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Abstract
Plasma lipidomic studies using high performance liquid chromatography and mass spectroscopy
offer detailed insights into metabolic processes. Taking the example of the most abundant plasma
lipid class (phosphatidylcholines) we used the rich phenotypic and lipidomic data from the
ongoing San Antonio Family Heart Study of large extended Mexican American families to assess
the variability of association of the plasma phosphatidylcholine species with metabolic syndrome.
Using robust statistical analytical methods, our study made two important observations. First,
there was a wide variability in the association of phosphatidylcholine species with risk measures
of metabolic syndrome. Phosphatidylcholine 40:7 was associated with a low risk while
phosphatidylcholines 32:1 and 38:3 were associated with a high risk of metabolic syndrome.
Second, all the odd chain phosphatidylcholines were associated with a reduced risk of metabolic
syndrome implying that phosphatidylcholines derived from dairy products might be beneficial
against metabolic syndrome. Our results demonstrate the value of lipid species-specific
information provided by the upcoming array of lipidomic studies and open potential avenues for
prevention and control of metabolic syndrome in high prevalence settings.
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INTRODUCTION
Combination of high performance liquid chromatography with mass spectroscopy has
revolutionized our understanding of lipid diversity in various tissues and diseases.[1] This
technology makes possible for the first time large scale lipidomic studies promising detailed
and fundamental insights into the intricate pathways of lipid metabolism and their
perturbations in chronic complex diseases.[2, 3] Arguably, it may be tempting to simplify
these associations by combining the lipid species based from a lipid class. However, we
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posit that such a combination of species into a single lipid class will lead to an
oversimplification and overinterpretation of the underlying biological and epidemiological
associations. Using the example of the most abundant subclass [4] of phospholipids –
phosphatidylcholines – we examine the inter-lipid species variability in association with
metabolic syndrome. Here, we demonstrate that consideration of individual lipid species is
more informative than summarizing results for the entire class of phosphatidylcholines with
respect to their association with metabolic syndrome (MS) in samples from several extended
families of Mexican Americans who were enrolled in the San Antonio Family Heart Study
(SAFHS).[5]

MATERIALS AND METHODS
The SAFHS is a large study of extended Mexican American families in San Antonio that
began in 1991. Details of enrollment procedures, inclusion and exclusion criteria and
phenotypic assessment of the study subjects have been extensively described elsewhere.[5,
6] Data and samples used in this study were collected during the first visit of the participants
(from 1992 to 1996). Informed consent was obtained from all participants before collection
of samples. The Institutional Review Board of the University of Texas Health Sciences
Center at San Antonio approved the study. We included data on 1358 individuals from 42
pedigrees. The clinical characteristics of the study subjects are shown in Table 1.

Outcomes
The primary goal of this study was to examine the association of the concentration of plasma
phosphatidylcholine species with metabolic syndrome. For this, we defined MS in two
alternative ways. First, we used the definition recommended by the International Diabetes
Federation (IDF)[7] which classifies a person as having metabolic syndrome if there is
central obesity (waist circumference >102 cm for Mexican American males and >88 cm for
Mexican American females) and any two of the following: serum triglycerides (TG) >150
mg/dl or use of lipid lowering drugs; serum high density lipoprotein (HDL) concentration
<40mg/dl for males and <50 mg/dl for females; systolic blood pressure (SBP) >130 mmHg
or diastolic blood pressure (DBP) >85 mmHg or use of antihypertensive drugs; and fasting
glucose (FG) >100 mg/dl or previously diagnosed type 2 diabetes. Alternatively, we
conducted principal components analyses on the following nine traits and used the first
principal component as a continuous trait which reflected the risk of metabolic syndrome:
FG, fasting insulin (FI), waist circumference (WC), body mass index (BMI), SBP, DBP,
total serum cholesterol (TSC), serum TG and serum HDL concentration

Estimation of plasma concentration of phosphatidylcholine species
Plasma levels of phosphatidylcholine species were estimated by a combination of high
performance liquid chromatography and mass spectroscopy in the Metabolomics
Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia. Ten µL aliquot of
plasma was combined with 200 µL CHCl3/MeOH (2:1) and 15µL of internal standard mix
and then briefly vortexed. Samples were mixed (rotary mixer, 10 min), sonicated (water
bath, 30 min), kept at room temperature (20 min) and centrifuged (16,000×g, 10 min). The
supernatant was dried under a stream of nitrogen at 40°C. Extracted lipids were resuspended
in 50µL H2O-saturated BuOH with sonication (10 min), followed by 50µL of 10 mM
NH4COOH in MeOH. Mass spectrometric analysis was performed using 1 µL injections of
the lipid extracts.

Identification and quantification of lipid species was done by liquid chromatography
electrospray ionisation-tandem mass spectrometry using Applied Biosystems 4000 QTRAP
machine. Liquid chromatography was performed on a Zorbax C18, 1.8 µm, 50 × 2.1 mm
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column at 300 µL/min. Solvents A and B consisted of tetrahydrofuran:methanol:water in the
ratios (30:20:50) and (75:20:5) respectively, both containing 10 mM NH4COOH. Precursor
ion scans and neutral loss scans were used to identify the lipid species. Quantification of
individual lipid species was then performed using scheduled multiple-reaction monitoring
(MRM) in positive ion mode.[8, 9] Lipid concentrations (in pmols/ml) were calculated by
relating the peak area of each species to the peak area of the corresponding internal standard.
From these results, we used data on a total 45 phosphatidylcholine species excluding the
phosphatidylcholine analogs like modified phosphatidylcholines, ether phosphatidylcholines
and lysophosphatidylcholines.

Statistical analysis
Principal components analysis was conducted by deriving eigenvalues and selecting factors
with a minimum eigenvalue of 1 and using varimax rotation. Based on this optimum factor
solution we generated standardized factor scores and used these scores as a continuous
measure of metabolic syndrome. The validity of this measure of metabolic syndrome was
assessed using receiver operating characteristic (ROC) curve compared to the IDF definition
of metabolic syndrome. Optimum factor score was determined by estimating the distance of
each point on the ROC curve from the upper left-hand corner of the ROC plot and then
finding the minimum distance.

Association analyses were conducted using polygenic regression models that predicted each
metabolic syndrome trait based on inverse-normalized plasma concentrations of
phosphatidylcholine species after accounting for the kinship structure of study subjects.
These models implicitly account for the genetic correlations and kinship structures and do
not consider the individual subjects as independent unit. The polygenic regression models
were of the following form: MSTi = m + ∑ bk aik + gi + ei where, MST is the metabolic
syndrome trait of interest; m is the trait mean; a is the covariate vector of dimension k with b
as the corresponding regression coefficients; g is the polygenic effect and e is the residual
error for an individual indexed by i. The term g was modeled as a random variable based on
the coefficients of relationship in the kinship matrix. Models with the MetS trait used a
liability threshold approach. All models included adjustments for age, age2, sex, age × sex
interaction and age2 × sex interaction. Further, since the outcome defined on the basis of
principal components analysis did not account for the concomitant use of drugs, we adjusted
these models for the use of lipid lowering, antihypertensive and antidiabetic agents. In
addition, to determine the independent association of the lipid species with metabolic
syndrome, we included two known biomarkers of metabolic syndrome as covariates in these
models: average size of low-density lipoprotein (LDL) particles and the apolipoprotein B
concentration. Statistical significance of the association between the lipid species and
phenotypic trait was tested by constraining the regression coefficient to zero and comparing
the log-likelihoods of the constrained and unconstrained models in a likelihood ratio χ2 test.
Statistical analyses were conducted using the SOLAR software package.[10] Statistical
significance was tested at a global type I error rate (α) of 0.05.

We used Li and Ji’s modification [11] of Cheverud’s [12] method to account for multiple
comparisons of correlated lipid species. This method uses the eigenvalues of a correlation
matrix to estimate the effective number of independent tests and adjusts the global type I
error rate using a Sidak correction. In our case, we first estimated the phenotypic
correlations between pairs of PtdCho species by conducting bivariate trait analyses.[13–15]
Phenotypic correlation between two PtdCho species was estimated as

 where, rP is the phenotypic correlation between ith and
jth PtdCho species, h2 is the heritability, rG is the genetic correlation and rE is environmental
correlation.[16] We then calculated the eigenvalues of the phenotypic correlation matrix
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(dimension 45×45) using the symeigen command in Stata and estimated the effective

number of independent PtdCho species as  where Meff is
the effective number of independent tests, λ is the eigenvalue, I is an indicator function and
⌊ ⌋ is a floor function.[11] Next, we used the estimated value of Meff to determine a Sidak
correction using the formula 1−(1− α)1/Meff. All p-values less than this corrected value of α
were considered statistically significant.

RESULTS
Our results of principal components analysis showed (Figure 1A) that only the first extracted
factor had an eigenvalue >1 which explained 73.6% of the total variance. Clinically, HDL
levels are negatively associated with MS while the other eight included traits are positively
associated. The pattern of factor loadings in this analysis (Figure 1B) exactly followed this
expectation, supporting the interpretation of this factor as a measure of metabolic syndrome
risk. To validate this measure further we conducted ROC curve analyses (Figure 1C) using
the IDF definition of metabolic syndrome as the reference standard and the factor score as
the predictor. This measure had an overall accuracy of 85%. The optimum cut-off point was
found at a factor score of 0.0974. At this cut-off the sensitivity and specificity of this
measure to predict IDF defined metabolic syndrome was 79.57% and 73.27%, respectively.
Together, the extracted factor score could serve as an acceptable surrogate of the clinically
defined metabolic syndrome with the advantage that it was a normally distributed
continuous variable.

We ran a series of polygenic regression models to test the association of each
phosphatidylcholine species with both outcomes. For statistical significance, we needed a
corrected type I error rate of 1.92×10−3 which was obtained based on the pair-wise
phenotypic correlation structure of PtdCho species that yielded an estimate of the effective
number of independent species (Meff) as 26.67. The full correlation matrix and eigenvalues
are given in Supplementary Table 1. We observed that 20 PtdCho species (out of 45
quantified) that were significantly associated with at least one MS measure. These results
are shown in Table 2 while full results for all the 45 phosphatidylcholines are provided in
Supplementary Table 2. Interestingly, all the nine species found significantly associated with
the MetS trait were also included in the list of 20 species significantly associated with the
Factor1 trait. Of the nine PtdCho species, seven species (with the exception of the PtdCho
40:7 and PtdCho 39:6 species) were positively associated with MetS as well as Factor1
traits. Of these, the associations of lipid species phosphatidylcholine 32:1 and
phosphatidylcholine 38:3 with both MetS and Factor1 traits were the most statistically
significant.

An informative pattern of association of phosphatidylcholine species was observed with the
Factor1 trait such that all seven odd chain phosphatidylcholines were negatively associated
with this trait whereas the even chain phosphatidylcholines (with the exception of
phosphatidylcholine 40:7) were associated with an increased risk of metabolic syndrome.
Lastly, we found that most of the plasma phosphatidylcholines that were statistically
significantly associated with metabolic syndrome were associated with an increased risk.
Indeed, total plasma phosphatidylcholines concentration was also associated with an
increased risk of metabolic syndrome (last row Table 2).
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DISCUSSION
In this study of Mexican American families, we made two important observations: i) there
exists a substantial variability in the association of phosphatidylcholine species with
metabolic syndrome and ii) if this variability is ignored and all phosphat idylcholines are
considered in toto then, as a class, phosphatidylcholines are associated with an increased risk
of metabolic syndrome. Although this latter observation can be partly explained by inclusion
of the total serum cholesterol in the definition of MS traits, it is still surprising because
phosphatidylcholines are generally considered to be beneficial against a wide variety of
obesity-related conditions.[17–19] For example, phosphatidylcholines have been shown to
reduce orotic acid-induced fatty-liver by suppressing hepatic lipogenesis in rats [20]; salmon
derived omega-3-phosphatidylcholies have been shown to suppress lipogeneic gene
expression and enhance lipolytic gene expression [21]; phosphatidylcholines are reduced in
women with polycystic ovary syndrome as compared to controls [22]; and
phosphatidylcholines are used in ‘injection lipolysis’ with the understanding that they
promote lysis of adipose tissue.[23] Concordantly, Walker et al [24] have recently
demonstrated the existence of a feedback loop that is primarily driven by
phosphatidylcholine levels, involves the SREBP-1 proteins and contributes to metabolic
syndrome traits. In this context, the present results imply the existence of a more complex
relationship between phosphatidylcholine species and metabolic syndrome than previously
appreciated.

It should be noted that the regression coefficients get scaled based on the range of values of
the variable. As can be seen from Table 2, the concentrations of different PtdCho species
was highly variable and therefore the regression coefficients cannot be directly compared
across species. Similarly, the outcome variables are also measured on very different scales –
liability threshold for MetS and the first factor score for the Factor1 trait. Therefore, these
regression coefficients cannot be directly compared with one another. Rather, the direction
of association and the significance of association need to be collectively considered in
conjunction with the mean concentrations to make biologically valid inferences.

Within these constraints, our results also point towards the possibility that odd chain
phosphatidylcholines may be specifically beneficial against metabolic syndrome. While the
mechanistic and therapeutic implications of this finding are currently unclear, our results
closely parallel those of Khaw et al [25] who found that in the subjects prospectively
recruited in the EPIC-Norfolk study, the odd chain plasma phospholipid fatty acid
concentration was associated with reduced risk of coronary heart disease (CHD) while the
even chain plasma phosphatidylcholines generally associated with an increased risk of CHD.
Similarly, Meissner et al [26] have reported that there was a 200% increase in odd chain
long chain fatty acids associated with the phosphatidylcholine fraction during episodes of
metabolic decompensation in patients of propionic academia. It should be noted that the odd
chain phosphatidylcholines are generally considered as biomarkers of dairy source.[27] Our
results therefore indirectly imply and concur with the view that milk or dairy related
phosphatidylcholines may be specifically beneficial against metabolic syndrome. Future
studies need to expand on this possibility.

It is also noteworthy that while most of the phosphatidylcholine species containing even
chain fatty acids were positively associated with the Factor1 trait, those containing
docosohexenoic acid (DHA, 40:7, 38:7, 38:6a) showed a negative association. This finding
may relate to the beneficial effects of DHA in relation to inflammation, a feature of MetS
etiology. Similarly, the positively MetS-associated phosphatidylcholine species may also be
a reflection of the fatty acid composition. For example, PtdCho 32:0 and PtdCho 32:1 both
contain the saturated fatty acid – palmitic acid or a combination of palmitic acid and the
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monounsaturated palmitoleic acid. Both these fatty acids have been linked to adverse health
outcomes in relation to MetS.[28, 29] Further work examining total phospholipid fatty acids
or the expression of enzymes involved with fatty acid metabolism will be required to
understand these relationships.

Nevertheless, our findings have two important implications with regard to plasma lipidomic
studies. First, the strength of high dimension lipidomic studies is the information they
provide with regards the lipid species. We believe that significant inter-lipid species
variability might exist in the association of these species with the outcomes of interest.
Recently, Pietiläinen et al [30] have also described a substantial variability in adipose tissue
phosphatidylcholines in the context of acquired obesity. Thus, lipidomics approach is likely
to be more informative by unraveling the associations at the level of lipid species rather than
classes. Second, our study indicates that some phosphatidylcholines (like PtdCho (40:7) and
odd chain phosphatidylcholines) may be more favorably associated with metabolic
syndrome as compared to other phosphatidylcholines. Therefore our results also provide
potential leads to drug development against complex diseases like metabolic syndrome.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Principal components analysis of the metabolic syndrome-related traits. (A) Scree plot. (B)
Factor loadings on the first extracted factor for each of the nine traits – FG, fasting glucose;
FI, fasting insulin; WC, waist circumference; BMI, body mass index; SBP, systolic blood
pressure; DBP, diastolic blood pressure; TSC, total serum cholesterol; TG, serum
triglycerides; HDL, serum high density lipoprotein concentration. (C) Receiver-operating
characteristic curve for the first factor score as a predictor of clinical metabolic syndrome
(based on the International Diabetes Federation definition). AUC, area under the curve; CI,
confidence interval
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Table 1

Clinical characteristics of the study subjects

Characteristic Value

Age [mean (SD)] y 39.24 (16.74)

Females [n (%)] 859 (63.25)

Fasting glucose [mean (SD)] mmol/l 5.59 (2.46)

2-hour post-glucose load glucose [mean (SD) mmol/l 7.28 (5.00)

Fasting insulin [mean (SD)] µ U/ml 15.96 (19.32)

2-hour post-glucose load insulin [mean (SD)] µU/ml 76.05 (75.02)

Homeostasis Model of Assessment – Insulin Resistance [mean (SD)] 4.37 (7.17)

Waist circumference [mean (SD)] cm 94.78 (17.20)

Body mass index [mean (SD)] Kg/m2 29.27 (6.63)

Waist-hip ratio [mean (SD)] 0.90 (0.09)

Systolic blood pressure [mean (SD)] mmHg 120.50 (18.82)

Diastolic blood pressure [mean (SD)] mmHg 70.65 (10.34)

Total serum cholesterol [mean (SD)] mg/dl 189.37 (38.46)

Serum triglycerides [mean (SD)] mg/dl 147.94 (106.97)

HDL cholesterol [mean (SD)] mg/dl 50.29 (12.96)

LDL cholesterol [mean (SD] mg/dl 111.12 (32.96)

Subjects with Metabolic syndrome [n (%)] 565 (41.49)
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Table 2

Statistically significant associations of serum phosphatidylcholine species with metabolic syndrome*

PtdCho species Subjects
With etS
(pmol/ml)

Subjects
Without MetS

(pmol/ml)

b
(MetS)

p
(MetS)

b
(Factor1)

p
(Factor1)

Mean SE Mean SE

PtdCho 30:0 2728.5 55.1 2182.7 40.0 0.2098 1.02×10−5 0.0921 0.0001

PtdCho 32:0 9027.9 90.4 8310.9 58.9 0.2031 4.39 ×10−6 0.1022 8.87 ×10−6

PtdCho 32:1 25931.9 451.1 20645.0 313.5 0.3409 1.92 ×10−11 0.2066 1.05 ×10−16

PtdCho 32:2 9820.5 107.6 8390.6 79.5 0.2096 1.78E ×10−4 0.0899 0.0019

PtdCho 34:1 125628.9 915.6 117564.8 802.4 0.1272 0.0061 0.0845 0.0003

PtdCho 34:5 65.9 2.1 50.7 1.3 0.1186 0.0117 0.0781 0.0013

PtdCho 36:4b 91234.3 1109.7 81877.7 731.9 0.1658 0.0003 0.0815 0.0009

PtdCho 36:5 14164.9 301.8 11469.2 197.4 0.1876 0.0002 0.0992 0.0001

PtdCho 38:2 12164.4 159.8 11377.7 111.9 −0.0346 0.4633 −0.0790 0.0017

PtdCho 38:3 54563.3 711.9 44511.5 506.2 0.2871 1.84 ×10−8 0.1574 1.16 ×10−9

PtdCho 38:6a 503.2 7.6 477.0 5.3 −0.0455 0.3161 −0.0928 0.0001

PtdCho 38:7 1619.6 25.9 1507.3 18.5 −0.0668 0.1598 −0.0868 0.0006

PtdCho 40:6 13436.8 188.5 11910.5 137.7 0.1139 0.0132 0.0969 0.0001

PtdCho 40:7 4151.1 64.8 4263.5 47.4 −0.1598 0.0003 −0.1297 2.13 ×10−8

PtdCho 33:2 3909.6 49.1 3604.6 37.3 0.0094 0.8422 −0.0906 0.0003

PtdCho 35:2 698.5 8.7 719.9 6.1 −0.1281 0.0029 −0.1357 9.48 ×10−10

PtdCho 35:3 1811.7 23.7 1721.2 16.8 −0.0736 0.1034 −0.0914 0.0001

PtdCho 37:4 352.7 5.1 354.2 3.5 −0.0471 0.2710 −0.0844 0.0002

PtdCho 37:6 391.1 7.5 366.2 5.8 −0.0530 0.2542 −0.0914 0.0002

PtdCho 39:6 962.8 16.9 1008.4 12.9 −0.1386 0.0016 −0.1120 8.36 ×10−7

Total PtdCho 1219153.5 3345.9 1127739.2 2376.5 0.0079 5.8×10−7 0.0062 3.1×10−11

*
metabolic syndrome was defined in two ways: i) MetS, as a dichotomous trait based on the International Diabetes Federation definition and ii)

Factor1, as the first principal component scores derived from the following nine traits – fasting glucose, fasting insulin, waist circumference, body
mass index, systolic blood pressure, diastolic blood pressure, total serum cholesterol, serum triglycerides and serum high-density lipoprotein
concentration. Statistically significant results using Li and Ji’s method are shown in bold.

PtdCho, phosphatidylcholine; b, regression coefficient; p, significance value

Note: For dichotomous traits (e.g. MetS) SOLAR returns a negative regression coefficient which indicates an increased risk of the dichotomous
trait. For consistency of presentation, here we presented the regression coefficients for an inverted MetS trait. Full results for all 45
phosphatidylcholine species are provided in Supplementary Table 2 and they include the goodness-of-fit of each model.
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