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The intraflagellar transport (IFT) complex is an integral component
of the cilium, a quintessential organelle of the eukaryotic cell. The
IFT system consists of three subcomplexes [i.e., intraflagellar
transport (IFT)-A, IFT-B, and the BBSome], which together trans-
port proteins and other molecules along the cilium. IFT dysfunction
results in diseases collectively called ciliopathies. It has been pro-
posed that the IFT complexes originated from vesicle coats similar
to coat protein complex (COP) I, COPII, and clathrin. Here we
provide phylogenetic evidence for common ancestry of IFT subunits
and α, β′, and e subunits of COPI, and trace the origins of the IFT-A,
IFT-B, and the BBSome subcomplexes. We find that IFT-A and the
BBSome likely arose from an IFT-B–like complex by intracomplex
subunit duplication. The distribution of IFT proteins across eukary-
otes identifies the BBSome as a frequently lost, modular compo-
nent of the IFT. Significantly, loss of the BBSome from a taxon is
a frequent precursor to complete cilium loss in related taxa. Given
the inferred late origin of the BBSome in cilium evolution and its
frequent loss, the IFT complex behaves as a “last-in, first-out” sys-
tem. The protocoatomer origin of the IFT complex corroborates in-
volvement of IFT components in vesicle transport. Expansion of
IFT subunits by duplication and their subsequent independent
loss supports the idea of modularity and structural independence
of the IFT subcomplexes.

complex modularity | molecular evolution

The eukaryotic cilium or flagellum is a structure protruding
from the cell into the environment. The cilium provides mo-

tility by a controlled whip-like or rotational beating. Construction
and maintenance of the cilium, together with additional signaling
functions, depend on the process of intraflagellar transport (IFT).
IFT provides active, bidirectional transport of proteins and other
molecules along the length of the cilium, delivering structural
components and other factors in the organelle. IFT dysfunction
results in the inability of the cilium to maintain a normal structure
and failure of signaling and sensory pathways, causing complex
system-wide disorders and syndromes (1).
IFT is mediated by a large cohort of evolutionarily conserved

subunits, which can be grouped by biochemical and genetic cri-
teria into three subcomplexes: IFT-A, IFT-B, and BBSome.
Broadly, mutations in any subunit of each of these complexes
phenocopy each other, indicating close cooperativity and a re-
quirement for complete holocomplexes for functional IFT. Sig-
nificantly, six IFT complex subunits (WDR19, WDR35, IFT140,
IFT122, IFT172, and IFT80) have predicted secondary structure
elements and folds similar to those present in multiple subunits
of vesicle coat complexes and the nuclear pore complex (NPC)
(2–4). Their N-terminal region contains WD40 repeats, likely
forming two β-propeller folds, whereas their C-terminal region
contains tetratricopeptide repeats (TPR), likely forming an
α-solenoid–like fold.
The IFT system has been shown to be homologous to the

protocoatomer family of complexes, which includes coat protein
complex (COP) I, COPII, clathrin/adaptin complex, and the

NPC scaffold (2–4). This classification was based on sequence
similarity of IFT subunits to the COPI-α and -β′ subunits, further
supported by secondary structure predictions. However, a full
phylogenetic reconstruction and structural analysis of the IFT
complex has not been performed. Such an analysis is necessary
because the abundance of the WD40 and TPR domains in non-
coatomer subunit proteins requires more than sequence similarity
to establish a close phylogenetic relationship. Here, we have re-
constructed the evolution of the IFT complex in detail, and
provide phylogenetic evidence that the IFT complex is indeed
a sister structure to COPI. Analysis of the presence of the in-
dividual subcomplexes in currently living eukaryotes shows that
the presence and inferred order of the loss of subcomplexes
mirrors their origin—the IFT subcomplex that was added latest
in evolution is the first to be lost.

Results
The known IFT system consists of three subcomplexes, IFT-A,
IFT-B, and BBSome, together comprising 33 subunits in Homo
sapiens (n = 7, n = 17, and n = 10, respectively). Twenty-one
of these subunits can be divided into four groups based on ho-
mology relationships and predicted structures (Fig. 1A). The first
group (Fig. 1A, blue) comprises WDR19, WDR35, IFT140,
IFT122, IFT172, and IFT80, whose domain structure resembles
COP-α and -β subunits (2–4) (as detailed later). For brevity, we
will henceforth refer to these proteins as the αβ-IFT subunits.
The second group (Fig. 1A, yellow) comprises TTC21, IFT88,
TTC26, TTC30A/B, BBS4, and BBS8, whose domain structure
resembles the COP-e subunit and are henceforth referred to as
e-IFT subunits. The third group (Fig. 1A, red) comprises the
small GTPases IFT22, IFT27, and BBS3. Finally, the fourth
group (Fig. 1A, green) comprises BBS1, BBS2, BBS7, and BBS9,
and represents four homologous subunits in the BBSome. The
remaining IFT subunits (Fig. 1A, white) do not share any detect-
able sequence relationships with each other, or with any other
proteins. Hence, as they do not contain any phylogenetic infor-
mation on the origin of the IFT complex, they will not be further
discussed. Interestingly, members of the four homologous groups
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are not confined to a specific subcomplex, indicating a convoluted
origin of the three subcomplexes. Here we discuss two of these
groups, the αβ-IFT and e-IFT subunits, and report an evolutionary
reconstruction of their origin. Discussions of the other two groups
are provided in SI Discussion.

Common Descent of IFT and COPI-α, -β′, and -e Subunits. Sensitive
sequence similarity searches [i.e., hidden Markov models (HMMs)
and PSI-BLAST] using the sequences of αβ-IFT subunits (Fig. 1A,
blue) as queries retrieved many TPR- and WD40-containing
protein sequences, including the α and β′ subunits of the COPI
complex. However, none of these were retrieved consistently
for all αβ-IFT subunits. This lack of consistency in detection of
proteins that are most similar to the αβ-IFT subunits argues
for a phylogenetic approach to identify the origin of the αβ-IFT
subunits. Unfortunately, variability in the number and length of
the WD40 and TPR domains within the αβ-IFT subunits prevents
unambiguous alignment of these sequences. To overcome this,
we searched for a common region of sequence similarity among
the αβ-IFT subunits. We detected a region of ∼150 aa residues
that lies between the β-propeller and α-solenoid–like segments
in all αβ-IFT subunits, and that aligned consistently without the
need to insert long gaps into the alignment (Fig. 2 and Fig. S1).
Iterative similarity searches with the use of an HMM for this
region resulted in the retrieval of all αβ-IFT subunits as well as,
importantly, the α and β′ subunits of the COPI complex. No
other significant hits where retrieved, strongly suggesting a com-
mon origin for the αβ-IFT and COPI-α and COP-β′ subunits.
For the e-IFT subunits (Fig. 1A, yellow), we used an HMM vs.

HMM search to determine whether the e-IFT subunits are each
other’s closest paralogs and whether the COP-e subunit indeed
represents the closest non-IFT subunit relative. HMMs for
each of the e-IFT subunits and COP-e were constructed and
added to the complete set of HMMs of protein families in the
Panther database (5). In most comparisons (Table S1), COP-e and
the e-IFT subunits represent reciprocal best hits, suggesting that
COP-e is indeed the closest non-IFT paralog of the e-IFT subunits.
We subsequently constructed multiple sequence alignments

and phylogenetic trees for the αβ- and e-IFT subunits. Impor-
tantly, inclusion of COP-α, COP-β′, and COP-e sequences allowed
us to root the phylogenetic trees and infer the order in which the
individual αβ- and e-IFT subunits originated. The topology of the
e-IFT phylogeny (Fig. 1B) suggests that the proto-IFT complex

was IFT-B–like (the IFT-B subunits can be found in both clades
originating in node b, whereas the BBSome and IFT-A subunits
emerge later). BBSome subunits BBS4 and BBS8 originate from
a duplication at node d followed by a duplication in node f, sug-
gesting that the BBSome subcomplex emerged later in the proto-
IFT complex. Duplication of the ancestral e-IFT subunit at node e
gave rise to IFT88 (IFT-B) and TTC21 (IFT-A), suggesting that
the IFT-A subcomplex is the latest addition to the proto-IFT
complex and completes the extant IFT system. Fig. 1C shows a
cartoon representation of the sequence of subcomplex emergence.
The αβ-IFT phylogenetic tree is not fully resolved and sup-

ports two distinct evolutionary scenarios with respect to the or-
der in which the subcomplexes originated (SI Discussion provides
more details), one of which is congruent with the scenario for the
e-IFT subunits.

Loss of IFT Subcomplexes Reflects Modularity Within IFT Complex.
The full IFT system is not retained in all eukaryotic species. In fact,
cilium loss has occurred in multiple taxa, including Apicomplexa,
most fungi, and seed plants (6, 7). To obtain a high-resolution
picture of IFT presence and loss, we searched for orthologues
of known IFT subunits in a selected set of 52 sequenced genomes
of divergent eukaryotic species by using sensitive homology
detection methods, including PSI-BLAST and HMMs (Fig. 3).
We included ciliate and nonciliate species to determine the
exclusiveness of IFT subunits to ciliated species. All the sub-
units reported for the human IFT complexes are conserved
throughout the eukaryotic lineage. Therefore, IFT-A, IFT-B,
and BBSome were likely present in the last eukaryotic com-
mon ancestor (LECA) and comprised all currently known IFT
subunits from human and Chlamydomonas reinhardtii, in agree-
ment with earlier observations (4, 7).
Despite the correlation between the presence of IFT subunits

and the cilium, IFT subunits are not universally conserved in all
ciliated species (Fig. 3). Most interesting is the loss of the BBSome
in Batrachochytrium dendrobatidis, Selaginella moellendorffii,
Physcomitrella patens, Thalassiosira pseudonana, and Toxoplasma
gondii (SI Discussion provides a detailed description of these
species). These species represent four independent lineages in
eukaryotic evolution, and hence the losses represent separate
events. Interestingly, all the species lacking the BBSome are
closely related to species that have also lost the entire cilium
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(fungi, seed plants, Phaeodactylum tricornutum, and Cryptosporidium
parvum, respectively).
This pattern of BBSome loss thus appears to precede the loss

of the cilium, and may indicate a reduced role for cilia in
BBSome-negative lineages before the cilium is lost entirely. The
existence of multiple species with functional flagella, but lacking
the BBSome, suggests that the BBSome is a nonessential com-
ponent of IFT. The “moderate” importance of the BBSome is
reflected in the viable, albeit sometimes severe, phenotypes as-
sociated with Bardet–Biedl syndrome in humans (8).
Disrupting the expression of BBSome subunits has profound

effects on the other IFT complexes. BBSome dysfunction results
in instability and incorrect assembly of the IFT complex, re-
sulting in dissociated IFT-A and IFT-B complexes (9). This
suggests that there is functional interaction between the BBSome
and IFT-A and B. However, from our analysis, it appears that
the removal of the BBSome can be tolerated in some species,
indicating that this functional interaction must be nonessential.
It will be interesting to understand how species compensate for
loss of the BBSome, and what evolutionary steps are required to
facilitate that loss. Consequently, this may provide insights into
possible treatments for patients with Bardet–Biedl syndrome.
Further, the secondary loss of individual subunits observed

in each subcomplex indicates that there may be a tolerance
within the system for subunit loss. The phylogenetic patterns are
potentially correlated with severity of mutant phenotype or the
inner structure of the IFT complexes. Indeed, the pattern appears
to be nonrandom: subunits of the IFT-B subcomplex that suffer
the most losses (IFT74, IFT27, IFT22, and IFT25) are part of the
salt-stable core (10–15) (P = 0.029, Fisher exact test; Table S2).
Nevertheless, we did not observe a correlation between the
number of losses of a subunit and the severity of its phenotype as
measured by the severity of cilia length reduction (P = 0.34,

Fisher exact test for the IFT-B complex; Table S2). This suggests
that the conservation of an IFT subunit may depend more upon
the structure of the IFT complex rather than the severity of the
phenotype alteration in the mutant. Further biochemical re-
search into the structures and mechanisms of the IFT may pro-
vide an explanation for this counterintuitive observation.

Orthologous IFT and BBSome Subunits from Trypanosoma brucei and
H. sapiens Are Generally Conserved in Sequence and Structure. The
variability in protein length and domain composition between
homologous IFT subunits requires us to determine to which
extent protein structure is conserved between subunits, as well
as for orthologous subunits between eukaryotic species. We
compared the sequences of the IFT and BBsome subunits in
T. brucei and H. sapiens as well as their various predicted struc-
tural features, including secondary structure segments, disordered
regions, coiled-coil regions, TPR repeats, and folds (Fig. 4 and
Fig. S2). The orthologous IFT and BBSome subunit sequences
are well conserved, despite the large evolutionary distances be-
tween them, and despite the variable presence of the subunits
per species. For example, human IFT172 (1,749 residues) and
T. brucei IFT172 (1,747 residues) have sequence identity of
41%, even though T. brucei belongs to the Excavata, an arguably
early branching supergroup of eukaryotes (16, 17). The high
similarity between the predicted secondary structure elements
suggests that the orthologous proteins in the IFT complex are
structurally conserved to a remarkable level.
We further explored structural similarities by comparing pre-

dicted coiled coils, disordered regions, TPR repeats, and fold
types. Such an approach was instrumental in proposing a com-
mon ancestral protocoatomer for coated vesicle and nuclear
pore subcomplexes, despite weak sequence similarities among
the constituent subunits (2, 18). As for the sequences and secondary
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Fig. 2. Multiple sequence alignment of the αβ-IFT conserved region extracted from the full alignment. The full alignment contains 52 sequences. Larger
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structure segments, the fold types are also conserved between
orthologues from human and T. brucei. Moreover, fold types
are likewise conserved among subunits within each of the three
subcomplexes. Thus, the IFT and BBSome subunits can be or-
ganized into three structural classes as follows (Fig. 4). First, the
e-IFT subunits are all-α proteins with α-solenoid–like/TPR re-
peats, some of which contain disordered and/or coiled-coil regions
(e.g., IFT88). Second, the αβ-IFT subunits consist of at least one
β-propeller fold, followed by an α-helical region that may contain
TPR repeats (e.g., WDR35). The exception is IFT80, which is
predicted to contain only a short α-helical region unlikely to be a
TPR repeat. The helical C terminus of the T. brucei IFT80 is
longer than that of H. sapiens, perhaps indicating a significant
structural difference within this one orthologous pair. Third,
the BBSome subunits contain a β-propeller fold, followed by a
short coiled-coil region and a C terminus that is rich in β-strands
and α-helices. The folds of the C-terminal β-strand and α-helix–
rich regions cannot be assigned reliably, although the α-helix–
rich region in BBS9/PTHB1 exhibits distant sequence similarity
to tropomyosin (Fig. S2).

Discussion
Our findings on the origin of the IFT subcomplexes and their
subsequent loss in various lineages have implications for IFT
evolution and structure. The phylogenetic reconstruction of
the origins of the IFT subunits and observed modularity in the

presence/absence profiles indicates that gain and loss of IFT
components most likely occurred in distinct modular steps (Fig.
5). With respect to origins and acquisition of the IFT system, our
results suggest that the BBSome and IFT-A emerged from an
IFT-B–like complex by intracomplex duplications. Whether the
IFT-A or the BBSome was the first additional subcomplex to
emerge is unresolved at this time.
With respect to subsequent secondary losses, the apparent

modularity of the IFT subcomplexes implies a distinct order
to the loss of these factors, which, in some lineages, pro-
gressed to the loss of the cilium. We identified at least four
independent loss events for the BBSome in B. dendrobatidis,
P. patens, S. moellendorffii, T. gondii and T. pseudonana. All
these taxa are closely related to species that have lost the cilium
and IFT genes altogether (fungi, spermatophytes, C. parvum, and
P. tricornutum, respectively; Fig. 3). Additionally, T. pseudonana
has lost the IFT-A subcomplex. These observations suggest that
the BBSome may be dispensed with while maintaining a level of
cilium function. Subsequently the IFT-A subcomplex can be lost
(T. pseudonana) before complete loss of IFT (Plasmodium
falciparum) and of the cilium (C. parvum). These observations
indicate that IFT-B could be viewed as the most critical sub-
complex, as it is the last to be retained, and hence its presence
essentially dictates if a cilium is present (Fig. 5). Stepwise
emergence and loss suggests that IFT is an example of a “last-in,
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Fig. 3. Coulson plot demonstrating presence and absence (or loss) of IFT subunits in 52 eukaryotic genomes. Complexes are divided into IFT-A and -B and
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first-out” evolutionary system, i.e., whereby modules added last
are also the first ones to be lost.
A protocoatomer origin for IFT provides a rationale for in-

volvement of IFT subunits in coated vesicle transport to the
ciliary base (19). Subunits of the IFT and BBSome are impli-
cated in various transport pathways, and, therefore, with respect
to function, IFT has not fallen far from the coatomer tree.
Whether IFT can function as a separate coatomer-like structure
and whether individual IFT subunits associate with other coat-
omer complexes remains to be resolved; significantly, the BBSome
has been suggested to function as a coatomer complex, as it
has been shown to localize on to membranes and to assemble
an electron dense coat (20).
The phylogenies of homologous IFT subunits provide a

framework for elucidating IFT subunit assembly within the cilium.

Mimicking the coatomer complexes, the αβ- and e-IFT subunits
likely have structural roles in IFT. By analogy to their homologous
COPI subunits, they are likely to bind in a head-to-head and
tail-to-tail configuration. Close paralogs could be expected to
bind each other directly or to produce module variants by
mutually exclusive binding with identical partners (21). The phy-
logenies therefore may assist by constraining the number of po-
tential subunit arrangements. Although module variants remain
to be described for IFT, there is a possibility that recently du-
plicated IFT subunits, such as TTC30A, TTC30B, TTC21A, and
TTC21B, interact with the IFT in a mutually exclusive manner,
further diversifying IFT function.
In conclusion, our results formally unite IFT with the coat-

omer protein complexes and the NPC, folding them into the pro-
tocoatomer family, as well as demonstrating that IFT is closely
related to the COP I complex. Our phylogenetic reconstruction
provides compelling evidence for functional as well as structural
modularity within the IFT complex. Furthermore, the complex
evolution of the IFT and its origin from a protocoatomer com-
plex provides a keystone for understanding how the eukaryotic
cell was able, by repurposing existing pathways and complexes, to
evolve such a complex and highly organized organelle as the cilium.

Methods
Sequence Searches and Phylogenetic Analysis.We gathered protein sequences
of 52 genomes of ciliated and nonciliated eukaryotes (Table S3). Orthologous
IFT subunits were identified by OrthoMCL (version 2.0), followed by manual
refinement based in part on HMMER (22) and PSI-BLAST (23) searches to
find additional orthologues. Absences of subunits were checked against
the respective genome with TBLASTN and available EST databases. The
orthologous sequences were pruned to a limited set of diverse species to
exclude problematic sequences but retain a wide phylogenetic coverage.
Initial alignments were made with MAFFT LINSI (24). In the initial αβ′-like
IFT subunit alignment, we observed a conserved region among all IFT
subunits (SI Discussion). A custom HMM was made and was used to search
against our 52 genomes. The final alignments were made by first aligning
orthologous sequences for each IFT and COPI subunit and then progressively
aligned with each other by OPAL (25) by using a neighbor-joining tree to
guide the order of adding alignments. The neighbor-joining tree was con-
structed by using QuickTree (26) and the initial MAFFT-based alignment. The
resulting alignments were then analyzed by using PhyML (27), RAxML (28),
QuickTree, and PhyloBayes (29). The appropriate model of evolution (LG)
was determined by PROTTEST (30). Proportion of invariable sites and
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γ-distribution shape parameters were estimated. The alternative topologies
for the αβ′-like IFT subunits were created manually, and branch lengths were
recalculated by using RAxML. Site log-likelihoods were calculated by using
RAxML. Consel (31) was used to calculate the probabilities as shown in Table
S4. Sequence similarity between the IFT and COP-e subunits was detected
by using HHsearch (32). Custom HMM models were constructed by using
HMMER (v2). HMM models of the Panther database (5) were used as back-
ground to which the custom HMM models were compared.

Structure Analysis. IFT sequences were analyzed by using sequence-based
methods for predicting disordered regions [IUPred; with default parameters
(33)], coiled coils [MARCOIL; at threshold 90% (34)], and secondary structure
elements [PSIPRED; with five PSI-BLAST iterations (35)]. In addition, the folds
of full-length IFT sequences and their domains were predicted by the fold
recognition servers pDomTHREADER/mGenTHREADER (36) and Phyre
(37) (using the default parameters), as well as the comparative modeling
server ModWeb (http://salilab.org/modweb; template selection performed
by using sequence-sequence, sequence-profile, and profile-profile methods,

with an E-value threshold of 1.0) (38) and TPRpred, a profile-sequence
comparison tool trained for TPR repeats (39). Based on an initial in-
spection of the disorder, secondary structure, and fold predictions for
full-length sequences, we estimated the domain boundaries for select
sequences and resubmitted domain sequences to the fold assignment
servers. High confidence fold predictions [Phyre (estimated precision
≥75%); pDomTHREADER (certainty of certain or score ≥6.2); MODWEB
(Z-DOPE <0 or sequence identity ≥30%)] from individual servers were
confirmed with the Pfam database entries. The final folds were assigned
if more than one server predicted the same fold for a particular domain.
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