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Abstract
HLA-DRB1 codes for a major histocompatibility complex class II cell surface receptor. Genetic
variants in and around this gene have been linked to numerous autoimmune diseases. Most
notably, an association between HLA-DRB1*1501 haplotype and multiple sclerosis has been
defined. Utilizing electronic health records and 4235 individuals within Marshfield Clinic’s
Personalized Medicine Research Project, a reverse genetic screen coined Phenome Wide
Association Study (PheWAS) tested association of rs3135388 genotype (tagging HLA-
DRB1*1501) with 4841 phenotypes. As expected, HLA-DRB1*1501 was associated with
multiple sclerosis (ICD9 340, P=0.023), while the strongest association was with alcohol-induced
cirrhosis of the liver (ICD9 571.2, P=0.00011). HLA-DRB1*1501 also demonstrated association
with erythematous conditions (ICD9 695, P=0.0054) and benign neoplasms of the respiratory and
intrathoracic organs (ICD9 212, P=0.042), replicating previous findings. This study not only
builds on the feasibility/utility of the PheWAS approach, represents the first external validation of
a PheWAS, but may also demonstrate the complex etiologies associated with the HLA-
DRB1*1501 loci.
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INTRODUCTION
Over the last decade, significant technological advances have allowed the scientific
community to measure over one million single nucleotide polymorphisms (SNPs) in a single
assay. These technologies are the fundamental keystones of the phenotype-to-genotype
strategy of studying human genetics commonly identified as a “genome wide association
study” (GWAS). Many of these GWAS results have been curated by the National Human
Genome Research Institute “Catalog of Published GWASs.” This repository contains over
1600 genome-wide significant genomic markers (P<5.0E-8) for over 250 traits (https://
www.genome.gov/26525384).1 One of the challenges in conducting GWASs is identifying
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specific clinically-defined traits with clear correspondence to an underlying genetic
component. Even when such traits are observed, GWASs often fail to explain much of the
variability exhibited by subjects under study.2 This is exemplified in one of the largest
GWASs conducted to date, which focused on human height in 183727 participants. Even
though human height is believed to be >80% heritable, 10.5% of the phenotypic variance
can be explained by 180 genome-wide statistically significant SNPs.3 The challenge of
identifying markers associated with any phenotype during a GWAS is compounded further
by most statistically significant markers having marginal effect sizes. The few exceptions to
this include variants describing many common HLA haplotypes including HLA-
DRB1*1501.

HLA-DRB1 encodes an important component of the HLA class II histocompatibility
complex necessary for antigen presentation. Not surprisingly, variants in and around this
gene have been associated with numerous autoimmune diseases by GWAS analysis
including: rheumatoid arthritis,4–9 juvenile arthritis,10 Grave’s disease,11 type 1 diabetes,12

systemic lupus erythematous,13 ulcerative colitis,14 and multiple sclerosis (MS).15–18 In
addition, variants in and around HLA-DRB1 have been associated with drug-induced liver
injury.19,20 The association of common genetic variants in HLA-DRB1 with numerous
disease phenotypes suggests that HLA-DRB1 may be a pivotal gene involved in overall
human health.

In addition to enormous amounts of genomic data being generated and stored for scientific
study as the result of GWASs, substantial amounts of phenotypic data are also being stored
in the form of electronic medical records (EMR). EMR data can contain intimate long-term
medical histories including physician notes, imaging results, laboratory results, medication
records, family histories, and billing information–most notably tracked by the International
Classification of Disease version 9-CM (ICD9) and “V” codes, a standardized hierarchical
coding system to define patient care. These multi-level ICD9/V codes not only support a
standardized mechanism for billing purposes, but provide insight into thousands of disease
phenotypes. Not surprisingly, ICD9 codes are commonly used to define disease status for
genetic studies, but these studies typically focus on one specific disease.21 Where GWASs
start with a phenotype and attempt to define a predictive genotype, it is now possible to go
in the reverse direction, where the genetic variant is associated with the entire content of the
EMR to define many phenotypes. This approach has been termed PheWAS. The PheWAS
strategy may help address some of the limitations of the GWAS approach, specifically as it
relates to phenotypic constraints.

Only a handful of PheWASs have been conducted to date,22–24 including a proof of
principle for the technique using Vanderbilt’s DNA biobank (BioVU).25 SNPs selected for
analysis in the BioVU study were chosen based on statistically significant GWAS results
published previously. Most notably, one of the SNPs selected included rs3135388, a marker
that tags for HLA-DRB1*1501 (r2=0.97). Located about 130 kb from HLA-DRB1,
rs3135388 is strongly associated with MS.26 Of the five SNPs genotyped in 6005 European-
Americans in BioVU, four of the five SNPs were validated for association with the ICD9
codes that defined the predicted phenotypes, including the expected association of
rs3135388 with MS. In addition to the expected phenotypes, rs3135388 genotype
demonstrated novel associations with additional phenotypes including erythematous
conditions and benign neoplasm of respiratory and intrathoracic organs.25 Because of the
pleiotropic nature of HLA-DRB1 and the potential utility of a PheWAS strategy in
identifying novel phenotypes associated with HLA-DRB1, we genotyped rs3135388 in 4235
DNA samples from subjects enrolled in Marshfield Clinic’s Personalized Medicine
Research Project (PMRP)27 and associated those genotypes with 4 841 phenotypes defined
by standardized ICD9 and V codes along with site specific ICD9 codes (Figure 1).
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RESULTS AND DISCUSSION
Although none of the PheWAS associations met a conservative Bonferroni corrected p-value
(P<1.0E-5), interesting associations were observed. Despite a small sample size (n=20
cases), rs3135388 showed association with the ICD9 code for MS (ICD9 340, P=0.023) in
our cohort, as expected (Figure 1, Table 1). Interestingly, the ICD9 code for “benign
neoplasm of the respiratory and intrathoracic organs” (ICD9 212) was also associated with
rs3135388 genotype (P=0.042), potentially validating novel results from the BioVU
dataset.25 “Benign neoplasm of other parts of the digestive system” was also associated with
rs3135388 in our cohort (ICD9 211, P=0.0023), but in the opposite direction observed in the
BioVU dataset, suggesting caution should be considered when interpreting these phenotypes
(Table 1). Conversely, if the genetic associations with one or more of these two phenotypes
are accurate, chronic inflammation and/or disruption of immune-mediated tumor
surveillance may underlie the pathophysiology of these conditions.

The rs3135388 genotype was also associated with erythematous conditions (ICD9 695,
P=0.0054), further confirming the association reported in the BioVU cohort25 (Table 1 and
Table 2). Although this association does not reach PheWAS significance, restricting the
number of independent tests to those reported for rs3135388 in the BioVU cohort (eight),
allows for a more disease focused interpretation of the P-value. Under this scenario, ICD9
695 remains significant after a Bonferroni adjustment (P<0.05). Unlike the BioVU cohort,
sub-phenotypes of ICD9 695 were analyzed within this cohort including toxic erythema
(ICD9 695.0, P=0.096), erythema multiform (ICD9 695.1, P=0.45), erythema nodosum
(ICD9 695.2, P=0.48), rosacea (ICD9 695.3, P=0.028), lupus erythematous (ICD9 695.4,
P=0.28), intertrigo (ICD9 695.89, P=0.067), and unspecified erythematous conditions (ICD9
695.9, P=0.84) including the site specific phenotype chronic erythematous caused by a tick
bite (ICD9 695.900, P=1.0) (Table 2). These results suggest that rosacea, along with
intertrigo, may be contributing to the association observed with erythematous conditions.
Interestingly, rosacea and intertrigo are relatively independent of each other based on the
lack of overlap (40 patients) observed within the ICD9 695 phenotype (Supplemental Figure
1).

Within the subset of the PMRP cohort, the strongest rs3135388 PheWAS association
observed was with alcohol-induced cirrhosis of the liver (ICD9 571.2, P=0.00011), with the
related phenotype “unspecified alcohol liver damage” also demonstrating suggestive results
(ICD9 571.3, P=0.018) (Figure 1, Table 1). Because of the small number of cases and level
of significance, all cases coded for ICD9 571.2 were manually inspected. Of the eleven
cases, seven were confirmed. Of the four that were not confirmed, all had elevated liver
enzymes suggesting liver damage, one had a record of “cirrhosis” without mention of
alcohol abuse, while the other three had extensive records of alcohol abuse but no evidence
of “cirrhosis” in their EMR. When these four cases were removed from the ICD9 571.2 case
group, rs3135388’s association with ICD9 571.2 became less significant (P=0.012). Within
the BioVU cohort, these sub-phenotypes were not specifically reported.25 Although we are
not aware of any published relationship between MS and alcohol-induced cirrhosis, Singer
et al.19 demonstrated that the HLA-DRB1*1501 haplotype is associated with lumiracoxib-
related liver injury (P=6.8e-25, OR 5, CI 3.6–7.0). Further, Lucena et al.14 demonstrated a
similar association with amoxicillin-clavulanate-induced liver injury (P=4.8e-14, OD 3.1, CI
2.3–4.2). Although the potential relationship between drug-induced liver damage and
alcohol-induced liver damage is enticing, replication studies will be necessary to confirm the
potential role of rs3135388 genotype with alcohol-induced liver damage.

The ability to identify statistical significance with any phenotype is limited by the inherent
nature of the phenotype(s) being studied (e.g., heritability, polygenicity, case/control
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specificity, and sample size) in either the GWAS or PheWAS strategy. Conversely, when
logical genetic targets are identified, either by their known disease association or potential
function, the PheWAS strategy may provide broad insight into the pathophysiology of
multiple disease processes. One challenge in conducting a PheWAS is determining how to
replicate the findings. Is a case-control study or an independent PheWAS necessary for
replication? To determine how many cases and controls are necessary for a disease specific
replication, assumptions on prevalence, allele frequency, and effect size must be made but
are often best-guest estimates. In a PheWAS, many of the case sizes are small, and
accurately estimating these parameters may be difficult. In Supplemental Table 1, we report
the number of cases and controls needed to replicate the top findings (P<0.01) with 80%
power. Conversely, when the exact disease of interest to replicate is not known, an
independent PheWAS replication may be an alternative approach.

In this study, we demonstrate the first external validation of an EMR based PheWAS. In
addition, we expanded the use of the PheWAS approach by including the majority of rare
and common phenotypes within the EMR by using multiple levels of ICD9 and V codes
when studying HLA-DRB1*1501. These results may further emphasize the pleiotropic
nature of the HLA region, provide further insight into the role of antigen presentation in
disease pathogenesis, and may inform new treatment options appropriate for multiple
conditions. Importantly, as EMRs are more frequently applied and better tools are developed
to define accurate clinical phenotypes within EMRs, the PheWAS strategy may become a
powerful complimentary/alternative strategy to the GWAS.

MATERIALS AND METHODS
Sample collection and processing of DNA used in this study has been previously
described.21,27 Briefly, all individuals analyzed were greater than 50 years of age, had over
30 years of EMR data on average, were self-identified as being white/non-Hispanic, and
were originally selected as subpopulations who met eligibility criteria for inclusion in
cohort-based studies examining genetic associations with high-density lipoprotein levels or
cataract disease.28 Written informed consent was acquired for all participants and reviewed
by Marshfield Clinic’s Institutional Review Board.

In the present study, ICD9 and V codes, including a few site specific codes, formed the basis
for defining cases and controls. Individuals whose medical record contained ICD9 codes
inclusive of three levels of resolution defined by ICD9 code suffix (e.g. ICD9 695, 695.1,
695.11) were designated as a case for that condition at each level, while those with no record
of these codes in their EMR were classified as controls. Under this scenario, cases for one
ICD9 code may be coded as controls for a related ICD9 code (e.g., ICD9 695.3 and 695.4)
potentially diluting the significance of either if both share a common genetic etiology. Due
to privacy concerns, only those phenotypes that were observed greater than nine times
within the cohort were included among the phenotypes chosen for analysis. Utilizing this
approach, there were 4 841 phenotypes extracted from the EMR. Prevalence of each
phenotype can be seen in Supplementary Figure 2.

One of the challenges in conducting a PheWAS study is balancing sample size and how well
the cases and controls are defined. As such, all cases were assigned by either “rule of one”
(individuals only had to have been coded once to be considered a case) or “rule of two”
(defined as occurrence of an ICD9/V code at least twice in the EMR of a given subject).
Informed by Monte Carlo power calculations, “rule of one” was applied for rare conditions
(fewer than 300 cases). For more common phenotypes, rule of two was applied where rule
of two explained greater than 75% of the cases defined by rule of one. This was a
compromise for the added benefit of including more samples at the risk of reducing the
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positive predictive value. In applying rule of two, any individual coded only once was thus
censored from further analysis. No further filtering of phenotypes was conducted, including
filtering based on potential environmental effects and/or injury, because of the possibility
that those codes could help define symptoms for more complex conditions. For example, a
variant associated with broken bones could be indicative of an osteoporotic-like condition.

Rs3135388 was genotyped as part of a larger multiplex Sequenom assay (Sequenome, San
Diego, CA, USA) in accordance with manufacturer’s specifications for 384 well format.
Primer sequences are available upon request. On each 384 plate, a CEPH trio was genotyped
along with two negative controls. No Mendelian errors were observed, and the variant was
consistent with Hardy Weinberg equilibrium (P=0.064).

For common ICD9 and V codes, unadjusted and adjusted logistic regression analysis was
conducted. Because all patients in this cohort were older than age 50 (mean=74 and
median=75), and age may be a confounder for many phenotypes, two adjustment conditions
were considered. 1: sex, and years of EMR data 2: age, sex, and years of EMR data. For rare
ICD9 and V codes, where cell counts for an allele or genotype fell below five in an X2

contingency table, a Fisher’s exact test was used without adjustments similar to the method
defined by the BioVU PheWAS.25 PheWAS analysis was conducted in R (http://www.r-
project.org). No evidence of strong systematic confounding or bias in the SNP-phenotype
associations was observed according to the Q-Q plot (Supplemental Figure 3). Sample size
estimates were calculated in R assuming a balanced case-control study utilizing the observed
disease prevalence, allele frequency, and ORs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plot of unadjusted −log10 (P-values) for all ICD9 and V codes as related to
rs3135388 genotype. Highlighted are associations results for multiple sclerosis (MS) (ICD9
340, P=0.023), erythematous conditions (ICD9 695, P=0.0054), and alcohol-induced
cirrhosis of liver (ICD9 571.2, P=0.00011). Grey diamonds represent ICD9 codes defined by
“rule of 1,” while black squares represent phenotypes defined by “rule of 2.”
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