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Abstract
Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of
functional segregation and integration of brain regions throughout development. The present study
examined developmental changes in face network functional connectivity in children (5–12 years)
and adults (18–43 years) during face-viewing using a graph-theory approach. A face-specific
developmental change involved connectivity of the right occipital face area (ROFA). During
childhood, this node increased in strength and within-module clustering based on positive
connectivity. These changes reflect an important role of the ROFA in segregation of function
during childhood. In addition, strength and diversity of connections within a module that included
primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right
inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-
limbic integration. This integration was pronounced for faces but also emerged for natural objects.
Taken together, the primary face-specific developmental changes involved segregation of a
posterior visual module during childhood, possibly implicated in early stage perceptual face
processing, and greater integration of visuo-limbic connections from childhood to adulthood,
which may reflect processing related to development of perceptual expertise for individuation of
faces and other visually homogenous categories.
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1. Introduction
Infants show a preference for the face versus other stimuli soon after birth (Johnson, 2005)
and some aspects of face processing are present in rudimentary form as early as 3 months of
age (Hayden et al., 2007). However, face processing improves throughout childhood and
adolescence (Ellis et al., 1973). Carey and Diamond (1994) posited a qualitative
developmental shift in the processing of faces—from a reliance on featural processing in
early childhood to a reliance on configural information later in life and other studies have
supported this idea (Carey and Diamond, 1977; Diamond and Carey, 1977; Freire and Lee,
2001; Mondloch et al., 2002; Mondloch et al., 2006; Schwarzer, 2000). However, this issue
has been debated more recently based on evidence that even 4-year olds may be as sensitive
as adults to configural information in faces (McKone and Boyer, 2006; Pellicano et al.,
2006).

Although Carey and Diamond (1977) postulated that the developmental shift from featural
to configural processing around age 10 may rely on maturation of the right hemisphere,
surprisingly little research has investigated the brain basis of typical face processing
development. The “fusiform face area” (Kanwisher et al., 1997) is functional in both adults
and older children but not in children younger than 7-to-8 years of age (Gathers et al., 2004;
Passarotti et al., 2003; Scherf et al., 2007). Also, there is an increase in the fine tuning of the
FFA for faces with development (Aylward et al., 2005b; Golarai et al., 2007; Scherf et al.,
2007). Although these studies report changes in the developing brain for face processing, the
mechanism for increased specialization has not been addressed.

The Interactive Specialization (IS) account of brain development (Johnson, 2005) suggests
that cortical specialization results from activity-dependent interactions among regions, rather
than developmental changes only in specific circumscribed regions, which has been the
focus of most developmental fMRI studies to date. Functional or effective connectivity
analyses are ideal for studying the developing brain, and for testing the IS account in
particular, because they emphasize the functional interactions among brain regions. These
analyses capture higher-level information about brain activation by exploiting the temporal
synchrony among multiple brain regions (Bullmore et al., 2000). This type of information is
critical for studying the developing brain in which a high degree of functional and
anatomical plasticity is occurring.

Surprisingly, no fMRI functional connectivity analyses of typical development of face
processing have been conducted. However, Cohen, Kadosh et al. (2011) conducted a
developmental effective connectivity study of face processing using dynamic causal
modeling. They showed that connectivity of three regions of the core face network
(fusiform, inferior occipital and superior temporal gyri) was modulated by task demands in
adults but not in children. In other words, these three regions interact differently for face
identification, detection of expression and eye gaze in adults but not in children. Effective
connectivity analyses reveal how brain regions may interact and influence each other, but
these models are often restricted to just a handful of brain regions. In contrast, functional
connectivity analyses, as used in the present study, can examine connectivity within a more
extended network. This could then lead to more directed models to be explored with
effective connectivity analyses.

Compared to other functional connectivity approaches, a graph theory approach (Rubinov
and Sporns, 2010, 2011) to functional connectivity has the advantage of providing both
global (i.e., network-wide) and local (i.e., specific node- or edge-based) measures of
connectivity. Seed-based functional connectivity, for example, determines which voxels are
functionally connected to a particular seed voxel, or a voxel within a functionally significant
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brain region (e.g., a voxel in the mid-fusiform gyrus might serve as a seed voxel to assess
connectivity for face processing; Kleinhans et al., 2008). The resulting connectivity map
gives a first-order description of connectivity with respect to only the seed voxel. However,
graph theory metrics consider all of the possible connections among the nodes of network
(where nodes are brain regions), thereby describing higher order properties of connectivity.
For example, a seed-based analysis describes the strength of the connection between a voxel
and a seed usually as the correlation coefficient of the two time series. With graph-theory, a
particular node’s strength is based on a combination (usually the sum) of the correlation
coefficients for all possible connections between that node and other nodes. In addition,
some graph theory metrics can characterize the degree of integration and segregation of
functional brain modules, which is particularly relevant for understanding brain
development (e.g., Fair et al., 2007a).

In the present study, we examined several measures of network connectivity that are suited
specifically for functional brain networks, which are described by Rubinov and Sporns
(2011) as fully connected networks with connections that are weighted and signed (i.e., have
both positive and negative weights). Nodes refer to brain regions and edges refer to the
connections between nodes. In the present context, a “connection” refers to the magnitude of
the correlation of the time-varying fMRI signal between two regions. The correlation
coefficient is the weight of the connection (which can be signed). All of the graph theory
metrics used in the present study are derived from a correlation matrix that captures the full
connectivity in the network. In other words, connections among all regions are used in
computing graph theory measures. To assess degree of segregation and integration over
development, we examined several measures: strength, modularity / number of modules,
clustering coefficient and diversity coefficient. The strength of a node simply reflects the
sum of the weights of the edges for that node. Greater strength implies stronger connectivity
with brain regions which may facilitate stronger functional integration (Rubinov and Sporns,
2010). Modules are subsets of regions in which the number or strength of connections within
the module is maximized and number or strength of connections with other modules is
minimized. Modules can be thought of as sub-networks within a more complex network.
Importantly, modules are not imposed on the data, but are derived from the connectivity
matrix. Higher modularity or number of modules indicates greater segregation (Rubinov and
Sporns, 2010). We also used the clustering coefficient for weighted networks provided by
Rubinov and Sporns (2011) as an index of segregation. A node with a high clustering
coefficient is strongly connected within a module in that the node has many neighbors that
are also neighbors of each other. Finally, we examined the diversity coefficient, which is an
index of integration with other nodes. A high diversity coefficient reflects a greater spread of
connectivity strength across different modules.

Many complex networks like the functional or anatomical connections in the brain exhibit a
small-world architecture, which is characterized by a high degree of clustering or
segregation of nodes into modules, with some degree of integration among the modules
(Watts and Strogatz, 1998). The overall goal of the present study was to understand whether
this type of organization changes during development, particularly in the domain of face
processing as that has not been explored with this functional connectivity approach. One
hypothesis is that the typical face network in adults is present in rudimentary form in
children, but that connectivity strengthens with age. In this account (roughly aligned with a
“maturational account” of brain development; see Johnson, 2005; Joseph et al., 2011) there
would be minimal reorganization of nodes into different modules, and the primary
developmental change would be the addition of more connections or strengthening existing
connections either within or between modules, or both. This would predict a general
increase in strength with little change in modularity partitioning. Another possibility is that
global measures of connectivity remain fairly stable with age but there is significant
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reorganization of nodes into different modules. This account predicts that nodes will fuse
with different modules over the course of development and specific nodes might show
greater change than the global network metrics. The reorganization of modules across
development is likely achieved by a process of greater integration both within (e.g., reflected
in strength) and across modules (e.g. reflected by diversity coefficient) and stronger
segregation within modules (e.g. based on clustering coefficient) to achieve functional
specialization. This prediction is generally in line with the Interaction Specialization account
(Johnson, 2005). Joseph, Gathers and Bhatt (2011) reported that many nodes of the face
network in children lose functionality (for face processing) by adulthood. In addition to
these regressive changes, nodes of the adult face network are functional in children, but not
specialized for face processing. This pattern of regressive and progressive changes suggests
a dynamic reorganization throughout childhood; however, Joseph, Gathers and Bhatt did not
examine patterns of connectivity among nodes of the face network. Therefore, the present
study examines changes in face-network connectivity with development.

The first goal of the present study was to determine changes in functional connectivity
patterns during childhood within regions of the adult face network using a graph theory
approach. To this end, we examined correlations between age and various graph theory
metrics only during childhood. A second goal was to explore how these network metrics
differ between children and adults by comparing graph-theory metrics across all age groups
(younger children, older children and adults) using ANOVAs. A third goal was to determine
the degree to which connectivity patterns are indeed specific for faces. To test this, changes
in connectivity patterns were examined not only during face viewing but also during resting
state and non-face object-viewing conditions. Graph-theory metrics were then used to test
predictions of the maturational and IS accounts of functional brain development.

2. Methods
2.1. Participants

Forty-three right-handed, native English speaking adults (20 males, mean age = 26.4 years)
and 47 right-handed, native English speaking children (23 males; 5.5 – 12 years of age) with
normal or corrected-to-normal vision and no significant medical histories provided written
consent in accordance with University of Kentucky Institutional Review Board guidelines.
The data for children and some adults were pooled from prior published studies (Gathers et
al., 2004; Joseph et al., 2006) with additional data from adults from unpublished studies. For
some analyses (described more below), two age groups of children were determined by a
median-split of the larger sample based on age. This produced a younger group (twenty-
three 5.5-to-9.7 years of age; 12 males) and an older group (twenty-four 9.8-to-12 years of
age; 11 males). The motivation for this split was that others have suggested there is a
developmental shift in face processing around 10 years of age (Carey and Diamond, 1977);
thus, dividing the present child sample into two age groups allows us to examine this
potential shift.

2.2. Design and Procedure
The face localizer task that was used in this study had nine pseudorandomly ordered task
blocks (three each of human faces, different categories of natural objects, and different
categories of manufactured objects; see Figure 1) and nine fixation blocks (17.8 s each – the
fixation blocks were not an even 18 s due to small adjustments in timing needed to
synchronize with the scanner). In each task block, 30 randomly-ordered, gray-scale
photographs were presented (1000 ms duration followed by a 400 ms fixation cross) and
total duration of the task blocks was 42 seconds. Each photograph appeared three times
during the experiment. Face photographs were scanned from a high school yearbook and
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were primarily Caucasian faces (3 faces were Asian or Hispanic). Natural and manufactured
object photographs were acquired from various sources. Additional details of the stimuli can
be found in Joseph et al (2006). The stimuli were not equated for luminance, complexity or
spatial frequency. Although all of these factors could contribute to differences in brain
activation for different categories of objects, the present analysis was not concerned with
differences in magnitude of brain activation but rather focused on spatial coherence of time-
varying fMRI signals in response to a specific category of objects. Moreover, the same
stimuli have been used in prior studies (e.g., Gathers et al., 2004) which have reliably
isolated brain regions like the FFA that are driven by face processing rather than low-level
stimulus attributes (e.g., Kanwisher et al., 1997).

Participants were instructed to press a button with their index finger each time they viewed a
stimulus, but not to respond during fixation blocks. Analysis of percent button presses as a
function of stimulus type (face, natural, manufactured) and age (adult, older, younger)
indicated that younger children (M = 97%, SD = 7%) performed as well as adults (M = 97%,
SD = 6%) with older children slightly lower (M = 94%, SD =21%). However, none of the
main effects or interactions was significant. Subjects viewed the stimuli (visual angle of 6.74
degrees) through a mirror attached to the head coil.

2.3. fMRI Data Acquisition
Data were collected using a Siemens Vision 1.5 Tesla magnet with a quadrature head coil
and T2*-weighted gradient echo sequence (46 axial slices, ascending acquisition, 3.6 mm ×
3.6 mm in-plane resolution, TR = 6000 ms, TE = 40 ms, flip angle = 90°, 64 × 64 matrix,
FOV = 228 × 228 mm, thickness = 3 mm, gap = 0.6 mm). High-resolution T1-weighted MP-
RAGE anatomical scans (150 sagittal slices, 1 mm thick for adults; 76 sagittal slices, 2 mm
for the children, FOV = 256 × 256 mm2) were collected for each participant at the end of the
experiment.

2.4. fMRI Data Analysis
Using FMRIB’s FSL package (http://www.fmrib.ox.ac.uk/fsl), images in each participant’s
time series were motion corrected. Functional runs were discarded when uncorrected head
motion exceeded half a voxel (1.7 mm). As reported in the earlier studies from which the
present data were pooled, corrected head motion did not differ between adults and children
(Gathers et al., 2004; Joseph et al., 2006). Spatial (3D Gaussian kernel; FWHM = 7.5 mm),
and temporal (360 s high-pass filter) smoothing were applied. Other kinds of functional
connectivity analyses that operate at the voxel level do not use smoothing because
smoothing effectively averages the time series of spatially contiguous voxels, which may
artificially increase or decrease the connectivity among those voxels. However, the present
analysis averaged time series from many voxels within spatially discontinuous regions of
interest prior to the functional connectivity analysis. Therefore, smoothing would have little
effect on the time series that were submitted to correlations for the present connectivity
analysis. Six movement parameters (3 rotation and 3 translation values) were added as
covariates of no interest to model the variance in the fMRI signal induced by head motion.
Regression model parameters were estimated for each explanatory variable (face, natural or
manufactured object blocks) and statistical contrasts of interest (Face v. Natural, Face v.
Manufactured, Face v. Fixation) were generated. Contrast maps were normalized into
common stereotactic space using an affine 12-parameter model (FLIRT in FSL) before
mixed-effects group analyses were performed. The MNI template was used as the common
stereotactic space for all age groups for two reasons. First, the analyses used extracted time
series in each participant within regions of the adult network. This required that all brain
images be normalized to the same standardized space. Second, Kang et al. (2003) did not
find appreciable differences in localization using an adult template in children as young as 7
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to 8 years of age. To address the concern of fitting brains of children into a common
standard space based on adult brains, we examined localization of face-preferential
activation in individual participants in both native space and standardized MNI space. In
native space, 67% of adults, 30% of older children and 50% of younger children showed
face-preferential activation in the right FFA. In standard space, 61% of adults, 39% of older
children and 41% of younger children showed activation in the right FFA. The
correspondence between detecting activation in the right FFA in standard space and native
space was quite high in all three age groups. We conducted a correlation analysis to
determine whether a region detected in native space was also present in standard space in
children (and, likewise, whether a region not detected in native space was also not detected
in MNI space). Phi coefficients for this analysis were high and significant for both older
children (phi = .71, p < .05) and younger children (phi = .91, p < .05). This analysis shows
that fitting brains of children to an adult template does not systematically bias detection of
functional brain regions like the FFA.

Regions-of-interest (ROIs) were determined from the adult group activation map (rather
than from group activation maps in younger and older children), so that extraction of time-
series data from both groups of children was independent from the definition of the ROIs
and would not be biased toward significant activation. We also extracted time series data
from adults in the same regions for comparison. To determine the ROIs, the individual
contrast maps (Face > Fixation, Face > Manufactured, Face > Natural) were logically
combined (Gathers et al., 2004) to yield face-preferential ROIs (Table 1), some of which
were then used in the functional connectivity analysis. “Face-preferential” activation was
defined as those voxels in which faces elicited more activation than fixation and greater
activation than either natural objects or manufactured objects or both. This is similar to how
other studies define the FFA using a contrast of Faces > non-face objects (Berman et al.,
2010); but see Gathers et al. (2004) and Joseph et al. (2011) for a more detailed discussion
of this issue).

After logical combination ROIs were defined as clusters of voxels in which parameter
estimate values for faces versus fixation differed significantly from zero (p < 0.001, 2-tailed;
Table 1). We only considered small face-preferential regions (fewer than 43 voxels in MNI
space) if that region was part of the core or extended face network as defined by Haxby et al.
(2000a) and Fairhall and Ishai (2007). Because the main data for functional connectivity
analyses are the time series of fMRI signal in different ROIs or in single voxels rather than
the activation magnitude or extent, the issue of small ROIs in not as critical as in general
linear modeling. In fact, in the present dataset size of the ROI was not correlated with the
variance of the group-averaged face time series (rho = .13, p = .66, n = 14 ROIs), indicating
that time series from larger ROIs are not necessarily less noisy than time series from smaller
ROIs.

2.5. Functional Connectivity Analysis
We used a graph-theory based approach to network connectivity (Rubinov and Sporns,
2010, 2011) to explore functional connectivity among face-preferential ROIs. In this
approach, the correlation matrices of time series across different regions in the brain are
used to explore different functional connections related to face processing. We opted to
examine non-directional functional connections rather than test models in which directional
paths were postulated because our goal was to explore the full range of network connectivity
rather than selecting specific connections or sub-networks a priori.

In functional connectivity analyses such as that used in the present study, the regions that are
explored need not meet typical requirements of statistical significance for “activation”
studies; in fact, some approaches to functional connectivity (such as Principal Components
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Analysis; e.g., Andersen et al., 1999) explore temporal synchrony among individual voxels
without regard to the magnitude of fMRI signal in those voxels. The present approach was
to isolate regions that are implicated in face recognition in adults and overlay those regions
as masks for extracting the time series data from both adults and children. These regions
need not be functionally activated in children in order for this approach to be valid. In
addition, assumptions about the shape of the hemodynamic response, restrictions on the size
of regions and requirements for minimum activation magnitude are not relevant when
conducting functional connectivity analyses. Nevertheless, Figure 1 shows the average time
series for each age group in the right FFA to illustrate that the signal for task conditions
versus baseline in children is quite robust, although it may not always be of the same
magnitude as adults. As mentioned, we were interested in the temporal synchrony of the
time series for different conditions across different regions rather than the magnitude of
signal change versus baseline.

In each ROI of the adult face-preferential network (described below) for each subject, the
entire time series (as illustrated in Figure 1) was broken into four separate time-series, one
for each condition: (1) one series for the face condition, in which only those brain volumes
associated with the three face blocks were included (21 timepoints), (2) one series for the
natural object condition, in which only those volumes associated with the three natural
object blocks were included (21 time points), (3) one series for the manufactured object
condition, in which only those brain volumes associated with the three manufactured blocks
were included (20 timepoints – this time series had only 20 time points because the last
block in the functional run was for manufactured objects and time-shifting caused the last
time point to be excluded) and (4) one series for the rest condition, in which only those brain
volumes associated with the rest blocks were included (27 timepoints). Each time series was
shifted by one TR. Although time-shifting was not necessary, it more closely links the time
points with the conditions of interest by accounting for the hemodynamic lag.

Note that these time series are concatenated time series (i.e. segments of the entire times
series associated with specific stimulus conditions) as used in other studies (Fair et al.,
2007b). One reason for using concatenated time series rather than the entire continuous time
series was to be able to test the degree of specificity of the connectivity patterns for different
stimulus conditions (faces, natural objects, manufactured objects and rest periods). By
having a separate time series for each of these conditions, we were able to test whether a
certain measure of connectivity emerged only for faces or if that measure emerged for any
condition, thereby reflecting a more generalized phenomenon. A second reason for using
concatenated time series was that the correlation matrix would reflect temporal synchrony of
the fMRI signal for a given condition of interest (e.g., only for face conditions) and would
not be affected by the more robust task versus rest fluctuations in fMRI signal as illustrated
in Figure 1. If the entire time series were used, the degree of correlation among regions
would be much higher (and this was confirmed by preliminary inspection of the data). By
using a concatenated time series, we could isolate the degree of connectivity for faces from
the overall task effect.

A third reason for using concatenated time series for the four conditions separately was that
the time series in adults would not be completely redundant with the time series used to
isolate the ROIs (which were defined in adults based on differences between the fMRI
signal for faces versus other conditions). In other words, the correlations among regions for
the present functional connectivity analysis were based on the time-varying signal within
blocks rather than based on the time-varying signal between blocks, which defined the ROIs.
However, one concern about this approach is that the connectivity among regions may be
greater in adults than in children due to the fact that the time series used for functional
connectivity in adults was somewhat related to the time series used to define the ROIs,
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rather than reflecting a true developmental effect. This would predict that adults should
show higher correlations than both age groups of children. To address this, we examined the
average Fisher-z transformed unsigned correlation coefficients across age groups. Adults
showed a higher correlation coefficient (M = .327, SE = .01) compared to younger (M = .
281, SE = .013; p = .015) but not older children (M = .299, SE = .013, p = .114). Therefore,
the stronger correlations in adults more likely reflect a developmental change. In addition,
correlation coefficients showed an increase with age in children (Spearman rho = .318, p = .
03, n = 47), which provides additional support that the differences in correlation coefficients
between younger children and adults or older children reflects a true developmental change.
We also examined the variance of the fMRI signal intensity in the face time series by age
group to ensure that the time series were not necessarily noisier at one age versus another.
The average variance in younger children (M = 5111.1, SE = 566.5), older children (M =
5520.8, SE = 554.7) and adults, (M = 5423.3, SE = 419.2) was not different, F(1,89) = .15, p
= .861. In addition, variance did not correlate with age in children, Spearman rho = .154, p
= .3, n=47.

Four correlation matrices (one for each condition: face, natural, manufactured, rest) that
reflected the intercorrelations of the fourteen regions of the adult face network were
computed for each subject and submitted to the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010); http://www.brain-connectivity-toolbox.net). We also computed 20 random
networks for each subject that preserved the weight and strength properties of the face
network (following Rubinov and Sporns, 2011 and Wormald, 1999) in each subject. Metrics
from the 20 random networks were then averaged to provide a single metric to compare to
the metrics of the face network. The main comparison of interest was whether the face
network differed from a random network. Weighted and signed connection weights were
used because they filter out the effects of weak or insignificant edges, do not rely on an
arbitrarily determined threshold, and are most appropriate for functional networks (Rubinov
and Sporns, 2010, 2011).

For each subject and each condition, we computed the following metrics, all of which are
described in more detail in Rubinov and Sporns (2011) and are summarized in Table 2: (a)
Modularity using two different measures (referred to as Q*, Q+, with Q* being the preferred
metric according to Rubinov and Sporns (2011). Because the modular structure in a network
is usually determined by optimization algorithms, the modularity (Q) gives a sense of the
goodness of the partitioning into modules. We explored modularity based both on positive
connections only (Q+) and based on a combination of positive and negative connections
(Q*). Rubinov and Sporns (2011) suggest that positive and negative connections of a
network should have different importance. More specifically, “positive weights associate
nodes with modules explicitly, while negative weights associate nodes with module
implicitly, by dissociating nodes from other modules.” (p. 2). Therefore, high modularity
based on positive connections is more optimal than high modularity based on negative
connections. Q* reflects the combined positive and negative connectivity but weights the
positive connectivity more than negative connectivity. (b) Number of modules based on the
modularity measures in (a), number* and number+. (c) From the modularity partitions
determined by Q*, we calculated the diversity coefficient for positive and negative weights
combined where the contribution of positive weights is greater than negative weights.
Diversity coefficient was calculated for each node separately (node-diversity*), averaged
over all nodes (network-diversity*) and averaged within modules (module-diversity*) that
were associated with the adult group-averaged time series. (d) Within-module weights, both
positive (module-weights+) and negative (module-weights−). (e) Within-module clustering
coefficient, which yields the proportion of balanced and unbalanced triangles within
modules. Balanced triangles are those with three positively weighted edges; unbalanced
triangles are those with only two positively weighted edges. The within-module clustering
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coefficient was averaged over all nodes (network-within-clustering+ and network-within-
clustering−), averaged within modules (module-within-clustering+ and module-within-
clustering−) that were associated with an adult group-averaged time series, or reported
separately for nodes (node-within-clustering+ and node-within-clustering−). (f) Strength*,
which combines positive and negative weights, but considers the positive weights to be
more important. Strength* reflects connectivity within a module. These strength measures
were calculated for each node separately (node-strength*), averaged over all nodes
(network-strength*) and averaged within modules associated with the adult group-averaged
time series (module-strength*).

Spearman rank correlations were conducted between age and each metric in children
separately from adults rather than in the sample as a whole to avoid selection bias. The
separate correlation analyses allowed us to examine developmental change within the time
window of 5 to 12 years of age, so that we could examine developmental changes during
childhood. To examine developmental changes that occur at some point between childhood
and adulthood, we conducted mixed ANOVAs that included all three age groups (as the
between-subjects factor) to determine whether there was a main effect of age and
interactions of age with other variables. A difference between adults and older children
indicates that some type of developmental change occurred during adolescence (although we
did not test an adolescent age group), but no difference between adults and older children
indicates that the given metric does not undergo further developmental change during
adolescence. To address the issue of potential unequal variances in the age groups due to
different sample sizes, we compared age groups when there was a main effect of age using
Tamahane’s T2, which is considered a conservative post-hoc comparison method (SPSS
statistics 18.0.0, Chicago, IL).

To address the issue of multiple tests using the same dependent variable (i.e., for each
dependent variable we conducted 4 ANOVAs for the four different modules and 14
ANOVAs for the 14 different nodes), we used the Holm procedure for multiple tests (Holm,
1979) which bears some similarity to the false discovery rate procedure (Benjamini and
Hochberg, 1995). The Holm approach is not as conservative as Bonferroni correction but is
more powerful. As an example, when conducting the 14 ANOVAs for a given dependent
measure, the alpha level used for the first test is .05/14 = .00357, which is the same as
Bonferroni correction. For the next test, however, the alpha level is .05/13 = .00385, etc.,
and the alpha level for the last test is .05. Essentially, the lowest of the 14 p-values is
compared to the alpha level for the first test, which is .00357 and if it is greater than this,
then hypothesis testing stops. To visualize developmental change in the face network, an
average correlation matrix was determined from the average time series for each age group,
then visualized using Gephi software (Bastian et al., 2009). The partitioning into modules
was determined using the Q* metric for these average correlation matrices.

2.6. Image similarity analysis
To address the degree of similarity of the images within each category, we followed the
approach by Cilibrasi and Vitanyi (2005). This is an information-theoretic, compression-
based similarity metric which captures dissimilarity distance, using relationships between
the size of compressed files or data strings to fulfill otherwise incomputable values of
Kolmogorov complexity. The main metric is the normalized compression distance, defined
as:
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Where C(x) is the compression (in bytes as computed by gzip supplied with Matlab 2012a)
of image x, and C(x,y) is the compression of the concatenation of images x and y. The
degree that a joint compression is smaller than the compressions of individual images
reflects the visual information shared between images, and has been used for content-based
image retrieval (Gondra and Heisterkamp, 2008). This technique has been validated across a
wide range of domains including optical character recognition, language trees and genomics
and phylogeny.

From all images we compiled a dissimilarity matrix containing these pairwise NCD values,
and to more easily quantify and visualize the geometric embedding of data we examined the
top 3 eigenvectors of this matrix (similar to a principal components analysis). We also
conducted a quadratic discriminant analysis (Krzanowski, 1988) to determine classification
accuracy of the images into three categories corresponding to faces, natural objects, and
manufactured objects.

3. Results
Figure 2 shows the modular structure derived from the average face networks in each age
group with different modules coded in different colors. Each age group’s average network
consisted of four modules, but module composition changed across age. We refer to the four
modules in adults as: (a) a fronto-temporal module consisting of the right fusiform gyrus
(RFFA), left fusiform face area (LFFA), right superior temporal gyrus (RSTG), right middle
temporal gyrus (RMTC), and right inferior frontal gyrus-opercular portion, (RIFGopc), (b) a
visual-limbic module consisting of the right calcarine sulcus (RCALC), left calcarine sulcus
(LCALC), left hippocampus (LHIP) and right inferior frontal gyrus-orbital portion
(RIFGorb), (c) a visuo-cerebellar module consisting of the right occipital face area (ROFA),
left occipital face area (LOFA) and left cerebellum (LCB), and (d) a sub-cortical module,
consisting of the left thalamus (LTHAL) and brainstem (BS). The size of each node in
Figure 2 reflects its strength, which is scaled to the largest value across all three age groups
(i.e. the node with the highest strength has a value of 1 and all other nodes are scaled to that
value proportionally). Positive and negative connectivity are shown separately.

Prior to conducting the ANOVAs and correlations described below, the distribution of each
dependent measure was examined for outliers. Values between 1.5 and 3 times the
interquartile range were considered outliers and omitted from analyses. Because each
condition (face, natural, manufactured, rest) is treated as a dependent variable in repeated
measures analyses (O'Brien and Kaiser, 1985) if a case was an outlier for one condition, the
entire case was omitted from the analysis. Examination of the distributions also revealed that
the distribution of network-within-clustering−, module-within-clustering−, node-within-
clustering− included many zero values; therefore, we omitted this metric from analyses.

3.1 Modularity
Higher modularity indicates more segregation of nodes into sub-networks. The two
modularity measures (Q+ and Q*) were examined as dependent variables in two separate
mixed 5 (condition) × 3 (age group) ANOVAs. The main effect of condition was significant
for Q+, F(4, 69) = 171.5, p = .0001, and Q*, F(4, 79) = 168.8, p = .0001) as shown in Figure
2 for Q*. Planned comparisons for faces versus random were significant for Q+, F(1, 72) =
376.8, p = .0001, and Q*, F(1, 82) = 370.0, p = .0001, as were the planned comparisons for
faces versus rest [for Q+, F(1, 72) = 8.9, p = .004; for Q*, F(1, 82) = 11.6, p = .001. Faces
were not different from natural and manufactured objects. The age effect was significant for
Q*, F(2, 82) = 4.3, p = .017, as was the Age × Condition interaction, F(8, 160) = 2.2, p = .
027. As shown in Figure 3, adults had lower modularity than younger children for faces (p
= .029), natural objects (p = .019), and random (p = .025) conditions, according to
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Tamahane’s T2 test. In other words, adults exhibited less segregation into sub-networks for
face and natural object conditions and with respect to the random network. Because the
random networks were generated from the network in the face condition, and random
networks preserve the weight and strength (but not modularity) properties of the face
network, the finding that random networks had lower modularity in adults than younger
children is not surprising as it mirrors the finding with the face network.

3.2 Number of modules
More modules indicate greater segregation of the network into sub-networks. Number of
modules showed a face-specific decrease with age among children, but only for number+

(rho = −.425, p = .008, n = 38). This face-specific finding indicates reduced segregation with
age during childhood, based on positive connectivity. Similar to the analysis of modularity,
number of modules from the two different modularity measures served as dependent
variables in mixed 5 (condition) × 3 (age group) ANOVAs. For both measures (Figure 3),
faces had fewer modules than the random network (main effect of condition was significant,
F(4, 344) > 2.8, p < .032) and planned comparisons for faces versus random were
significant, F(1, 86) > 5.2, p < .025. However, faces were not different from natural,
manufactured and rest conditions in terms of number of modules. The age effect was only
significant for number+, F(1, 86) > 3.7, p < .028. Adults and older children had fewer
modules than younger children based on positive connectivity (p < .044), but this was not
specific for faces Together, these results indicate developmental changes in functional
segregation based on positive connectivity: a face-specific decrease in segregation during
childhood (based on the correlation results) and a generalized non-face-specific decrease in
segregation from childhood to adulthood (based on the ANOVA results)

3.3 Network-diversity
Higher diversity coefficients reflect greater integration across modules. Network diversity
measures this in the network as a whole. The mixed 4 (condition) × 3 (age group) ANOVA
revealed a main effect of age, F(2, 86) = 4.5, p = .014, in which adults had greater network-
diversity* of connections than younger (p = .033) children. No correlations with age were
significant for any of the four conditions. This suggests a generalized increase in functional
integration from early childhood to adulthood.

3.4 Module-diversity
Higher module diversity for a specific module reflects more intermodular integration. The
mixed 4 (condition) × 3 (age group) ANOVAs conducted for each module separately
revealed a main effect of age in the visuo-limbic, F(2, 82) = 7.14, p = .001, and sub-cortical
module, F(2, 83) = 5.84, p = .004. Adults had higher module-diversity* than older (p = .002)
and younger (p = .002) children in the visuo-limbic module and higher module-diversity*
than younger children (p = .002) in the sub-cortical module. The visuo-limbic module also
had a significant Age × Condition interaction, F(6, 246) = 2.96, p = .008, indicating that
module-diversity* for faces and natural objects was greater for adults than for older (p < .
013) and younger children (p < .001), but there was no age effect for manufactured and rest
conditions (Figure 4). No correlations with age were significant for any of the four modules.
These results indicate greater functional integration in adults than in children. In the sub-
cortical module, greater integration in adults (compared to younger) was not specific to
faces, but in the visuo-limbic module greater integration in adults was specific for faces and
natural objects.
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3.5 Node-diversity
Higher node diversity for a specific node reflects more intermodular integration. The mixed
4 (condition) × 3 (age group) ANOVAs conducted separately for each of the 14 nodes
revealed that the left calcarine sulcus showed a significant main effect of age, F(2, 76) =
9.74, p = .0001, in which adults showed greater diversity than both older (p = .004) and
younger (p = .0001) children, but this did not interact with condition. Hence, this
developmental increase in integration reflects a generalized effect, not specific to face.

3.6 Module-weights
No face-specific or age-related effects or correlations emerged.

3.7 Network-within-clustering
Higher within-clustering coefficients in the network as a whole reflect more centrality
within modules, as an index of greater segregation. The mixed 4 (condition) × 3 (age group)
ANOVA revealed a main effect of age for network-within-clustering+ (F(2, 81) = 3.6, p < .
031), but the pair-wise age comparisons were not significant using Tamahane’s T2 test.

3.8 Module-within-clustering
No face-specific or age-related effects or correlations emerged in any of the four modules.

3.9 Node-within-clustering
Higher node-within-clustering reflects greater centrality of that node within its module as an
index of greater segregation. Although node-within-clustering+ increased with age in
children in the right OFA (rho = .327, p = .045, n = 38, Figure 5a) this did not survive the
Holm-adjusted alpha level. Nevertheless, this trend suggests increased functional
segregation of the right OFA during childhood. The mixed 4 (condition) × 3 (age group)
ANOVAs conducted separately for each node revealed that the right OFA showed a main
effect of age for node-within-clustering+, F(2, 74) = 6.1, p < .004 (but this fell just short of
the corrected alpha-level of .0035). Adults had greater clustering than both older (p = .022)
and younger (p = .019) children. The Age × Condition interaction, F(6, 222) = 2.9, p = .011
(which also did not survive the corrected alpha level), indicated that adults showed greater
clustering for faces compared with both older (p = .037) and younger (p = .002) children and
greater clustering for natural objects compared with older children (p = .001, Figure 5b). The
ANOVA results suggest that functional segregation of the right OFA is (a) specific to faces
and natural objects and (b) continues to change in the transition from childhood to
adulthood.

3.10 Network-strength
Greater network strength reflects stronger connectivity with other nodes in a module based
on a combination of positive and negative connections. The mixed 4 (condition) × 3 (age
group) ANOVA revealed that adults showed greater network-strength* than both age groups
of children (main effect of age: F(2, 77) = 6.7, p = .002; adults > older: p = .027; adults >
younger: p = .003) but there were no differences among children. There were no interactions
with condition, suggesting a generalized increase in network strength with development.

3.11 Module-strength
Greater module strength reflects stronger connectivity within that module based on a
combination of positive and negative connections. The visuo-cerebellar, F(2, 78) = 6.5, p = .
002, and visuo-limbic, F(2, 80) = 4.68, p = .012, modules showed an increase in module-
strength* with age. For both measures, adults showed greater strength than younger children
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(p < .014). In the visuo-limbic module the significant Age × Condition interaction, F(6, 240)
= 2.5, p = .022, revealed that the age effect was significant for faces (p = .002) and natural
objects (p = .0001) but not for manufactured and rest conditions (Figure 6a). Adults showed
greater module-strength* for faces compared to younger children (p = .005) but not older
children. For natural objects, adults showed greater module-strength* compared to both age
groups (p < .012). The ANOVA results suggest that increased connectivity within the visuo-
limbic module is (a) specific to faces and natural objects and (b) continues to increase in the
transition from childhood to adulthood for natural objects, but (c) appears to increase during
childhood for faces.

3.12 Node-strength
Greater node strength reflects stronger connectivity within a module for that node based on a
combination of positive and negative connections. Although right OFA node-strength* (r = .
407, p = .006, n = 45) increased with age in children for faces (Figure 6b), this did not
survive the Holm-adjusted alpha level of .0035. Nevertheless, this trend suggests increased
within-module connectivity of the right OFA during childhood. The mixed 4 (condition) × 3
(age group) ANOVA on node-strength* revealed a main effect of age in three nodes: the
right FFA, F(2, 85) = 6.9, p = .002, right OFA, F(2, 83) = 7.5, p = .001, and brainstem, F(2,
78) = 5.8, p = .004. In all nodes, adults had greater strength than at least one other age group
(right FFA: A > O, p = .003, A > Y, p = .022; right OFA: A > Y, p = .0001; brainstem: A >
O, p = .02, A > Y, p = .023), but these effects were not further qualified by condition;
therefore, they reflect generalized increases in connectivity with development during
childhood and in the transition from childhood to adulthood.

3.13 Image similarity
Some of the results indicated developmental differences in graph-theory metrics for both
faces and natural but not manufactured objects. It is possible that faces and natural objects
are more visually homogenous stimuli compared to manufactured objects. To address this,
we applied the information-theoretic similarity test described in the methods. The similarity
metric indicates that when two images are similar, then one image can be succinctly
described given the information in the other image. NCD values were used to create a
dissimilarity matrix among all stimuli and the top three eigenvectors were used to classify
the images into general groups using quadratic discriminant analysis. In Figure 7 (top) we
plot all images according to the first (x-axis) and third (y-axis) eigenvector, the two most
informative dimensions for image separation. Images that are closer to each other along
either axis are more similar than images that are more distant. Classification accuracy was
85.5% for grouping the images into faces, natural and manufactured objects (Figure 7,
bottom) based on the two most informative eigenvectors, and 90% using all three
eigenvectors.

For each image, we used these top three eigenvectors to compute the mean distance for an
image relative to all other images within the same category (faces, natural, manufactured
objects) as well as between different categories (natural v. faces and manufactured v. faces).
Hence, each image had a single value for within and between-category comparisons. As
shown in Figure 8, faces were significantly closer to each other than objects, indicating
greater similarity within the face category (p<.001), natural objects were more similar than
manufactured objects (p<.001), and natural objects were significantly closer to faces than
manufactured (p<.001). These findings suggest that faces and natural objects form more
visually homogenous categories, in line with other suggestions in the literature (e.g., Bruce
& Humphreys, 1994).
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4. Discussion
Prior studies on the neuro-development of face processing primarily have concentrated on
magnitude or extent of activation in specific brain regions, but the current study documents
developmental changes in brain connectivity for face processing. We explored two
hypotheses concerning developmental changes in functional connectivity of the face
network across childhood and in the transition from childhood to adulthood. One hypothesis
(associated with the maturational approach to development) was that the basic modular
structure among regions of the adult face network is already established in childhood but
that the primary developmental change would be an increase in strength of connections with
age. An alternative hypothesis (associated with the Interactive Specialization approach) was
that modular structure would change throughout development and that significant
reorganization would involve both integration and segregation of nodes within and across
modules. The evidence is in favor of this latter account.

The maturation account predicts an increase in strength of connections with age, but that
these strength increases would largely occur within a developmentally stable modular
organization. Although strength increased with age across the entire network, in the visuo-
limbic and visuo-cerebellar modules and in the right FFA, right OFA and brainstem, there
was also reorganization of the modular structure during development. Therefore, the first
result that supports the IS account is that modular structure changed over development,
meaning that the nodes of the network are grouped into different sub-networks at different
ages (Figure 2). Although this is a qualitative comparison, it is clear that the modular
structure is dynamic across development. The modular structure in younger children does
not resemble that of adults very closely, whereas there are more similarities between older
children and adults, such as the presence of a visuo-limbic module in both age groups.

The second result that supports the IS account is that there was greater integration of
positive connectivity and weaker integration of negative connectivity with age (based on the
modularity, number of modules and diversity coefficient analyses that included all three age
groups). This was especially true for diversity of connections of the visuo-limbic module
with respect to faces and natural objects.

The IS account also predicts that segregation would occur; however, the evidence for this
property was not as strong as the evidence for integration in that the trends toward
significance fell short of the corrected alpha levels for multiple tests. Nevertheless, because
this is the first study using graph-theory metrics to examine development of face processing,
these trends are worth reporting as they can guide hypotheses for future studies. Adults had
higher within-module clustering across the entire network compared with the other two age
groups, and the right OFA showed a developmental increase in clustering for faces and
natural objects. Therefore, functional connectivity changes from childhood to adulthood
involve both integration and segregation of connections, consistent with predictions of the IS
account. All of the graph-theory metrics showed some developmental change at one of the
spatial scales we examined (network, module or node level) with the exception of module-
weights. This measure reflects the proportion of positive or negative weights within a
module and does not reflect network properties that are more germane to functional
integration and segregation. Apparently, this measure it not as sensitive to developmental
changes as are the other metrics.

Interestingly, only two face-specific developmental changes emerged and these changes
occurred during childhood rather than in the transition from childhood to adulthood. One of
those changes was that number of modules based on positive connectivity (number+)
decreased during childhood for faces but not other conditions. Fewer modules were also
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observed in adults, but not specifically for faces. We presently interpret the finding of fewer
modules as an indication of greater integration of regions with development. In other words,
regions of the face network are less likely to divide into distinct sub-networks in older
children and adults.

Another face-specific developmental change involved the right OFA which increased in
within-module strength during childhood for faces (based on the correlation between age
and strength* in children) suggesting that weights of positive connections increased but
weights of negative connections decreased with age. Although this correlation did not
survive alpha-correction, we think these results are suggestive that the ROFA is an
important node in the development of an occipito-temporal module (Figure 1b) in the face
network during childhood. This module consists of bilateral OFA regions, bilateral FFA
regions and the left cerebellum.

In the present study, the right OFA was the only region to show a trend toward face-specific
developmental changes in connectivity. Although some developmental changes involved the
right FFA, these changes were not face-specific. The present finding that the right OFA
plays a role in development of face processing is not surprising given that others consider
the right OFA to be a critical and necessary component of face processing in adults (Pitcher
et al., 2011; Pitcher et al., 2007; Rossion et al., 2003). Moreover, in another fMRI
developmental study of face processing the right OFA showed a greater increase in face
specialization with age compared to the right FFA (Joseph et al., 2011); c.f. (Golarai et al.,
2007; Joseph et al., 2011; Scherf et al., 2007) and the OFA tends to be activated in younger
children whereas the FFA is not activated as strongly (Aylward et al., 2005a; Gathers et al.,
2004).

Although the right OFA shows a preference for faces like the FFA, its exact function in face
processing has not been determined. Some evidence shows that the right OFA is involved in
featural processing of faces (Pitcher et al., 2007) or represents an earlier stage of face
processing (Fairhall and Ishai, 2007; Haxby et al., 2000b), whereas the right FFA is more
heavily involved in configural and holistic processing (Aylward et al., 2005b; Maurer et al.,
2007; Rossion et al., 2007). In the present study, the right FFA and right OFA coalesced into
the same module during childhood, but dissociated in adulthood. Although it is difficult to
ascribe particular functions to these regions in the present study, as we did not manipulate
different types of face processing, we speculate that the reorganization of modular structure
involving the right OFA may reflect functional separation of featural and configural
processing of faces in adulthood. The visuo-cerebellar module in adults (which includes the
bilateral OFA) may be largely associated with analysis of featural information in a face and
may, therefore, play a more central role in perceptual processing of faces. Configural
information (i.e., the spacing of features) is more relevant for perceiving the changeable
aspects of faces and the right superior temporal sulcus (part of the fronto-temporal module
in adults) is known for its role in processing dynamic aspects of faces such as changes in
facial expression (Furl et al., 2007) and eye gaze (Haxby et al., 2000b). In addition, the right
inferior frontal gyrus (also part of the fronto-temporal module in adults) is involved in
imitating and empathizing with facial emotions (Morita et al., 2008) which are both
important component processes of non-verbal communication and understanding the
intentions of others. Therefore, the fronto-temporal module may be more associated with
aspects of face processing that are relevant for social cognition.

The visuo-limbic module, which includes early visual areas, the left hippocampus and right
inferior frontal (orbital portion) cortex showed increases in diversity with development, but
for both faces and natural objects. We speculate that the emergence of visuo-limbic
connections with development may relate to the development of perceptual expertise. Faces,
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natural objects and manufactured objects fall along a continuum of structural similarity, or
similarity of form (Arguin, Bub and Dudek, 1996; Bruce & Humphreys, 1994; Damasio,
Damasio and Van Hoesen, 1982). Faces represent the extreme end of this similarity scale in
that they share the same overall structure of two eyes, two ears, a nose, and a mouth. Natural
objects are generally more similar in shape than are manufactured objects. The analysis of
image similarity reflected this continuum. As noted by others, faces require perceptual
expertise for differentiating members of visually homogenous categories, but perceptual
expertise can be demonstrated for categories other than faces (Diamond and Carey, 1986;
Gauthier, Behrmann & Tarr, 1999). We suggest that the present findings for increased
functional integration with development for both faces and natural objects in the visuo-
limbic module may be related to development of perceptual expertise for differentiating
items from visually homogenous categories (faces or natural objects). For example, the
hippocampus has been implicated in specific face identification (Iidaka et al., 2003) and the
connectivity between left hippocampus and right inferior frontal gyrus-orbital portion is
stronger for successful than for unsuccessful coding of faces (Takashi and Cabeza, 2011).
The early visual cortex (calcarine sulcus) may be recruited for additional perceptual analysis
of object categories that are highly similar in shape (Martin et al., 1996). In addition,
because face recognition performance improves with development (Carey and Diamond,
1977; Goldstein and Chance, 1964), we suggest that the increased visuo-limbic connectivity
from childhood to adulthood may support the capacity to discriminate faces at a more
specific or individual level, which is associated with greater perceptual expertise (Gauthier
and Nelson, 2001). Apparently, this capacity is not reserved only for faces as the increased
visuo-limbic connectivity also emerged for natural objects.

Some of the present findings are consistent with other findings in the literature regarding the
development of functional brain networks. For example, Supekar et al. (2009) used resting-
state connectivity analyses and reported that sub-cortical areas are more strongly connected
with primary sensory areas in children than in adults. In the present study, the brain stem
and thalamus were associated with the same module as lateral temporal lobe regions during
childhood, but in adulthood, these two sub-cortical structures formed a separate module. In
addition, functional integration (diversity*) of the subcortical module and left calcarine
sulcus and within-module connectivity (strength*) of the visuo-cerebellar module and
brainstem was greater in adults than children. Potentially, these developmental changes
could reflect development of a sub-cortical module that is tightly connected only to early
sensory areas (e.g. left calcarine) in childhood but becomes more modular (via increased
strength*) yet integrated (via increased diversity*) with other brain regions by adulthood.

An important consideration about the present application of graph theory to examine
functional connectivity of the face network is that the metrics described by Rubinov and
Sporns (2011) are designed to isolate modules within a complex whole-brain network. The
present face network was composed of only fourteen regions and may, in fact, already be a
sub-network or module within a more complex brain network. One implication of this is that
if the face sub-network were to be considered with respect to whole-brain complex
networks, developmental changes may reflect greater segregation of the face-network from
other brain networks with age as an index of specialized processing of faces. At present, we
have demonstrated that partitions within the face sub-network are reorganized during
development via changes in integration and segregation. Because this is the first graph-
theory based functional connectivity study on development of a face network, the
modularity properties and partitions described here would need to be replicated in future
studies in order to demonstrate that these modules reliably reflect sub-networks involved in
face processing. The interesting question of how the face network itself either dissociates or
becomes integrated with other sub-networks of the brain should also be addressed with
future studies. Moreover, graph-theory analysis applied to functional imaging data is
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constantly being refined and re-evaluated (e.g. (Power et al., 2012) and future studies will
need to incorporate these refinements.

Another consideration about the present findings of developmental changes in graph theory
metrics is that differences in metrics between adults and younger children could be
explained by the fact that adults had, on average, higher correlations (or edge weights) than
younger children. However, graph-theory metric differences between adults and older
children cannot be attributed to higher edge weights in adults because edge weights were not
different between adults and older children. We suggest that differences between adults and
older children or differences between adults and both age groups of children are more likely
due to a developmental change because differences in edge weights cannot fully explain the
age group differences. In addition, in the case of right OFA within-clustering and strength,
the increase with age during childhood gives more confidence this is a true developmental
change and not just due to adults having higher edge weights than younger children.
Therefore, we suggest that the collective findings indicate true developmental changes rather
than reflecting higher edge weights in adults than younger children.

Other differences between children and adults must be considered as potential explanations
for changes in network organization with age. One consideration is that signal amplitude
differences between children and adults may drive the present findings of age differences in
connectivity. Although connectivity analyses focus on the temporal synchrony of fMRI
signal across brain regions (rather than relying on amplitude differences with respect to
baseline), we cannot completely rule out the proposal that developmental changes in graph-
theory metrics are driven by signal amplitude differences between children and adults.
Nevertheless, age differences in signal amplitude and age differences in graph-theory
metrics (or other measures of connectivity) could stem from the same underlying
developmental process. Therefore, it would not be surprising if these types of measures were
correlated. Whether age differences in signal amplitude should be thought of as a confound
or indicative of an underlying developmental process will need to be carefully teased apart
in future studies.

Another potential explanation for developmental changes in connectivity is that many
aspects of cognitive function apart from face processing are not as developed in children as
in adults (e.g., attention and executive function). It is possible that these differences drive
the developmental changes in network organization observed here. However, children and
adults did not differ in terms of button presses to the stimuli, indicating that they were as
alert and attentive as adults. Moreover, the present task made minimal cognitive demands,
which suggests that the network changes with development were not likely driven by
cognitive processing related to the passive viewing task.

Yet some of the present findings that were not category-specific may reflect generalized
cognitive differences between children and adults. Developmental changes that were not
specific to faces or natural objects included increased functional integration (diversity*) of
the subcortical module and left calcarine sulcus and increased within-module connectivity
(strength*) of the visuo-cerebellar module and brainstem. In all of these cases, subcortical
structures and early visual areas are involved but higher cortical areas are not. As noted,
Supekar et al. (2009) found that children showed stronger connectivity between subcortical
and primary sensory regions compared to adults. Together with the present findings, we
suggested that these regions change from being tightly connected in childhood to more
integrated with other brain areas by adulthood. Although subcortical regions are not
typically associated with higher level cognitive and executive function, a recent functional
connectivity study showed that stronger connectivity within subcortical regions was related
to poorer episodic memory performance in elderly adults (Ystad et al., 2010). It is
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conceivable, then, that reduced diversity of subcortical connections observed in children in
the present study is associated with inefficient whole-brain communication, which in turn
could influence higher level executive or more generalized cognitive functioning. Future
research will need to test this hypothesis directly.

Nevertheless, the present findings are relevant for the IS framework (Johnson, 2005) of
brain development and complement prior findings of both regressive and progressive
changes in fMRI signal magnitude in face-preferential brain regions with development
(Joseph et al., 2011). The IS account characterizes changes in cortical function as
competitive interactions among brain regions in order to increase efficiency of specialized
processing. This implies functional reorganization based on connectivity patterns, rather
than simply the addition of more connections to developmentally stable modules. The
present results demonstrate this property through the modular reorganization of brain
regions during childhood and in the transition from childhood to adulthood. These
developmental changes were marked both by greater integration associated with a visuo-
limbic module and greater segregation associated with the ROFA. Future research is needed
to characterize whether these different modules subserve different functions in face
processing.

In conclusion, the present findings provide one of the first characterizations of
developmental changes in functional connectivity patterns of typical face processing
networks. Although regions like FFA, OFA, primary visual and frontal cortex are activated
at all ages to some degree (Joseph et al., 2011), the novel finding is that the connectivity of
these regions and modular organization changes with age. Most of the face-specific changes
in connectivity emerged during childhood rather than in the transition from childhood to
adulthood. Understanding developmental changes in functional brain connectivity will be
critical for determining whether face processing networks in autism and other developmental
disorders are best described by long-range underconnectivity (Kleinhans et al., 2008;
Koshino et al., 2008), local overconnectivity in sensory areas (Belmonte et al., 2004),
adaptive variants of typical networks or atypical organization of face-processing networks
(Berl et al., 2006).
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Highlights

Few functional connectivity studies of typical development of face processing exist

Graph-theory based connectivity revealed network changes during childhood

The right occipital face area segregated from the right fusiform face area during
childhood

Visuo-limbic connections increased from childhood to adulthood

Increased visuo-limbic connectivity may support development of perceptual expertise
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Figure 1.
Average time series for each age group in the right fusiform face area region of interest. F =
face blocks, N = natural object blocks, M = manufactured object blocks, R = rest blocks.
Intensity values of the time series were converted to percent signal change relative to the
first volume so that the time series for the different age groups could be visualized on the
same scale. Sample stimuli for each category are shown.
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Figure 2.
Graphs of the positive and negative connectivity among regions of the typical adult face
network at three ages: adults, older children and younger children. Colors represent the
assignment of nodes to modules. Size of the nodes represents the strength of each node
scaled to the maximum strength across all three age-specific networks. Node labels are
described in Table 1.
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Figure 3.
Age × Condition interaction for modularity based on Q* partitioning. Asterisks indicate a
significant difference from adults for the given condition. Error bars are standard error of the
mean.
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Figure 4.
Diversity* results for the visuo-limbic module. Adults showed higher diversity* in the
visuo-limbic module for faces and natural objects but not for manufactured objects and the
rest condition. Asterisks indicate a significant difference from adults for the given condition.
Error bars are standard error of the mean.
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Figure 5.
Association between age (in months) and within-module clustering coefficient based on
positive connections in the right occipital face area (OFA) in children (top) and adults
(bottom) for each of the four conditions (faces, natural objects, manufactured objects, rest).
The correlation with age was only significant for faces in children.
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Figure 6.
(A) Strength* results for the visuo-limbic module. Adults showed higher diversity* in the
visuo-limbic module for faces and natural objects but not for manufactured objects and the
rest condition. Asterisks indicate a significant difference from adults for the given condition.
Error bars are standard error of the mean. (B) Association between age (in months) and
strength* in the right occipital face area (OFA) in children and adults for each of the four
conditions (faces, natural objects, manufactured objects, rest). The correlation with age was
only significant for faces in children.
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Figure 7.
(Top) Principal eigenvectors associated with all pairwise NCD values for the images used as
stimuli in the experiment. For visualization purposes we display these images along the first
and third eigenvectors. Colored labels indicate stimulus type –face (blue), natural (green), or
manufactured (cyan) images. (Bottom) Result of a discriminant analysis of the labeled
images along these dimensions, with the learned prediction regions colored accordingly.
Misclassified stimuli are indicated with a red X. Over 85% are successfully labeled.
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Figure 8.
Boxplots displaying medians (red line) and quartiles of the distributions for the distances of
individual images to other images within the same class or to those images within another
class in eigenvector space. Within-face distances (n=30) are significantly lower than within-
object distances (n=60), within-natural distances (n=30) are significantly lower than within-
manufactured distances (n=30). Mean distance between natural and face images (n=30) is
significantly lower than the mean distance between manufactured and face images (n=30).
All p-values are < 0.001. Outliers are indicated as red crosses and mean value and standard
error for each condition are given on the x axis.
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Table 2

Graph theory metrics used in the present study and related results

Metric & Description Variable name(s) Effects of age and interactions

Modularity Q+ no effects

Q* alower Q* in adults than children for faces, natural and random conditions

Number of modules number+ aface-specific decrease during childhood

number* no effects

Diversity coefficient network-diversity* agreater network diversity in adults than younger children

module-diversity* agreater subcortical diversity in adults than younger children;

agreater visuo-limbic diversity in adults than children for faces and natural objects

node-diversity* agreater left calcarine diversity in adults than children

Module weights module-weights+ no effects

module-weights− no effects

Clustering coefficient network-within-clustering+ btrend for greater clustering in adults than children

module-within-clustering+ no effects

node-within-clustering+ bface-specific increase in right occipital face area clustering during childhood;

bgreater right occipital face area clustering in adults than children for faces;

bgreater right occipital face area clustering in adults than older children for natural
objects

network-within-clustering− cnot analyzed

module-within-clustering− cnot analyzed

node-within-clustering− cnot analyzed

Strength network-strength* agreater strength in adults than children

module-strength* agreater visuo-limbic strength in adults than younger children for faces;

agreater visuo-limbic strength in adults than children for natural objects;

agreater visuo-cerebellar strength in adults than younger children

node-strength* bincrease in right occipital face area strength during childhood for faces;

agreater right occipital face area strength in adults than younger children;

agreater right fusiform face area strength in adults than children;

agreater brainstem strength in adults than children

a
significant at Holm adjusted alpha level;

b
significant at uncorrected alpha = .05,

c
this variable had a significant number of zeros
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