stresses.
Similar discontinuities have been observed and resolved asymptotically, for three-dimensional
axisymmetric vesicles, by previous workers [15,16], in the context of budding phenomena
exhibited by multi-phase vesicles. This analysis was applied by Das & Du [17] to strongly adhered
axisymmetric vesicles, and we adapt their analysis to describe two-dimensional vesicles and
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to investigate the parameter ranges for which such asymptotic expansions are accurate. Our
motivation is to understand the parameter regimes for which it is appropriate to use a long-wave
approximation to describe the shape of an adhered vesicle.

The analysis in this paper derives new quantitative corrections to simpler models that
represent the adhesive interaction by a contact potential rather than by a finite-ranged potential.
New scaling laws are derived that describe the boundary-layer regions which correspond to the
‘contact lines’ predicted by contact-potential models, and the corrections to such models owing
to the thin wetting layer of fluid beneath the vesicle are quantified by means of a composite
expansion for the vesicle’s shape. The regime where the adhesive interaction is very strong
is also analysed, and we explain how a composite expansion for the vesicle’s shape may be
constructed while avoiding the use of higher-order terms as in [16]. We compare this expansion
with numerically obtained solutions for the vesicle’s shape, and thus describe the regimes in
which our expansion is valid.

In §2, we describe the problem and explain the equations that govern the equilibrium shapes
of the vesicle. In §3, we obtain equilibrium shapes through numerical solution of these equations,
and review the possible regimes of equilibrium solutions obtained by Seifert [7]. In §4, we analyse
these solutions in the asymptotic limit that the range of the adhesive interaction is very small,
and describe the leading-order corrections to results that are obtained using a contact-potential
model, and in §5, we describe the vesicle shapes in the limit that the adhesive potential is very
large, thereby causing the vesicle to spread so that it has a small aspect ratio. We summarize and
discuss our results in §6.

2. Formulation of problem
For ease of exposition, we focus on two-dimensional vesicles throughout the main text, but in
appendix A, we describe how our results can be generalized to three dimensions. Throughout the
analysis, dimensional quantities are denoted using asterisks and dimensionless quantities using
undecorated variables. Lengths are non-dimensionalized with the radius of a circular cylinder of
equal surface area, which we denote L∗ and which is given by P∗/2π , where P∗ is the vesicle’s
surface area per unit dimensional width. Areas are then scaled with L∗2 and volumes with L∗3.
The vesicle is modelled as a closed, inextensible and impermeable bilipid membrane of bending
stiffness κ∗. Energies are non-dimensionalized with κ∗ and pressures with the corresponding
scale κ∗/L∗3.

The vesicle’s volume, which corresponds to its cross-sectional area A in a two-dimensional
formalism, is constant owing to the membrane’s impermeability. The vesicle’s surface area, which
corresponds to its perimeter in a two-dimensional formalism, is also constant owing to the
membrane’s inextensibility. We parametrize the vesicle’s shape using the arclength (given by
s = s∗/L∗) measured anti-clockwise from the centre of the underside of the vesicle, as shown in
figure 1a, so that it is given by x(s) = (x, y) for two-dimensional vesicles and by x(s) = (r, y) for
axisymmetric vesicles. The vesicle is attracted towards the substrate by a long-range attractive,
short-range repulsive interaction so that, in the absence of any other effects, the membrane would
overlie a thin wetting layer on the substrate. In the analysis that follows, we represent this
interaction by the potential [11]

W = W0

[(
δA

y

)4
− 2

(
δA

y

)2
]

, (2.1)

which is independent of the position x along the substrate, and thereby assumes that the physical
properties of both the substrate and the vesicle’s membrane are homogeneous. After non-
dimensionalizing, the vesicle’s equilibrium shape is governed by three dimensionless parameters,
which are

W0 = W∗
0L∗2

κ∗ , δA = δ∗
A

L∗ and A = A∗

πL∗2 . (2.2a–c)
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Figure 1. (a) Diagram of a vesicle adhered to a substrate by a short-ranged potential. The length scale of the potential is δA,
and in the regime where this length scale is small, the vesicle’s membrane has three asymptotic regions that are labelled.
(b) The three types of equilibria considered in this paper. Bold lines represent the regions of the membrane that are in contact
with the substrate in the limiting case δA = 0 of a contact potential, and crosses represent the isolated points where pinned
shapes touch the substrate.

The parameter A represents the vesicle’s reduced cross-sectional area, and the numerical prefactor
has been chosen so that A = 1 for a vesicle of circular cross section. The parameter δA is
the dimensionless height at which W(y) is minimized and, therefore, represents the preferred
thickness of the wetting layer beneath the vesicle. The parameter W0 represents the energetic
advantage in the membrane’s moving from the far field to height δA above the substrate. We
shall see that the equilibrium shape of the vesicle depends on W(y) primarily through the values
of W0 and δA, and that altering the quantitative form of the potential (2.1) leaves the results
qualitatively unchanged.

The membrane exerts a traction on the surrounding fluid owing to its bending stress, its
tension and its adhesive interaction with the substrate, which results in there being a discontinuity
across the membrane in the stress tensor of the fluid. In equilibrium, there is no fluid flow and,
therefore, no deviatoric stress component. Hence, the stress tensor is given by σ = −pI. After non-
dimensionalizing, the difference between the tractions exerted on the outside and the inside of
the membrane is given by [11],

[σ · n]out
in = σ · n|out − σ · n|in

= −(H′′ + 1
2 H3 − WH − n · ∇W − γ H)n − γ ′t, (2.3)

where primes here denote differentiation with respect to s and the vector t is the unit tangent
vector to the membrane (and equal to x′), which is inclined at an angle θ upwards from horizontal.
The vector n is the outward-pointing unit normal to the membrane and H is twice the membrane’s
dimensionless mean curvature, defined by the equation t′ = −Hn. The first two terms on the right-
hand side of (2.3) represent the bending stress of the membrane and are derived from the Helfrich
energy [18]. The next two terms represent the stresses that arise owing to the adhesive interaction
between the membrane and the substrate, and the final terms are Lagrange-multiplier terms
that enforce the membrane’s inextensibility. We note that γ differs from the membrane’s tension,
which we denote by T, according to the relation T = γ + W [11]. Substitution of this relation into
(2.3) yields

[σ · n]out
in = −(H′′ + 1

2 H3 − TH)n − T′t + ∇W.

The advantage of using γ in preference to T is that in equilibrium, γ is constant, whereas the
tension T must vary spatially to balance the tangential gradient in the adhesive potential. We note
that, in contrast to problems associated with viscous droplets where the surface energy is known
but the surface area is unknown, the inextensibility of the membrane means that the variable γ is
not an intrinsic property of the interface, but must be determined as part of the problem.

In equilibrium, the pressures pin and pout inside and outside the vesicle, respectively, are
spatially constant, and their difference across the membrane is balanced by the normal component
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of the traction exerted by the membrane. Hence, n · [σ · n]out
in = (pin − pout). Because the fluid is at

rest, there is no deviatoric stress component and so t · [σ · n]out
in = 0. Hence, the stress balance (2.3)

implies that
H′′ + 1

2 H3 − WH − n · ∇W − γ H = pout − pin and γ is constant. (2.4a,b)

The membrane’s bending stiffness is typically around 10−19 J [18], whereas values for the
adhesive energy per unit area have been found experimentally to range between 5 × 10−10 and
10−6 J m−2 [19], depending on the physical properties of the substrate and of the membrane. If
we assume that the radius of the vesicle is about 5 µm, then W0 may range between 10−1 and
2.5 × 102. The wetting-layer thickness has values that range between 30 and 100 nm [20], from
which it follows that δA ranges between 6 × 10−3 and 2 × 10−2. This motivates our analysing
the vesicle in the asymptotic limit that δA � 1 and also in the secondary asymptotic regime
δA � W−1/2

0 � 1, for which the adhesive interaction is strong.

3. Equilibriummembrane shapes
For ease of exposition, we focus for the moment on two-dimensional vesicles, and postpone
further discussion of three-dimensional vesicles to appendix A. Because the adhesive potential W
is independent of x, we replace ∇W by (dW/dy)ey from now on, which means that equilibrium
shapes satisfy

H′′ + 1
2

H3 − γ H − WH + dW
dy

cos θ = −p, (3.1a)

where p is equal to pin − pout and must be determined as part of the solution, together with the
geometric equations

x′ = cos θ , y′ = sin θ and θ ′ = H. (3.1b–d)

Equations (3.1) comprise a fifth-order system of differential equations, with unknown
parameters p and γ . Seven boundary conditions and integral constraints are therefore required.
We assume that the vesicle is symmetric about x = 0, and compute only the shape of the right-
hand half of the vesicle. The appropriate boundary conditions, applied on the centreline of the
vesicle, are then

x = 0, θ = 0 and H′ = 0 at s = 0, (3.2a–c)

on the underside of the vesicle, and

x = 0, θ = π and H′ = 0 at s = π , (3.2d–f )

on the upper side of the vesicle. The vesicle’s area is enforced by the integral constraint

2
∫π

0
x sin θ ds = πA. (3.2g)

The conditions (3.2) fully determine the solution to (3.1).
The system (3.1)–(3.2) depends on the three parameters in (2.2), namely the adhesive amplitude

W0, the adhesive length scale δA and the reduced area A of the vesicle. To facilitate the description
of the variety of shapes that are possible, we show in figure 2 how the free energy E of the vesicle,
given in the dimensionless variables by [7]

E = 2
∫π

0

[
1
2

H2 + W(y)

]
ds, (3.3)

varies with W0 for different reduced areas A and adhesion length scales δA. As δA decreases, the
vesicle shapes approach a limit (shown in figure 2b by solid lines) that corresponds to there being
a contact potential, for which the free energy is given by

E = 2
∫π

LA/2

1
2

H2 ds − W0LA, (3.4)
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Figure 2. The free energy E of equilibriummembrane shapes versus the adhesive amplitudeW0, for reduced areas (a)A= 0.85
and (b) A= 0.65, and for values of the adhesive length scale δA given by 2.5 × 10−3 (dashed line), 10−2 (dotted line) and
4 × 10−2 (dashed-dotted line). The solid lines show thedependence of E onW0 for the contact potential (3.4),which represents
the limit δA = 0. Representative vesicle shapes in this limit are shownwith the parts of the membrane that are in contact with
the substrate representedbybold lines or crosses for isolatedpoints. In (a), the continuous transitionbetweenboundandpinned
solution branches is marked by a circle. (Online version in colour.)

instead of (3.3), where LA is the length of membrane in contact with the substrate. In this limit,
Seifert [7] gave a detailed description of the effects of varying A and W0 on the vesicle’s shape.
We briefly summarize Seifert’s conclusions before building on them in §4, where we analyse
the vesicle’s shape when δA is very small but non-zero. In particular, we resolve the apparent
discontinuity in the membrane’s curvature at the contact point, which would otherwise imply a
singular-valued traction owing to the bending-stress term in (2.3).

When δA = 0 and the adhesive amplitude W0 is small, the vesicle has a ‘pinned’ shape that
touches the substrate only at isolated points (figure 1b). The adhesive stress is not large enough
to otherwise modify the vesicle’s shape from the shape it would have if the adhesive potential
was absent. The free energy, therefore, does not depend on W0, and the pinned solutions are
represented in figure 2 by the lines for which E is constant. The pinned shapes are convex when
A � 0.82, and therefore touch the substrate only at a single point, and we denote the membrane’s
curvature there by Hbot. There is a continuous transition (circled in figure 2a) from pinned shapes
to ‘bound’ shapes that occurs as W0 is increased through 1

2 H2
bot. Above this value, the adhesive

stress is sufficient to deform the underside of the vesicle by pulling it down to form a flat, adhered
region on the underside of the vesicle. As W0 is increased further, the length of the adhered region
for these bound shapes increases, further lowering the free energy of the vesicle. The bound
shapes are represented in figure 2a by the solution branch for which E decreases as W0 increases,
and in figure 2b by the lower of the two solution branches for which E decreases as W0 increases.

Figure 2b shows the dependence of E on W0 when the reduced area is given by A = 0.65, for
which the pinned shape is not convex, but instead has dimples on its upper and lower sides.
The dimpled underside means that there is now a discontinuous transition from pinned states
to bound states, owing to the finite energy loss associated with flattening out the membrane
within the dimple and bringing it into contact with the substrate. (The crossing of the pinned and
bound solution branches in figure 2b is only apparent as a consequence of their projection onto
the (W0, E) plane.) There is an intermediate solution branch, not mentioned by Seifert [7], but
later observed by Smith et al. [4] in the context of axisymmetric vesicle shapes, which is unstable.
Figure 2b shows how this solution branch has higher free energy than both the pinned and the
bound shapes, and how it terminates onto the pinned and bound solution branches. Along this
dimpled-solution branch, there is a region on the underside of the vesicle that is not adhered to the
substrate. We expect that there are similar unstable equilibria that have multiple dimples, which
would have an even larger free energy, but we have not pursued finding these equilibria here.

Figure 2 shows how the solution branches for a finite-ranged potential converge towards those
of a contact potential as δA → 0. An important qualitative difference is that there is a loss of
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Xturn = Yturn = (2W0)–1/2LA = O(1) Xad = LA Xtr = (dA
2 /2W0)1/4

Ytr = Yad = dA

(c)(b)(a)

Figure 3. Diagram showing the nested boundary-layer structure that arises in the regime, where the wetting-layer thickness
is small and the adhesion strength is large. A derivation of the scalings is given in the text.

existence of the pinned solution branch above a critical value of W0. The reason is that a finite-
ranged potential affects a finite length of the membrane rather than only an isolated point. If the
adhesive stress is large enough, then this region of the membrane would be pulled towards the
substrate, deforming the vesicle away from its pinned shape. Hence, there are no equilibria with
pinned vesicle shapes for large values of W0. Another difference between the solution branches
for a finite-ranged potential and those of a contact potential is that the dimpled-solution branch
exists only for sufficiently small values of δA, as can be seen in figure 2b for δA = 4 × 10−2. In this
case, the pinned shape has a dimple whose height is about 5 × 10−2, and there is not a sufficient
scale separation between the dimple’s height and δA. Instead, the dimple is absorbed into the
adhered region of the vesicle.

In the following sections, we analyse the equilibria of the vesicle in the asymptotic limit δA � 1
with the aim of quantifying the differences from the limiting case δA = 0 of a contact potential.
In this limiting case, for bound vesicle shapes, the membrane approaches the substrate with a
curvature that is determined by a balance between bending stresses and adhesion [6,7]. Because
the adhered part of the membrane lies flat on the substrate, its curvature there is zero, causing
there to be an apparent discontinuity in the curvature across the contact point. Our analysis in
§4 shows that when the range of the adhesive interaction is finite but small, there is a boundary
layer (figure 3c) across which the curvature varies rapidly between zero, towards the substrate,
and the finite value away from the substrate. From now on, we refer to this boundary layer as
the ‘transition region’, the flat part of the membrane as the ‘adhered’ region and the remainder of
the membrane (for which y � δA) as the ‘outer region’ (figure 1a). Our analysis of the transition
region recovers the curvature boundary condition that was derived using a macroscopic energy
argument by Seifert [7]. We derive composite expansions to describe the vesicle’s shape and
obtain the O(δ

1/2
A ) corrections to the vesicle’s free energy. We follow a similar procedure for

pinned vesicle shapes, quantifying the deformation of the pinned shape near the substrate where
adhesive stresses are significant. In §5, we consider cases where the adhesive energy is also strong,
so that there is further separation of scales in the outer region. In these cases, the majority of
the outer solution may be approximated as a ‘tension-dominated’ region [17], in which bending
stresses are negligible. This introduces sharp corners where the membrane meets the substrate,
and we show how there are boundary layers there across which the membrane’s inclination and
curvature change rapidly (figure 3b) so that bending stresses are dominant. We adapt the analysis
of [17] to derive a composite expansion for the membrane’s shape, and thereby obtain asymptotic
corrections to estimates of the vesicle’s shape obtained by neglecting bending stresses completely.

4. Asymptotic analysis for adhesive potentials of very small length scale and
arbitrary strength

The asymptotic corrections to the limiting case δA = 0 are qualitatively different depending on
whether, in this limit, the vesicle is in contact with the substrate in ‘adhered regions’ of finite
length (bound and dimpled shapes) or only at isolated points (pinned shapes). We, therefore,
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consider these cases separately in the following subsections. We rescale variables throughout with
respect to characteristic horizontal and vertical scales given, respectively, by X∗ and Y∗, and use
carets to denote rescaled quantities.

(a) Bound and dimpled vesicles
In the asymptotic limit δA → 0, the vesicle shapes approach the shape that corresponds to
there being a contact potential, with an adhered and outer region that meet at the contact
points (figure 1a). The outer region, therefore, has O(1) length scale, and we use the scalings
Xout = Yout = 1. Similarly, for the adhered region, we use Xad = 1 but, because the wetting layer
has thickness δA, we use Yad = δA. In the transition region, adhesive stresses are again important,
and we use Ytr = δA. Because the curvature there scales like (2W0)

1/2 [7], we derive a scaling for
Xtr using the balance (2W0)

1/2 = Htr ∼ Ytr/X2
tr. It follows that scalings for the transition region are

given by

Xtr =
(

δ2
A

2W0

)1/4

, Ytr = δA and Htr = (2W0)
1/2, (4.1a–c)

where the numerical factors of 2 have been retained for convenience. The boundary-layer
structure is depicted in figure 3, in the case that the adhesive amplitude W0 is large. The analysis
in this section applies to arbitrary values of W0. The ‘turn-around’ boundary layer, depicted in
figure 3b, is present in the outer region only if W0 is large. We discuss this special case further
in §5, but here state that if W0 is not large, then the adhesive boundary layer in figure 3c simply
matches directly onto the outer region in figure 3a. In §4a(i), we show how a detailed analysis
of the transition region recovers the curvature boundary condition H = (2W0)

1/2, which after
rescaling corresponds to Ĥ = 1.

(i) Transitional region

To analyse the transitional region, we first rescale variables using (4.1a–c) to give

ŷ = y
δA

and x̂ =
(

2W0

δ2
A

)1/4

x. (4.2)

We then substitute for the potential W(y) in (3.1a) using (2.1) and for Ĥ using d2ŷ/dx̂2 to obtain,
at leading order for δA � 1,

1
2

d4ŷ
dx̂4 = ŷ−5 − ŷ−3 + O(δA, W0δA). (4.3)

Three matching conditions are sufficient to determine the solution up to translations in x̂.
Because the scalings for the adhered region are given by Yad = δA and Xad = 1, the membrane’s

curvature there scales like δA and from (3.1a), its shape satisfies (in unscaled variables)

−p = dW
dy

∣∣∣∣
y
= d2W

dy2

∣∣∣∣∣
δA

(y − δA) + O

(
W0

δ3
A

(y − δA)2

)
,

which relates the pressure difference across the membrane to the adhesive stress exerted on it.
Because the pressure difference is determined by the outer region, it follows that p = O(1) as
δA → 0 and, hence, that

y = δA + O

(
δ2

A
W0

)
.
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(a)
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ŷ

x̂

Dŷ

Dŷ
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s = LD/2
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Figure 4. (a) Asymptotic solution for the membrane’s shape inside the transition region (solid line), the extrapolation of its
quadratic behaviour in the far field (dashed line) to where the slope is zero, thereby estimating the position of the contact point
(circled), and themembrane’s shape in the contact-potential limit thatδA = 0 (dotted). Also shown is the vertical displacement
�ŷ of the asymptotic solution from the limiting case of a contact potential. (b,c) Schematic of the boundary conditions (4.8)
and (4.9) for (b) bound vesicles, for which xD = LD = 0, and (c) dimpled vesicles.

We take the leading-order approximation y = δA throughout the adhered region. In the scaled
variables for the transition region, the membrane’s height must, therefore, approach unity
towards the adhered region. We linearize about this height to obtain

ŷ = 1 + η̂, where
d4η̂

dx̂4 = −4η̂ and η̂ � 1,

the solutions to which have the form η̂ ∼ exp{(±1 ± i)x̂}. If the adhered region is to the left of the
transition region, then we must suppress the two modes that grow exponentially as x̂ → −∞ by
prescribing the conditions

d2η̂

dx̂2 − 2
dη̂

dx̂
+ 2η̂ → 0 and

d3η̂

dx̂3 − 2
d2η̂

dx̂2 + 2
dη̂

dx̂
→ 0 as x̂ → −∞. (4.4a,b)

We compute the appropriate solution of (4.3) using a shooting method, where the membrane
height is prescribed to have the form

ŷ ∼ αex̂ cos
(
x̂ + β

)
,

near x̂ = 0, to ensure that (4.3) and (4.4) are satisfied. We set the amplitude α to some small value,
which has the effect of prescribing the origin’s position. The phase β remains to be determined,
and we will use it as a shooting parameter. Towards the outer region, the bending moment H′ is
O(1) in the original unscaled variables, which implies that d3ŷ/dx̂3 = O(δ

1/2
A W−3/4

0 ) as x̂ → ∞. We
approximate this constraint using the matching condition that

d3ŷ
dx̂3 → 0 as x̂ → ∞, (4.4c)

which, together with (4.4a,b), determines the solution in the transition region up to a translation.
Figure 4a shows the shape of the membrane in the transition region. Also shown is the

displacement of the shape from the limiting case that there is a contact potential, which we use in
§4a(ii) to obtain a composite expansion for bound membrane shapes. This limiting case is flat to
the left of the contact point and, on the very short length scale of the adhesive boundary layer, has
constant curvature to the right of the contact point. The position of the contact point is determined
through extrapolation of the far-field behaviour of the transition region leftwards to the point
where the membrane’s slope is given by dŷ/dx̂ = 0.
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We note that (4.3) has a first integral, given by

2
d3ŷ
dx̂3 · dŷ

dx̂
−
(

d2ŷ
dx̂2

)2

= −Ŵ(ŷ) + C, (4.5)

and, because d3ŷ/dx̂3 → 0 both towards the adhered region and towards the outer region, it
follows that (

d2ŷ
dx̂2

)2

→ lim
ŷ→∞

{Ŵ(ŷ) − Ŵ(1)} = 1 as x̂ → ∞. (4.6)

This result holds regardless of the quantitative form of Ŵ(ŷ). In dimensional variables, this means
that the curvature approaches H∗

c = (2W∗
0/κ∗)1/2, thereby recovering the boundary condition

presented by Seifert [7] for the limiting case of a contact potential.

(ii) Outer region

Because the outer region has y � δA, the adhesive potential there is O(1) as δA → 0, and we
take the leading-order approximation that W = 0, so that the membrane’s equilibrium shape is
governed by (3.1), with (3.1a) replaced by

H′′ + 1
2 H3 − γ H = −p. (4.7)

The length LA of the membrane in contact with the substrate (figure 3a) is unknown and
represents an additional variable that must be determined, together with p and γ , as part of
the solution. If the outer solution is a bound shape, then eight constraints are required to close
the problem. If the outer solution has a dimpled shape, then the membrane inside the dimple
must be treated separately by solving (4.7) in a second domain. This gives a tenth-order system of
differential equations, with unknown parameters p, γ , LA, the length LD of the membrane inside
the dimple and the contact-point position xD at the edge of the dimple to be determined. Hence,
15 constraints are required to close the problem for dimpled shapes. On the upper side of the
vesicle, we again prescribe the conditions (3.2d–f ) at the centre, but on the lower side, we replace
(3.2a–c) by conditions that match towards the transition region, which are

x = xD + LA

2
, y = 0, θ = 0 and H =

√
2W0 at s = (LA + LD)/2, (4.8a–d)

where xD = LD = 0 for bound vesicle shapes, and we replace the area constraint (3.2g) by

2
∫LD/2

0
x sin θ ds + 2

∫π

(LA+LD)/2
x sin θ ds = πA. (4.8e)

Dimpled shapes require, in addition, the boundary conditions

x = θ = H′ = 0 at s = 0, (4.9a–c)

x = xD and y = θ = 0 and H =
√

2W0 at s = LD/2, (4.9d–g)

where (4.9a–c) represent the vesicle’s symmetry about the centreline x = 0. The constraints (4.8a,b)
and (4.9d,e) represent the position of the contact points, and omit the small translation of the outer
solution by an O(Ytr) amount in the y-direction. The transition boundary layer has inclination
from horizontal given by dy/dx ∝ Ytr/Xtr = O(δ

1/2
A ) and curvature given by d2y/dx2 ∝ Ytr/X2

tr =
O(1). The boundary conditions (4.8c) and (4.9f ) make the leading-order approximation that
the inclination of the membrane in the outer solution is zero, and (4.8d) and (4.9g) ensure that
the membrane’s curvature matches smoothly to the value obtained in §4a(i). A schematic of the
boundary conditions on the outer region for adhered and dimpled vesicles is given in figure 4b,c.

Figure 5a compares composite expansions of the membrane’s bound shape near the substrate
to the corresponding shapes obtained through direct numerical solution of (3.1)–(3.2), for
parameter values W0 = 2.5, A = 0.65 and δA = 6 × 10−3 and 2.4 × 10−2. The composite expansions
incorporate the corrections �ŷ to the membrane’s shape, as shown in figure 4a. We describe
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Figure 5. Comparison of composite expansions for themembrane shape to the shapes obtained through numerical solution of
(3.1)–(3.2), for A= 0.65 and (a)W0 = 2.5 × 10−1 and (b)W0 = 6 × 10−2. In (b) near x = 0, the plots for δA = 6 × 10−3

are the higher of the two composite expansions and the lower of the two numerical solutions. (Online version in colour.)

their construction in greater detail in appendix B. The composite expansions yield very good
agreement with the direct numerical solutions, and the errors that remain are O(W0δA, δA). These
errors are caused in part by the omission of higher-order terms in the governing equation (4.3) for
the transitional region.

We show in appendix B that the transition regions modify the free energy by O(W3/4
0 δ

1/2
A ), so

that it is given, to O(δ
1/2
A ), by

E = E0 − 3.49W0Xtr + O(δA) for bound vesicles (4.10a)

and

E = E0 − 6.98W0Xtr + O(δA) for dimpled vesicles, (4.10b)

where E0 is the free energy (3.4) of the vesicle in the limit of a contact potential.
Our analysis of bound and dimpled vesicles has given an improved resolution of the

membrane’s shape near the contact line. We have shown how the membrane in the outer region
matches smoothly onto the adhered region via a transition region that is governed by a balance
between bending and adhesive stresses. This transition region resolves the apparent discontinuity
in curvature between the outer and adhered regions, and gives rise to a slight decrease (figure 2)
in the free energy compared with the value predicted by contact-potential models.

(b) Pinned vesicles
We now consider the deformation of pinned vesicles by a finite-ranged potential. In the limiting
case of a contact potential, the shape of the outer region is given, near the substrate, by

y(x) = Hbot

2
(x − xbot)

2 + O((x − xbot)
3), (4.11)

where Hbot and xbot are the values of the membrane’s curvature and the x-coordinate at the lowest
point of the vesicle. A finite-ranged adhesive potential deforms the membrane in the region where
y = O(δA), which has an O(δ

1/2
A ) horizontal length scale. We, again, use the rescaled variables

Xtr =
(

δ2
A

2W0

)1/4

and Htr = (2W0)
1/2,
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Figure 6. Perturbation of the membrane’s shape by adhesive stresses. (a) Solutions for the membrane’s curvature, for values
of Ĥbot that range from approximately unity to 1.75 and which are marked in (b) by crosses. (b) The change in free energy as a
function of the membrane’s curvature Ĥbot towards the outer region. (c) The correction�ŷ to the membrane’s shape near the
substrate owing to the adhesive interaction, for Ĥbot = 1.25. The solid line is the solution to (4.12) and the dotted line is the
leading-order solution of constant curvature given by the pinned solution. The pinned shape is translated upwards by�ŷ to
obtain the composite expansions shown in figure 5b.

in order to facilitate comparison of the results of this section with those of the analysis of bound
vesicles in §4a. Hence, from (4.3), the rescaled height is governed by

1
2

d4ŷ
dx̂4 = ŷ−5 − ŷ−3 + O(δA, W0δA). (4.12a)

Because the shape (4.11) of the membrane is symmetric at leading order, we prescribe the
conditions

dŷ
dx̂

= d3ŷ
dx̂3 = 0 at x̂ = 0. (4.12b)

As for the transition region, one of the matching conditions matches the bending moment
towards the outer region. Another condition is needed to enforce the approach of the membrane’s
curvature towards Ĥbot away from the substrate. We, therefore, prescribe

d2ŷ
dx̂2 → Ĥbot and

d3ŷ
dx̂3 → 0 as x̂ → ∞. (4.12c)

The solutions to (4.12) comprise a one-parameter family of solutions that depend on the rescaled
curvature Ĥbot of the membrane near the substrate. Figure 6a shows the variation of the
membrane’s curvature for a range of values of Ĥbot, and implies that the main effect of the
finite-ranged potential is to slightly flatten the bottom of the vesicle so that the curvature there is
decreased. As the solution branch is traversed with �Ê decreasing, the bottom of the membrane
flattens out until its shape is given by two symmetrically located transition-boundary-layer
solutions. As the membrane flattens out, its free energy decreases, as implied by figure 6b, which
plots the scaled correction of the free energy from the pinned shape owing to the finite-ranged
potential given by

�̂E = (W0Xtr)
−1�E = 2

∫∞

0
(Ĥ2 + ŷ−4 − 2ŷ−2 − Ĥ2

bot) dx̂. (4.13)

We note that solutions exist for which Ĥbot < 1, which corresponds to W0 > H2
bot/2 in the

unscaled dimensionless variables.
Figure 6c shows the correction to the membrane’s shape owing to the adhesive interaction,

which is used in the construction of the composite expansions shown in figure 5b.
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5. Asymptotic behaviour of strongly adhered two-dimensional vesicles
We now consider the regime W0 � 1, for which the vesicle is strongly adhered to the substrate. If,
in addition, the wetting-layer thickness satisfies δA � W−1/2

0 , then the shape of the vesicle has a
nested-boundary-layer structure, as depicted in figure 3. In the outer region, bending stresses are
then important only in boundary layers at the edges of the vesicle that have O(W−1/2

0 ) length
scale ([6]; also implied by the curvature boundary condition (4.8d)). Similar boundary layers
have been analysed in the context of three-dimensional axisymmetric vesicles [17], for which
the pressure difference across the membrane is prescribed. In the present problem, the vesicle is
two dimensional, and its cross-sectional area is prescribed, whereas the pressure difference must
be determined as part of the solution. In this section, we will show how earlier boundary-layer
analyses may be applied to such vesicles. The role of the boundary layers is to resolve apparent
discontinuities in the membrane’s slope at the edge of the vesicle. Because the slope must vary
rapidly so that θ = 0 (or 2π ) at the substrate, we refer to these boundary layers as ‘turn-around’
boundary layers. In the regime δA � W−1/2

0 � 1, the nested boundary-layer structure means that
adhesive stresses are negligible throughout both the turn-around boundary layer and the outer
region. Hence, there is no contribution of adhesive stresses to γ and we refer to γ as the tension
for the remainder of this section.

(a) Tension-dominated region
If bending stresses are negligible away from the edges of the vesicle, then (4.7) implies that the
membrane’s shape there is governed by a balance between the tension in the membrane and
the pressure jump across it, so that the curvature of the membrane in this region is given by
Hout ∼ p/γ . Hence, for two-dimensional vesicles, the shape of the membrane is given by the arc
of a circle of curvature Hout that meets the substrate at a contact angle θout (figure 7a). The values
of Hout and θout are determined by constraints on the vesicle’s perimeter and cross-sectional area.
At leading order, the contact angle depends only on the vesicle’s reduced area, with a small
modification caused by the difference in arclength of the turn-around boundary layer from that
of the sharp corner that it corrects. It is straightforward to show that

A = 2πθout − π sin 2θout

2(θout + sin θout)2 [1 + 4(2W0)
−1/2�̂L] + O(W−1

0 ) (5.1a)

and

Hout = θout + sin θout

π [1 + 2(2W0)−1/2�̂L]
+ O(W−1

0 ), (5.1b)

where the quantity (2W0)
−1/2�̂L will be determined and represents the arclength correction from

each of the turn-around boundary layers at the edges of the vesicle. The higher-order correction
terms are, in part, owing to the correction to the vesicle’s cross-sectional area, and we omit them
from now on.

In the analysis that follows, we use the leading-order value of θout that is obtained by omitting
the O(W−1/2

0 ) terms in (5.1); we denote this angle by θ0
out.

(b) Turn-around boundary layer
To understand the turn-around boundary layer, we adapt an earlier asymptotic analysis [17] for
strongly adhered vesicles for which the pressure difference across the membrane is prescribed
and assumed to be large. In that problem, the leading-order shape of the vesicle is unknown
a priori, and either the curvature or the apparent contact angle of the tension-dominated region
must be determined by matching towards the boundary layer. Furthermore, Das & Du [17] state
that it is necessary to apply a matching procedure at one order higher, as detailed by Das &
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Figure 7. Diagrams defining (a) the curvature Hout of the tension-dominated region and the angle θout that it subtends and
(b) the geometry of the turn-around boundary layer.

Jenkins [16] and which is equivalent to O(W−1
0 ) in our notation, to resolve the vesicle’s shape

inside the boundary layer. Our analysis differs because the geometric equations (5.1) are sufficient
to determine the leading-order shape of the tension-dominated region independently of the
boundary-layer regions at the edges. Furthermore, we will show that, by constructing a composite
expansion using a different method from that in [17], it is possible to resolve the membrane’s
shape correct to O(W−1/2

0 ) everywhere, while avoiding the analysis of higher-order terms.
We use rescaled variables to describe the shape of the membrane in the turn-around boundary

layer. Because the curvature is given by H = (2W0)
1/2 at the contact point, and the membrane’s

slope θ varies by an O(1) amount across the boundary layer, we scale lengths with (2W0)
−1/2. For

two-dimensional vesicles, the stress balance (4.7) is then given by

23/2W3/2
0 Ĥ′′ = −p − 21/2W3/2

0 Ĥ3 + 21/2W1/2
0 γ Ĥ, (5.2)

where primes denote differentiation with respect to ŝ.
In equilibrium, the tension-dominated region is governed by p = γ H and, because Hout = O(1)

from (5.1b), the pressure is asymptotically negligible in the turn-around boundary layer from
(5.2). (When p is used as a control parameter, as in [17], it is therefore necessary to expand to
higher orders to perform a direct matching between the inner and outer regions.) We define a
rescaled tension γ̂ = (2W0)

−1γ so that (5.2) simplifies to

Ĥ′′ = − 1
2 Ĥ3 + γ̂ Ĥ, (5.3)

the leading-order solution to which is given by [16],

Ĥ = 2
√

γ̂ sech(
√

γ̂ ŝ + S), (5.4)

where S is a constant to be determined by matching towards the tension-dominated region. This
can be integrated using θ ′ = Ĥ to obtain

θ = 2 tan−1[sinh(
√

γ̂ ŝ + S)] − 2 tan−1(sinh S), where sinh S = tan

(
θ0

out
2

)
, (5.5a,b)

and where the origin of ŝ has been selected to coincide with the contact point where θ = 0, and S
enforces (at leading order) the approach of θ towards the value π − θout needed to match towards
the tension-dominated region (figure 7b). The membrane’s inclination (5.5) may be integrated
using x̂′ = cos θ and ŷ′ = sin θ to obtain

x̂ = [(ξ̂ − 2 tanh ξ̂ ) cos(π − θ0
out) − 2 sech ξ̂ sin(π − θ0

out)]√
γ̂

+ X̂0 (5.6a)
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and

ŷ = [(ξ̂ − 2 tanh ξ̂ ) sin(π − θ0
out) + 2 sech ξ̂ cos(π − θ0

out)]√
γ̂

+ Ŷ0, (5.6b)

where ξ̂ is given by

ξ̂ =
√

γ̂ ŝ + sinh−1 tan

(
θ0

out
2

)
, (5.6c)

and where X̂0 and Ŷ0 are constants to enforce the boundary condition x̂ = ŷ = 0 at the contact
point, where ŝ = 0 or, equivalently, where ξ̂ = sinh−1 tan(θ0

out/2). (Das & Jenkins [16] obtained an
expression equivalent to (5.6a) for three-dimensional axisymmetric vesicles; we shall show that by
also deriving ŷ(ŝ), it is possible to obtain a composite expansion at O(W−1/2

0 ) without computing
higher-order O(W−1

0 ) terms in the turn-around boundary layer.)
Finally, the tension γ̂ is determined by the curvature condition Ĥ = 1 at the contact point,

where ŝ = 0 (from (4.8d)). From (5.4), this implies that γ̂ = 1
4 cosh2S, which yields, after some

manipulation,

γ̂ = 1

2 + 2 cos θ0
out

or γ = W0

1 + cos θ0
out

in the original dimensionless variables, (5.7)

thereby recovering the expression that was obtained in [6] by appeal to a macroscopic force
balance between the outward spreading adhesive force and the inward force of the membrane’s
tension.

To derive the composite expansion, (5.1) and (A 4) require the arclength correction �̂L to be
obtained. The geometry depicted in figure 7b implies that this correction is given by

�̂L = lim
ŝ→∞

(
ŷ

sin θout
+ x̂ + ŷ

tan θout
− ŝ

)
. (5.8)

Substitution for x̂, ŷ, ξ̂ and γ̂ into (5.8) using (5.6) and (5.7) then gives, after rearrangement,

�̂L = 4
(

cot
θ

2
− cos

θ

2

)
. (5.9)

We note that this diverges as θ0
out → 0, as might be expected on the grounds that the larger change

in angle from 0 to π − θ0
out requires a larger adjustment to be made by bending stresses across the

turn-around boundary layer.
Across the turn-around boundary layer, the membrane’s inclination θ monotonically

approaches the value π − θout required by the tension-dominated region. Hence, the horizontal
distance �̂x of the membrane from the extrapolated shape of the tension-dominated region,
given by

�̂x(ŝ) =
∫∞

ŝ

dx̂
dŷ

− cot(π − θout) dŝ, (5.10)

(figure 7) decreases monotonically with arclength. Furthermore, ŷ increases monotonically with
arclength and, hence, �̂x may be expressed as an implicit function of ŷ. We compute �̂x(ŷ)

numerically using (5.6) and (5.10), and then construct the composite expansion using, in the
unscaled dimensionless variables,

x = 1
Hout

√
1 − (Houty + cos θout)2 + (2W0)

−1/2�̂x[(2W0)
1/2y]. (5.11)

The first term is the leading-order circular-arc shape. For an expansion that is consistent at
O(W−1/2

0 ), the values of Hout and θout must be obtained using (5.1) or (A 4) with the arclength
correction given by (5.8). Because we have constructed our expansion using �̂x(ŷ) rather than
performing a direct composite expansion of x(s), our omission of O(W−1

0 ) terms is of no
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Figure 8. Comparison of the full numerical solution (solid lines) to (4.7)–(4.8) with composite expansions (dotted lines) for
vesicles of area (a,c) 0.5 and (b,d) 0.25. The values ofW0 used are (a,b) 102 and (c,d) 4 × 102.

consequence. Although the apparent contact angle θout differs from the leading-order value θ0
out

used in (5.10), this difference is only O(W−1/2
0 ), and corresponds to an O(W−1

0 ) error in the

unscaled variables. Hence, our expansion is consistent at O(W−1/2
0 ).

Figure 8 compares composite expansions of the shape of a two-dimensional vesicle to those
obtained through numerical solution of (4.7)–(4.8), for reduced areas given by A = 0.5 and A =
0.25 and adhesive amplitudes W0 of 102 and 4 × 102. The agreement is generally very good, but
there is a noticeable discrepancy when A is small. The probable reason is that the apparent contact
angle decreases with A, and that small contact angles require larger corrections to be made across
the turn-around boundary layer (cf. (5.9)). It follows that the corrections to the tension-dominated
region are large enough that the omission of the O(W−1

0 ) (or higher-order) terms in the composite
expansion are no longer valid. We conclude that a tension-dominated solution provides a good
approximation to the vesicle’s shape, provided both that the reduced area is large enough that
the apparent contact angle θ0

out is significant, and that the adhesive strength is large enough that
the O(W−1/2

0 ) corrections to the leading-order contact angle are small. (We note that although
close agreement was demonstrated [17] between their asymptotic and numerical solutions for
axisymmetric vesicles, the apparent contact angles of the vesicles used were large enough for the
asymptotic solution to be accurate.)

6. Discussion
We have analysed the effects of thin wetting layers that are beneath adhered vesicles, and thereby
derived asymptotic corrections to contact-potential models that omit these effects completely.
The classical boundary condition obtained by Seifert & Lipowsky [6] and Seifert [7] for the
membrane’s curvature at the contact point has been recovered using a novel approach of resolving
the membrane’s shape near the substrate. This approach yields, in addition, the leading-order
corrections to the vesicle’s shape and free energy. Incorporation of these corrections through a
composite expansion of the vesicle’s shape gives close agreement with shapes obtained through
solution of a more complicated system (3.1)–(3.2) of equations. Our analysis has focused on two-
dimensional vesicles, but in appendix A, we describe how our results may easily be generalized to
describe three-dimensional vesicles provided the adhesive length scale is much smaller than the
azimuthal radius of curvature of the membrane near the substrate. In this regime, the transitional
boundary layer is quasi-two-dimensional and is described, at leading order, by our analysis in
§4a(i). The scalings that were obtained in §4 for the region near the contact line will allow the
time scales of dynamic phenomena to be estimated. To demonstrate this, we briefly describe
the spreading of a vesicle along an adhesive substrate, which is driven by the adhesive stresses
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Figure 9. The variation of spreading speed with time. (a) Unscaled time and speed. (b) Times and speeds have been rescaled
with the scalings (6.1a,b) obtained using a lubrication approximation. (Online version in colour.)

pulling the membrane down and impeded, primarily, by the viscous dissipation beneath the
membrane in the transitional boundary layer. Because the horizontal length scale Xtr of this region
is much longer than the vertical length scale Ytr, the dissipation is due to lubrication flow [21]. The
horizontal momentum balance thus implies that μ∂2u/∂y2 ∼ ∂p/∂x, where the pressure is given
by (∂W/∂y)|h. Hence, the horizontal velocity scale is given by

μU

Y2
tr

∼ W0

YtrXtr
�⇒ U ∼ U∗ = W5/4δ

1/2
A

μ
and t ∼ T∗ ∼ 1

U∗ = μ

W5/4
0 δ

1/2
A

. (6.1a,b)

Figure 9 shows how the spreading speed, which we define by Uad(t) = d/dt(W−1
0

∫
W ds),

varies during the spreading of a two-dimensional vesicle of reduced area 0.85. The adhesive
amplitude is given by W0 = 0.25, and the adhesive length scales are given by δA = 2.5 × 10−2,
5 × 10−2 and 10−1. The dynamic viscosity is set to unity. The simulations use a boundary-integral
technique based on the method described by Veerapaneni et al. [22], and are initialized with the
shape of a free vesicle that is positioned so that its lowest point lies at y = δA. After scaling the
velocities and times according to (6.1a,b), there is a collapse of the spreading speed for early times.
This suggests that our scaling analysis is an important step towards understanding the physical
processes that govern the time it takes for a vesicle to adhere to a substrate. We anticipate also
that our work would be applicable to understand other dynamic processes, such as the motion
of an adhered vesicle in response to an external force such as an external shear flow [12,23],
a gradient in the adhesive potential across the substrate [10,11], or aspiration through suction
by a micro-pipette [8]. Recently, a series of works [24–26] analysed the role of a wetting layer
on the adhesion and motion of viscous droplets along substrates in a variety of configurations,
and demonstrated that even the simple process of a viscous droplet adhering to a substrate
involves several distinct phases of motion. We are currently attempting to understand how the
inclusion of the membrane’s bending stiffness in their model might broaden the range of observed
phenomena.

Section 5 revisited the approximation that a two-dimensional vesicle’s shape is given by
a circular cap when the adhesive interaction is very strong. The Young–Dupré equation (5.7)
described by Seifert & Lipowsky [6] (for three-dimensional axisymmetric vesicles) for the
apparent contact angle of a two-dimensional vesicle has been recovered by adapting an earlier
analysis [17] of the shape of the vesicle within the turn-around boundary layers. (In appendix A,
we describe how our analysis of two-dimensional vesicles may readily be applied also to three-
dimensional axisymmetric vesicles.) We showed how composite expansions may be constructed
for the vesicle’s shape, which generally give good agreement with numerical solutions to (4.7)–
(4.8). Our construction avoids the detailed matching procedure detailed in [16] (and used by [17]),
which requires the computation of terms at O(W−1

0 ) rather than only the simpler O(W−1/2
0 ) terms

needed by our expansion. We showed also that the approximation of the vesicle’s shape by a
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tension-dominated circular cap is valid only if both the adhesive stress and the vesicle’s reduced
area are large enough that the apparent contact angle is large. Because the corrections to the
tension-dominated region become large as the apparent contact angle decreases, we expect that
the higher-order analysis in [17] would also break down if the apparent contact angle were small.
It is likely that their expansion would yield better agreement for moderately small apparent
contact angles, but we have not pursued a quantitative comparison here. We conclude that care
should be taken when approximating the shape of a vesicle of small reduced cross-sectional area
by a circular cap, even if the adhesive amplitude W0 is large. Our analysis provides a means of
quantifying the parameter ranges, in particular the ranges of the reduced volume, for which such
an approximation is appropriate.

The boundary-layer analysis in §5 may be used to improve previous models that have analysed
the dynamics of adhered vesicles using a long-wave approximation [14]. Because the vesicle’s
membrane must lie flat on the substrate, such an approximation breaks down near the edges
of the vesicle. An understanding of the dynamic behaviour of the turn-around boundary layers at
the edges of the vesicle could, therefore, be used to derive more rigorous boundary conditions
that represent them in the context of a long-wave model. However, more work is needed to
analyse vesicle shapes for which the membrane is not tension dominated but, instead, under
compression (as arises, for example, during the drying of adhered vesicles [14]). The compression
of the membrane means that it permits bending modes, so that the upper surface of the membrane
can be dimpled. An apparent contradiction is that the Young–Dupré equation (5.7) implies that a
boundary-layer solution exists only if the rescaled tension satisfies γ̂ ≥ 1

4 . However, this equation
rests on the assumption that the pressure difference across the membrane is determined solely by
the tension-dominated region, so that the pressure difference is negligible on the short boundary-
layer length scale of the edges of the vesicle. In the case where the pressure difference is, instead,
forced externally, the omission of the pressure term in (5.3) may no longer be valid, and boundary-
layer solutions that match towards compressed membranes could be permissible for sufficiently
large pressure differences across the membrane. The existence, and resolution, of analogous
boundary layers for adhered vesicles with compressed membranes therefore remains an open
question. We note that although the analysis of Das & Jenkins [17] and Das & Du [16] concerns
vesicles for which the osmotic pressure is prescribed, their non-dimensionalization assumes
implicitly that the pressure inside the vesicle is higher than outside and, hence, that the membrane
is under tension.

Figure 9b suggests that although the scaling (6.1a,b) gives a good collapse early in the adhesive
process, there is a noticeable discrepancy at later times. We believe that this is caused by the
trapping of a finite-amplitude dimple [27,28] beneath the vesicle, a process that is not described
by the lubrication theory used to obtain (6.1a,b). Work towards understanding how such dimples
affect the adhesion of vesicles is currently underway.

This work was supported by the National Institutes for Health through grant no. 5R01GM086886. The authors
are grateful to three anonymous referees for their comments on an earlier draft of this manuscript.

Appendix A. Three-dimensional vesicles
We briefly describe how the results in the main text may be generalized to three-dimensional
vesicles. We non-dimensionalize lengths with the length scale given by L∗ = (S∗/4π)1/2, where
S∗ is the vesicle’s dimensional surface area. The three-dimensional analogue of the reduced
cross-sectional area is the reduced volume, given by

V = 3V∗

4πL∗3 = 3(4π)1/2V∗

S∗3/2 , (A 1)

where V∗ is the vesicle’s dimensional volume.
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The different geometry of three-dimensional axisymmetric vesicles compared with two-
dimensional ones slightly modifies the equation that governs their equilibrium shapes; the
analogue to (2.4) is given by [17],

H′′ + r′H′

r
+ 1

2
H3 − WH − n · ∇W − γ H = pout − pin and γ is constant, (A 2a,b)

where primes denote differentiation with respect to arclength measured azimuthally, and r
denotes the horizontal distance from the axis of rotation. Equation (A 2) differs from (2.4)
through the presence of the r′H′/r term on the left-hand side. Although the presence of this term
modifies the shape in the outer region, it is negligible at leading order in the transition region. To
see this, observe that in the transition region, the leading-order bending-stress terms are given by
H′′ = O(W1/2

0 X−2
tr ) and H3 = O(W1/2

0 X−2
tr ) in the original dimensionless variables, whereas r′H′/r

is asymptotically negligible because r′/r = O(1) and H′ = O(W1/2
0 X−1

tr ). It follows that the solution
obtained in §4a(i) for two-dimensional vesicles is also the leading-order solution for axisymmetric
vesicles. The underlying reason is that in the regime δA � 1, the length scale of the transitional
region is much smaller than the radius of curvature of the contact line, which means that the
transitional region may be treated as if it were two-dimensional. It follows that our analysis
applies also to three-dimensional vesicles that are not axisymmetric, provided the length scale
Xtr of the transitional boundary layer is much smaller than the azimuthal radius of curvature of
the membrane near the substrate. Such a regime always holds, provided δA is sufficiently small.

The turn-around boundary layer analysed in §5 is also exhibited by strongly adhered,
three-dimensional axisymmetric vesicles. The membrane’s inclination, measured meridionally,
is governed by

θ ′ = Ĥ − sin θ

r̂
and Ĥ′′ + r̂′Ĥ′

r̂
= −(2W0)

−3/2p − 1
2

Ĥ3 + γ̂ Ĥ (A 3a,b)

(cf. θ ′ = Ĥ and (5.3) for two-dimensional vesicles), where primes here denote differentiation
with respect to the rescaled arclength ŝ, which is given by (2W0)

1/2s. Because r̂′ = O(1) and
r̂ = O[(2W0)

1/2] in the scaled variables, it follows that (A 3) is identical to θ ′ = Ĥ′ and (5.3) at
leading order. Hence, the solutions in §5 for the turn-around boundary layer may be applied
directly to three-dimensional axisymmetric vesicles in the regime δA � W−1/2

0 � 1. The tension-
dominated region is modified slightly owing to the different geometry, and at leading order, it
is given by a spherical cap of radius 2/Hout. The presence of the turn-around boundary layer
modifies the dimensional surface area S∗ by 4π sin θout(�L)∗/H∗

out, which modifies in turn the
length scale L∗. It can be shown that the reduced volume and curvature are given to O(W−1/2

0 ) by

V = 8 − 9 cos θout + cos 3θout

2(2 − 2 cos θout + sin2 θout)3/2

[
1 − 3 sin θout(2W0)

−1/2�̂L

2(2 − 2 cos θout + sin2 θout)1/2

]
, (A 4a)

and
Hout = (2 − 2 cos θout + sin2 θout)

1/2 + 1
2 sin θout(2W0)

−1/2�̂L, (A 4b)

and we note that the leading-order terms have previously been given by Seifert [29]. After
determining the values of Hout and θout to O(W−1/2

0 ), the composite expansion for the vesicle’s
shape is given by

r = 2
Hout

√
1 −

(
Houty

2
+ cos θout

)2
+ (2W0)

−1/2�̂x[(2W0)
1/2y]. (A 5)

Appendix B. Construction of composite expansions for the shapes of bound and
dimpled vesicles
In the limiting case that δA = 0, the membrane has one (for bound vesicles) or two (for dimpled
vesicles) adhered regions that are flat. To derive the corrections owing to the presence of the
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wetting layer, we rescale coordinates using the scales Xtr and Ytr and position the origin at the
point where the membrane would touch the substrate in the case that δA = 0, as shown in figure 4a.
The solution to the asymptotic equation (4.3) is then calculated. The curvature approaches unity
as x → ∞, and the membrane’s shape, therefore, approaches a parabola. Extrapolation of this
parabola to the left to the point where its slope is zero yields an estimate for the position of
the contact point. The transitional solution is translated in the x-direction so that this estimate is
located at x̂ = 0, as shown in figure 4a. After translating the transitional solution in this way, the
composite expansion for the membrane’s shape is given by

(x, y) =
(

x0, y0 + Ytr�ŷ
(

x
Xtr

))
+ O(δA), (B 1)

where the dependence of �ŷ on x̂ is depicted in figure 4a, and (x0, y0) denote the membrane’s
shape in the limiting case δA = 0.

The correction to the free energy from each transitional boundary layer is computed using the
integral

�E = W0Xtr

∫ 0

−∞
(Ĥ2 + ŷ−4 − 2ŷ−2 + 1) dx̂ + W0Xtr

∫∞

0
(Ĥ2 + ŷ−4 − 2ŷ−2 − 1) dx̂, (B 2)

which has the numerical value
�E = 1.745W0Xtr. (B 3)

(There are other contributions from corrections made to the adhered and outer regions, but these
are asymptotically negligible as δA → 0.)

Bound vesicles have two transitional boundary layers, one for each side of the adhered region,
and dimpled vesicles have four. The correction (B 3) is, therefore, multiplied by the appropriate
amount to give the estimates (4.10) quoted in the main text.
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